现代仪器分析测试方法

现代仪器分析测试方法
现代仪器分析测试方法

现代仪器分析测试方法

现代分析有分离分析法、热分析法、光学分析法、质谱分析法、电分析化学法、分析仪器联用技术这集中类型。具体有:核磁共振(NMR),红外光谱(IR),紫外光谱(UV),质谱(MS),气相色谱(GC),液相色谱(LC),气相色谱与质谱联用(GC/MS)技术和液相色谱与质谱联用(LC/MS)技术。

核磁共振(NMR)

核磁共振主要是由原子核的自旋运动引起的。不同的它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况。

原子核的自旋

核磁共振用NMR(Nuclear Magnetic Resonance)为代号。

I为零的原子核可以看作是一种非自旋的球体,I为1/2的原子核可以看作是一种电荷分布均匀的自旋球体,1H,13C,15N,19F,31P的I均为1/2,它们的原子核皆为电荷分布均匀的自旋球体。I大于1/2的原子核可以看作是一种电荷分布不均匀的自旋椭圆体。

核磁共振现象

原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。

μ=γP

公式中,P是角动量,γ是磁旋比,它是自旋核的磁矩和角动量之间的比值,

当自旋核处于磁场强度为B0的外磁场中时,除自旋外,还会绕B0运动,这种运动情况与陀螺的运动情况十分相象,称为拉莫尔进动,见图8-1。自旋核进动的角速度ω0与外磁场强度B0成正比,比例常数即为磁旋比γ。式中v0是进动频率。

ω0=2πv0=γB0

微观磁矩在外磁场中的取向是量子化的,自旋量子数为I的原子核在外磁场作用下只可能有2I+1个取向,每一个取向都可以用一个自旋磁量子数m来表示,m与I之间的关系是:m=I,I-1,I-2…-I

原子核的每一种取向都代表了核在该磁场中的一种能量状态,其能量可以从下式求出:正向排列的核能量较低,逆向排列的核能量较高。它们之间的能量差为△E。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。

目前研究得最多的是1H的核磁共振,13C的核磁共振近年也有较大的发展。1H的核磁共振称为质磁共振(Proton Magnetic Resonance),简称PMR,也表示为1H-NMR。13C 核磁共振(Carbon-13 Nuclear Magnetic Resonance)简称CMR,也表示为13C-NMR。

目前使用的核磁共振仪有连续波(CN)及脉冲傅里叶(PFT)变换两种形式。连续波核磁共振仪主要由磁铁、射频发射器、检测器和放大器、记录仪等组成(见图8-5)。磁铁用来产生磁场,主要有三种:永久磁铁,磁场强度14000G,频率60MHz;电磁铁,磁场强度23500G,频率100MHz;超导磁铁,频率可达200MHz以上,最高可达500~600MHz。频率大的仪器,分辨率好、灵敏度高、图谱简单易于分析。磁铁上备有扫描线圈,用它来保证磁铁产生的磁场均匀,并能在一个较窄的范围内连续精确变化。射频发射器用来产生固定频率的电磁辐射波。检测器和放大器用来检测和放大共振信号。记录仪将共振信号绘制成共振图谱。

氢谱

氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这

些信息,可以推测质子在碳胳上的位置。

红外光谱(IR)

用红外光谱仪器吸收光谱法定性或定量分析有机物和无机物含量。

工作原理

红外光谱分析infrared spectra analysis

利用红外光谱对物质分子进行的分析和鉴定。将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。分子越大,红外谱带也越多。

种类

红外光谱仪的种类有:①棱镜和光栅光谱仪。属于色散型,它的单色器为棱镜或光栅,属单通道测量。②傅里叶变换红外光谱仪。它是非色散型的,其核心部分是一台双光束干涉仪。当仪器中的动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱。这种仪器的优点:①多通道测量,使信噪比提高。②光通量高,提高了仪器的灵敏度。③波数值的精确度可达0.01厘米-1。④增加动镜移动距离,可使分辨本领提高。⑤工作波段可从可见区延伸到毫米区,可以实现远红外光谱的测定。

用途

红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。已有几种汇集成册的标准红外光谱集出版,可将这些图谱贮存在计算机中,用以对比和检索,进行分析鉴定。利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。由于分子中邻近基团的相互作用,使同一基团在不同分子中的特征波数有一定变化范围。此外,在高聚物的构型、构象、力学性质的研究,以及物理、天文、气象、遥感、生物、医学等领域,也广泛应用红外光谱。

紫外光谱(UV)

准确测定有机化合物的分子结构,对从分子水平去认识物质世界,推动近代有机化学的发展是十分重要的。采用现代仪器分析方法,可以快速、准确地测定有机化合物的分子结构。在有机化学中应用最广泛的测定分子结构的方法是四大光谱法:紫外光谱、红外光谱、核磁共振和质谱。紫外和可见光谱(ultraviolet and visible spectrum)简写为UV。

紫外光谱的原理

紫外光谱的产生

在紫外光谱中,波长单位用nm(纳米)表示。紫外光的波长范围是100~400 nm,它分为两个区段。波长在100~200 nm称为远紫外区,这种波长能够被空气中的氮、氧、二氧化碳和水所吸收,因此只能在真空中进行研究工作,故这个区域的吸收光谱称真空紫外,由于技术要求很高,目前在有机化学中用途不大。波长在200~400 nm称为近紫外区,一般的紫外光谱是指这一区域的吸收光谱。波长在400~800 nm范围的称为可见光谱。常用的分光光度计一般包括紫外及可见两部分,波长在200~800 nm(或200~1000 nm)。

分子内部的运动有转动、振动和电子运动,相应状态的能量(状态的本征值)是量子化的,因此分子具有转动能级、振动能级和电子能级。通常,分子处于低能量的基态,从外界吸收能量后,能引起分子能级的跃迁。电子能级的跃迁所需能量最大,大致在1~20 eV(电子伏特)之间。根据量子理论,相邻能级间的能量差ΔE、电磁辐射的频率ν、波长λ符合下面的关系式

ΔE=hν=h×c/λ

式中h是普朗克常量,为6.624×10^-34J·s=4.136×10^-15 eV·s;c是光速,为2. 998×10^10 cm/s。应用该公式可以计算出电子跃迁时吸收光的波长。

许多有机分子中的价电子跃迁,须吸收波长在200~1000 nm范围内的光,恰好落在紫外-可见光区域。因此,紫外吸收光谱是由于分子中价电子的跃迁而产生的,也可以称它为电子光谱。[1]

电子跃迁的类型

有机化合物分子中主要有三种电子:形成单键的σ电子、形成双键的π电子、未成键的孤对电子,也称n电子。基态时σ电子和π电子分别处在成键轨道和π成键轨道上,n电子处于非键轨道上。仅从能量的角度看,处于低能态的电子吸收合适的能量后,都可以跃迁到任一个较高能级的反键轨道上。跃迁的情况如下图所示:

上图中虚线下的数字是跃迁时吸收能量的大小顺序,该顺序也可以表示为

n→π*<π→π*

即n→π*的跃迁吸收能量最小。实际上,对于一个非共轭体系来讲,所有这些可能的跃迁中,只有n→π*的跃迁的能量足够小,相应的吸收光波长在200~800 nm范围内,即落在近紫外-可见光区。其它的跃迁能量都太大,它们的吸收光波长均在200 nm以下,无法观察到紫外光谱。但对于共轭体系的跃迁,它们的吸收光可以落在近紫外区。

根据上图,可以认为:烷烃只有σ键,只能发生σ→σ*的跃迁。含有重键如C=C,C ≡C,C=O,C=N等的化合物有σ键和π键,有可能发生σ→σ*,σ→π*,π→π*,π→σ*的跃迁。分子中含有氧、卤素等原子时,因为它们含有n电子,还可能发生n→π*、π→σ*的跃迁。

一个允许的跃迁不仅要考虑能量的因素,还要符合动量守恒(跃迁过程中光量子的能量不转变成振动的动能)、自旋动量守恒(电子在跃迁过程中不发生自旋翻转),此外,还要受轨道对称件的制约。即使是允许的跃迁,它们的跃迁概率也是不相等的。有机分子最常见的跃迁是σ→σ*,π→π*,n→σ*,n→π*的跃迁。

电子的跃迁可以分成三种类型:基态成键轨道上的电子跃迁到激发态的反键轨道称为N →V跃迁,如σ→σ*,π→π*的跃迁。杂原子的孤对电子向反键轨道的跃迁称为N→Q跃迁,如n→σ*,n→π*的跃迁。还有一种N→R跃迁,这是σ键电子逐步激发到各个高能

级轨道上,最后变成分子离子的跃迁,发生在高真空紫外的远端。

紫外光谱图

右图是乙酸苯酯的紫外光谱图。

紫外光谱图提供两个重要的数据:吸收峰的位置和吸

收光谱的吸收强度。从图中可以看出,化合物对电磁辐射

的吸收性质是通过一条吸收曲线来描述的。图中以波长

(单位nm)为横坐标,它指示了吸收峰的位置在260 nm

处。纵坐标指示了该吸收峰的吸收强度,吸光度为0.8。

吸收光谱的吸收强度是用Lambert(朗伯)—Beer(比

尔)定律来描述的,这个定律可以用下面的公式来表示:

A=lg(I0/I)=kcl=lg(1/T)

式中A称为吸光度(absorbance)。I0是入射光的强度,I是透过光的强度,T=I/I0为透射比(transmiπance),又称为透光率或透过率,用百分数表示。l是光在溶液中经过的距离(一般为吸收池的长度)。c是吸收溶液的浓度。κ=A/(cl),称为吸收系数(absorptivity)。若c以mol/L为单位,l以cm为单位,则κ称为摩尔消光系数或摩尔吸收系数,单位为cm2·mol (通常可省略)。

A,T,(1-T)(吸收率),κ,lgκ都能作为紫外光谱图的纵坐标,但最常用的是κ,lg κ。上图是以吸光度A为纵坐标的紫外光谱图,下面四幅图是以T,1-T,κ,lgκ为纵坐标的紫外光谱图。由图可知,透过率与吸收率正好相反,如吸收率为20%,透过率恰好为80%。

最大吸收时的波长(λmax)为紫外的吸收峰,在以吸光度、κ,lgκ、吸收率为纵坐标的谱图中,λmax处于吸收曲线的最高峰顶,而在以透过率为纵坐标的谱图中,λmax 处于曲线的最低点。紫外吸收的强度通常都用最大吸收峰的κ值即κmax来衡量。在多数文献报告中,并不绘制出紫外光谱图,只是报道化合物最大吸收峰的波长及与之相应的摩尔消光系数。例如CH3I的紫外吸收数据为λmax 258 nm(365),这表示吸收峰的波长为258 nm,相应的摩尔消光系数为365。

紫外光谱的测定大都是在溶液中进行的,绘制出的吸收带大都是宽带,这是因为分子振动能级的能级差为0.05~1 eV,转动能级的能差小于0.05 eV,都远远低于电子能级的能差,因此当电子能级改变时,振动能级和转动能级也不可避免地会有变化,即电子光谱中不但包括电子跃迁产生的谱线,也有振动谱线和转动谱线,分辨率不高的仪器测出的谱图,由

于各种谱线密集在一起,往往只看到一个较宽的吸收带。若紫外光谱在惰性溶剂的稀溶液或气态中测定,则图谱的吸收峰上因振动吸收而会表现出锯齿状精细结构。降低温度可以减少振动和转动对吸收带的贡献,因此有时降温可以使吸收带呈现某种单峰式的电子跃迁。溶剂的极性对吸收带的形状也有影响,通常的规律是溶剂从非极性变到极性时,精细结构逐渐消失,图谱趋向平滑。

应用

医药方面

紫外光谱在破析一系列维生素、抗菌素及天然产物的化学结构曾起过重要作用,如维生素A1、维生素A2、维生素B12、维生素B1、青霉素、链霉素、土霉素、萤火虫尾部的发光物质等。

例如利血平具有两个共轭体系结构,水解得到利血平酸和3,4,5-三甲氧基苯甲酸。利血平酸经LiAlH4还原为利血平醇,其光谱与2,3-二甲基-6-甲氧基吲哚的紫外光谱相似。将合成的利血平醇与3,4,5-三甲氧基苯甲酸的紫外光谱叠加起来所得谱线与利血平的吸收曲线基本吻合,进一步由合成最后确定利血平的结构。[2]

光致变色性能的测试

光致变色现象是指在光的照射下颜色发生可逆变化的现象,可通过紫外光谱进行测试研究。如螺恶嗪类化合物A的环己烷溶液是没有颜色,但在365nm连续的紫外光的照射下,溶液变成蓝色,在可见区域产生吸收。随照射时间的延长,吸收峰的强度逐渐变大,直至不再变化为止,将化合物的溶液放在暗处,其在可见光区域的吸收会逐渐下降。

光致变色材料作为一类新型功能材料,有着十分广阔的应用前景。例如可以作为光信息存储材料、光开关、光转换器等,这些材料在机械、电子、纺织、国防等领域都大有作为。光致变色涂料、光致变色玻璃、光致变色墨水的研制和开发,具有现实性的应用意义。除了以上的应用,光致变色材料还可以作为自显影感光胶片、全息摄影材料、防护和装饰材料、印刷版和印刷电路和伪装材料等。

特别要指出的是,光致变色化合物作为可擦重写光存储材料的研究,是近些年来光致变色领域中研究的热点之一。作为可擦写光存储材料的光致变色光存储介质,应满足在半导体激光波长范围具有吸收、非破坏性读出、良好的热稳定性、优良的抗疲劳性和较快的响应速度等条件。

质谱(MS)

质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。质谱仪器一般由样品导入系统、离子源、质量分析器、检测器、数据处理系统等部分组成。

定义

质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理Joseph John Thomson是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。第一台质谱仪是英国科学家弗朗西斯·阿斯顿于1919年制成的。阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。

种类

质谱仪种类非常多,工作原理和应用范围也有很大的不同。从应用角度,质谱仪可以分为下面几类:

有机质谱仪:由于应用特点不同又分为:

①气相色谱-质谱联用仪(GC-MS)

在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极质谱仪,气相色谱-飞行时间质谱仪,气相色谱-离子阱质谱仪等。

②液相色谱-质谱联用仪(LC-MS)

同样,有液相色谱-四器极质谱仪,液相色谱-离子阱质谱仪,液相色谱-飞行时间质谱仪,以及各种各样的液相色谱-质谱-质谱联用仪。

③其他有机质谱仪,主要有:

基质辅助激光解吸飞行时间质谱仪(MALDI-TOFMS),傅里叶变换质谱仪(FT-MS)无机质谱仪,包括:

①火花源双聚焦质谱仪。

②感应耦合等离子体质谱仪(ICP-MS)。

③二次离子质谱仪(SIMS)

但以上的分类并不十分严谨。因为有些仪器带有不同附件,具有不同功能。例如,一台气相色谱-双聚焦质谱仪,如果改用快原子轰击电离源,就不再是气相色谱-质谱联用仪,而称为快原子轰击质谱仪(FAB MS)。另外,有的质谱仪既可以和气相色谱相连,又可以和液相色谱相连,因此也不好归于某一类。在以上各类质谱仪中,数量最多,用途最广的是有机质谱仪。

除上述分类外,还可以从质谱仪所用的质量分析器的不同,把质谱仪分为双聚焦质谱仪,四极杆质谱仪,飞行时间质谱仪,离子阱质谱仪,傅立叶变换质谱仪等。

应用

近年来质谱技术发展很快。随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,医药,运动医学,刑侦科学,生命科学,材料科学等各个领域。

质谱仪种类繁多,不同仪器应用特点也不同,一般来说,在300C左右能汽化的样品,可以优先考虑用GC-MS进行分析,因为GC-MS使用EI源,得到的质谱信息多,可以进行库检质谱仪索。毛细管柱的分离效果也好。如果在300C左右不能汽化,则需要用LC-MS 分析,此时主要得分子量信息,如果是串联质谱,还可以得一些结构信息。如果是生物大分子,主要利用LC-MS和MALDI-TOF分析,主要得分子量信息。对于蛋白质样品,还可以测定氨基酸序列。质谱仪的分辨率是一项重要技术指标,高分辨质谱仪可以提供化合物组成式,这对于结构测定是非常重要的。双聚焦质谱仪,傅立叶变换质谱仪,带反射器的飞行时间质谱仪等都具有高分辨功能。

质谱分析法对样品有一定的要求。进行GC-MS分析的样品应是有机溶液,水溶液中的有机物一般不能测定,须进行萃取分离变为有机溶液,或采用顶空进样技术。有些化合物极性太强,在加热过程中易分解,例如有机酸类化合物,此时可以进行酯化处理,将酸变为酯再进行GC-MS分析,由分析结果可以推测酸的结构。如果样品不能汽化也不能酯化,那就只能进行LC-MS分析了。进行LC-MS分析的样品最好是水溶液或甲醇溶液,LC流动相中不应含不挥发盐。对于极性样品,一般采用ESI源,对于非极性样品,采用APCI源。

气相色谱(GC)

气相色谱(gas chromatography 简称GC)是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到

了广泛应用。气相色谱可分为气固色谱和气液色谱。

分类气相色谱仪(图1)气相色谱可分为气固色谱和气液色谱。气固色谱指流动相是气体,固定相是固体物质的色谱分离方法。例如活性炭、硅胶等作固定相。气液色谱指流动相是气体,固定相是液体的色谱分离方法。例如在惰性材料硅藻土涂上一层角鲨烷,可以分离、测定纯乙烯中的微量甲烷、乙炔、丙烯、丙烷等杂质。

发展气相色谱仪(图2)GC色谱的发展与下面两个方面的发展是密不可分的。一是气相色谱分离技术的发展,二是其他学科和技术的发展。

1952年James和Martin提出气液相色谱法,同时也发明了第一个气相色谱检测器。这是一个接在填充柱出口的滴定装置,用来检测脂肪酸的分离。用滴定溶液体积对时间做图,得到积分色谱图。以后,他们又发明了气体密度天平。1954年Ray提出热导计,开创了现代气相色谱检测器的时代。此后至1957年,是填充柱、TCD年代。

1958年Gloay首次提出毛细管,同年,Mcwillian和Harley同时发明了FID,Lovelock 发明了氩电离检测器(AID)使检测方法的灵敏度提高了2~3个数量级。

20世纪60和70年代,由于气相色谱技术的发展,柱效大为提高,环境科学等学科的发展,提出了痕量分析的要求,又陆续出现了一些高灵敏度、高选择性的检测器。如1960年Lovelock提出电子俘获检测器(ECD);1966年Brody等发明了FPD;1974年Kolb和Bischoff提出了电加热的NPD;1976年美国HNU公司推出了实用的窗式光电离检测器(PID)等。同时,由于电子技术的发展,原有的检测器在结构和电路上又作了重大的改进。如TCD 出现了衡电流、横热丝温度及衡热丝温度检测电路;ECD出现衡频率变电流、衡电流脉冲调制检测电路等,从而使性能又有所提高。

20世纪80年代,由于弹性石英毛细管柱的快速广泛应用,对检测器提出了体积小、响应快、灵敏度高、选择性好的要求,特别是计算机和软件的发展,使TCD、FID、ECD、和NPD的灵敏度和稳定性均有很大提高,TCD和ECD的池体积大大缩小。

进入20世纪90年代,由于电子技术、计算机和软件的飞速发展使MSD生产成本和复杂性下降,以及稳定性和耐用性增加,从而成为最通用的气相色谱检测器之一。其间出现了非放射性的脉冲放电电子俘获检测器(PDECD)、脉冲放电氦电离检测器(PDHID)和脉冲放电光电离检测器(PDECD)以及集次三者为一体的脉冲放电检测器(PDD),4年后,美国Varian公司推出了商品仪器,它比通常FPD灵敏度高100倍。另外,快速GC和全二维GC等快速分离技术的迅猛发展,促使快速GC检测方法逐渐成熟。

应用

在石油化学工业中大部分的原料和产品都可采用气相色谱法来分析;在电力部门中可用来检查变压器的潜伏性故障;在环境保护工作中可用来监测城市大气和水的质量;在农业上可用来监测农作物中残留的农药;在商业部门可用来检验及鉴定食品质量的好坏;在医学上可用来研究人体新陈代谢、生理机能;在临床上用于鉴别药物中毒或疾病类型;在宇宙舱中可用来自动监测飞船密封仓内的气体等等。

色谱实际上是俄国植物学家茨维特(M.S.Tswett)在1901年首先发现的。1903 年3月,茨维特在华沙大学的一次学术会议上所作的报告中正式提出“chromatography”(即色谱)一词,标志着色谱的诞生。他因此被提名为1917年诺贝尔化学奖的候选人。当时茨维特研究的是液相色谱(LC)的分离技术,气相色谱出现在20世纪40年代,英国人马丁(A.J.P.Martin)和辛格(R.L.M.Synge)在研究分配色谱理论的过程中,证实了气体作为色谱流动的可能性,并预言了GC的诞生。与此巧合的是,这两位科学家获得了当年的诺贝尔化学奖。尽管获奖成果是他们对分配色谱理论的贡献,但也有后人认为他们是因为GC而得奖的。这也从另一个方面说明了GC技术对整个化学发展的重要性。

虽然GC的出现较LC晚了50年,但其在此后20多年的发展却是LC所望尘莫及的。

从1955年第一台商品GC仪器的推出,到1958年毛细管GC柱的问世;从毛细管GC理论的研究,到各种检测技术的应用,GC很快从实验室的研究技术变成了常规分析手段,几乎形成了色谱领域GC独领风骚的局面。1970年以来,电子技术,特别是计算机技术的发展,使得GC色谱技术如虎添翼,1979年弹性石英毛细管柱的出现更使GC上了一个新台阶。这些既是高科技发展的结果,又是现代工农业生产的要求使然。反过来,色谱技术又大大促进了现代物质文明的发展。在现代社会的方方面面,色谱技术均发挥着重要作用。从天上的航天飞机,到水里游的航空母舰,都用GC来监测船舱中的气体质量;从日常生活中的食品和化妆品,到各种化工生产的工艺控制和产品质量检验,从司法检验中的物质鉴定,到地质勘探中的油气田寻找,从疾病诊断、医药分析、到考古发掘、环境保护,GC技术的应用极为广泛。

液相色谱(LC)

色谱法也叫层析法,它是一种高效能的物理分离技术,将它用于分析化学并配合适当的检测手段,就成为色谱分析法。

色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。色谱法也由此而得名。

现在的色谱法早已不局限于色素的分离,其方法也早已得到了极大的发展,但其分离的原理仍然是一样的。我们仍然叫它色谱分析。

一、色谱分离基本原理:

由以上方法可知,在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。

色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。

使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。

由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。

二、色谱分类方法:

色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。

从两相的状态分类:

色谱法中,流动相可以是气体,也可以是液体,由此可分为气相色谱法(GC)和液相色谱法(LC)。固定相既可以是固体,也可以是涂在固体上的液体,由此又可将气相色谱法和液相色谱法分为气-液色谱、气-固色谱、液-固色谱、液-液色谱。

高效液相色谱法是继气相色谱之后,70年代初期发展起来的一种以液体做流动相的新色谱技术。

高效液相色谱是在气相色谱和经典色谱的基础上发展起来的。现代液相色谱和经典液相色谱没有本质的区别。不同点仅仅是现代液相色谱比经典液相色谱有较高的效率和实现了自动化操作。经典的液相色谱法,流动相在常压下输送,所用的固定相柱效低,分析周期长。而现代液相色谱法引用了气相色谱的理论,流动相改为高压输送(最高输送压力可达

4.9?107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。因此,高效液相色谱具有分析速度快、分离效能高、自动化等特点。所以人们称它为高压、高速、高效或现代液相色谱法。

HPLC 系统一般由高效液相色谱仪主要由进样系统、输液系统、分离系统、检测系统和数据处理系统等组成。

其中高压输液泵、色谱柱、检测器是关键部件。有的仪器还有梯度洗脱装置、在线脱气机、自动进样器、预柱或保护柱、柱温控制器等,现代HPLC 仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型HPLC 仪还备有自动馏分收集装置。

气相色谱与质谱联用(GC/MS)

气相色谱法(gas chromatography, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。气相色谱法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。随着质谱(mass spectrometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。气相色谱-质谱联用(GC-MS)是最早实现商品化的色谱联用仪器。目前,小型台式GC-MS已成为很多实验室的常规配置。

1. 质谱仪的基本结构和功能

质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。

质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5Pa。虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。

气相色谱-质谱联用仪的进样系统由接口和气相色谱组成。接口的作用是使经气相色谱分离出的各组分依次进入质谱仪的离子源。接口一般应满足如下要求:(a)不破坏离子源的高真空,也不影响色谱分离的柱效;(b)使色谱分离后的组分尽可能多的进入离子源,流动相尽可能少进入离子源;(c)不改变色谱分离后各组分的组成和结构。

离子源的作用是将被分析的样品分子电离成带电的离子,并使这些离子在离子光学系统

的作用下,汇聚成有一定几何形状和一定能量的离子束,然后进入质量分析器被分离。其性能直接影响质谱仪的灵敏度和分辨率。离子源的选择主要依据被分析物的热稳定性和电离的难易程度,以期得到分子离子峰。电子轰击电离源(EI)是气相色谱-质谱联用仪中最为常见的电离源,它要求被分析物能气化且气化时不分解。

质量分析器是质谱仪的核心,它将离子源产生的离子按质荷比(m/z)的不同,在空间位置、时间的先后或轨道的稳定与否进行分离,以得到按质荷比大小顺序排列的质谱图。以四极质量分析器(四极杆滤质器)为质量分析器的质谱仪称为四极杆质谱。它具有重量轻、体积小、造价低的特点,是目前台式气相色谱-质谱联用仪中最常用的质量分析器。

检测器的作用是将来自质量分析器的离子束进行放大并进行检测,电子倍增检测器是色谱-质谱联用仪中最常用的检测器。

计算机控制与数据处理系统(工作站)的功能是快速准确地采集和处理数据;监控质谱及色谱各单元的工作状态;对化合物进行自动的定性定量分析;按用户要求自动生成分析报告。

标准质谱图是在标准电离条件——70eV电子束轰击已知纯有机化合物得到的质谱图。在气相色谱-质谱联用仪中,进行组分定性的常用方法是标准谱库检索。即利用计算机将待分析组分(纯化合物)的质谱图与计算机内保存的已知化合物的标准质谱图按一定程序进行比较,将匹配度(相似度)最高的若干个化合物的名称、分子量、分子式、识别代号及匹配率等数据列出供用户参考。值得注意的是,匹配率最高的并不一定是最终确定的分析结果。

目前比较常用的通用质谱谱库包括美国国家科学技术研究所的NIST库、NIST/EPA(美国环保局)/NIH(美国卫生研究院)库和Wiley库,这些谱库收录的标准质谱图均在10万张以上。

液相色谱与质谱联用(LC/MS)

液相色谱-质谱联用仪是液相色谱与质谱联用的仪器。它结合了液相色谱仪有效分离热不稳性及高沸点化合物的分离能力与质谱仪很强的组分鉴定能力。是一种分离分析复杂有机混合物的有效手段。联机的关键是适用接口的开发,必须在试样组分进入离子源前去除溶剂,目前,多采用履带式加热传送带。不足之处在于:①沸点与溶剂相近或低的组分不能测;②某种意义上失去了HPLC分离热不稳定性物质的优点;③溶剂很难挥发尽,本底效应高,不利于分辨。因此,LC/MS正处于发展阶段,应用还不够普遍。

液相色谱质谱联用仪(liquid Chromatograph Mass Spectrometer),简称LC-MS,是有机物分析市场中的高端仪器。液相色谱(LC)能够有效的将有机物待测样品中的有机物成分分离开,而质谱(MS)能够对分开的有机物逐个的分析,得到有机物分子量,结构(在某些情况下)和浓度(定量分析)的信息。强大的电喷雾电离技术造就了LC-MS质谱图十分简洁,后期数据处理简单的特点。LC-MS是有机物分析实验室,药物、食品检验室,生产过程控制、质检等部门必不可少的分析工具

最新食品现代仪器分析实验指导课件

食品现代仪器分析实验指导福州大学生物科学与工程学院 吴佳

2016年5月

实验一苦味饮料中硫酸奎宁的荧光法测定 1. 目的意义 喹啉结构是“苯并吡啶”。即一个苯环与一个吡啶环稠合而成。奎宁是喹啉的衍生物,其结构如下: N 喹啉 CH2 CH N CH 3 O C H OH C H 2 N CH2 CH2 CH2 奎宁 奎宁是金鸡纳树皮中含有的苦味晶状粉末,抗疟疾药。疟疾曾是热带、亚热带地区猖獗流行的疾病,曾夺走成千上万人的生命。17世纪末,奎宁由欧洲传入我国,曾称为“金鸡纳霜”,当时是非常罕见的药。后来,瑞典纳尤斯对这种植物的树皮进行了认真的研究,提取了其中的有效成分金鸡纳碱,起名为“奎宁”。“奎宁”这个词在秘鲁文字中是树皮的意思。直到1945年,奎宁才实现了人工合成。奎宁是碱性物质,与硫酸反应生成盐,俗名硫酸奎宁。 在饮料中硫酸奎宁是调味料,主要用在滋补品和苦柠檬水中,有调味及预防疟疾之功效,例如汤力水是Tonic Water的音译,又叫奎宁水、通宁汽水。是苏打水与糖、水果提取物和奎宁调配而成的。可作为苦味饮料或用于配制鸡尾酒或其它饮料。奎宁饮料以其微苦的口味成为畅销的解渴饮料,特别是在夏季人们大量饮用,但大量消费含奎宁成分的饮料对一些个体有害,如新陈代谢紊乱或对这种物质有超敏性的人要避免摄取奎宁,特别是孕妇。对怀孕期间每天饮用一升以上奎宁饮料的孕妇进行的调查显示,出生后24小时,新生儿就出现神经战栗症状,在他们的尿液中发现了奎宁成分,但2个月以后这些症状就不存在了。为此,对奎宁含量的测定具有重要意义。 2. 原理: 本实验包括荧光光谱和激发光谱测定,以及苦味饮料中硫酸奎宁含量测定。硫酸奎宁是强荧光性物质,在紫外光照射下,会发射蓝色荧光。在稀溶液中荧光强度与硫酸奎宁浓度成正比,可根据荧光强度求出硫酸奎宁浓度。 荧光(发射)光谱: 固定激发光波长和强度,在不同的波长下测定所发射的荧光强度,以发射波长为横坐标,以荧光强度为纵坐标,所作曲线为荧光发射光谱。 荧光发射光谱是选择最大荧光发射波长的依据。 荧光激发光谱: 固定荧光发射波长(一般在最大发射波长处),改变激发光波长,得出不同激发波长的荧光强度,以激发光波长为横坐标,以荧光强度为纵坐标,所得曲线称为激发光谱。

XX大学2017年硕士学位研究生招生专业介绍【模板】

**大学2017年硕士学位研究生招生专业介绍 化学与环境工程学院 学术学位:********化学(一级学科);********应用化学(二级学科); 专业学位:********化学工程(二级学科); 学院主页:无; 咨询电话: ********; 电子信箱:shaoyr77@https://www.360docs.net/doc/4114162732.html,; 办公室:**大学实验楼P317。 学院简介: **大学化学与化工学院是理工类综合学院,拥有广东省化学教学示范中心、**市功能高分子重点实验室、**市新型锂离子电池与介孔正极材料重点实验室、**市石墨烯复合锂离子动力电池正极材料工程实验室。学院现有化学、应用化学、食品科学与工程、环境科学与工程、新能源科学与工程5个本科专业。拥有化学一级学科硕士学位点(理学)、应用化学(工学)二级学科硕士点以及化学工程专业学位硕士点。学院拥有一流的实验设备,原值近6000万元。 学院拥有一支实力雄厚、教学经验丰富的师资队伍。现有教职员工80人(专任教师68人),其中教授25人、副教授26人,占教师人数的75%,拥有博士学位者57人,占教师人数的84%,其中50%的教师有海外留学或工作经历。学院还聘请了国内外知名学者担任兼职教授,其中有中国科学院院士、**大学化学系讲座教授吴奇先生。 近五年来,学院承担了国家重点基础研究发展计划(973计划)项目、国家安全重大基础研究(国防973计划)项目、国家自然科学基金重点项目和面上项目等100多项,经费8000多万元。 学院目前拥有近20家校外实习基地,如:**市检验检疫局食品检验检疫技术中心、**市**区环境监测站、**市一品轩食品有限公司、**市环境科学技术中心实训基地等。 一、国际交流 学院与美国加州大学河滨分校(University of California-Riverside)工程学院举办“3+1全奖硕博连读项目”,经过选拔,可获得美国顶级工程学院的硕博连读或硕士项目录取机会、全额或部分奖学金机会以及美国公司一年的实习机会。学院同时与美国田纳西大学 (The University of Tennessee)和美国阿拉巴马大学亨茨维尔分校(The University of Alabama in Huntsville)签订了合作协议,可为学院本科生提供短期留学奖学金名额。 学院还与国外一些知名大学建立了良好的合作关系,可派遣优秀的学生进行交流学习,包括:罗格斯大学(美国)、麻省大学(美国)、斯特林大学(英国)、赫瑞瓦特大学(英国)、雷恩第一大学(法国)、维也纳大学(德国)、熊本大学(日本)、檀国大学(韩国)、蔚山大学(韩国)。

现代仪器分析与实验技术复习题

现代仪器分析与实验技术 一.名词解释 标准曲线:是待测物质的浓度或含量与仪器信号的关系曲线,由于是用标准溶液测定绘制的,所以称为标准曲线。 准确度:是指多次测定的平均值与真值(或标准值)相符合的程度,常用相对误差来表示。 超临界流体:某些具有三相点和临界点的纯物质,当它在高于其临界点即高于其临界温度和临界压力时,就变成了既不是气体也不是液体而是一种性质介于气体和液体之间的流体,称为超临界流体。 延迟荧光:分子跃迁至T1态后,因相互碰撞或通过激活作用又回到S1态,经振动弛豫到达S1的最低振动能级再发射荧光。这种荧光称为延迟荧光。 精密度:是指在相同条件下用同一方法对同一试样进行的多次平行测定结果之间的符合程度。 灵敏度:指被测组分在低浓度区,当浓度改变一个单位时所引起的测定信号的改变量,它受校正曲线的斜率比较和仪器设备本身精密度的限制。 检出限:是指能以适当的置信度被检出的组分的最低浓度或最小质量。 线性范围:指定量测定的最低浓度到遵循线性响应关系的最高浓度间的范围。 梯度洗脱:指在一个分析周期中,按一定的程序连续改变流动相中溶剂的组成(如溶剂的极性、离子强度、pH等)和配比,使样品中的各个组分都能在适宜的条件下得到分离。 锐线光源:锐线光源是空心阴极灯中特定元素的激发态,在一定条件下发出的半宽度只有吸收线五分之一的辐射光。 自吸收:指当浓度较大时,处于激发光源中心的原子所发射的特征谱线被外层处于基态的同类原子所吸收,使谱线的强度减弱,这种现象称为自吸收。 原子线:原子外层电子吸收激发能后产生的谱线称为原子线。 离子线:离子外层电子从高能级跃迁到低能级时所发射的谱线。 电离能:使原子电离所需要的最小能量。 共振线:在所有原子发射的谱线中凡是由各高能级跃迁到基态时所长生的谱线。

武汉大学 现代仪器分析方法与实践 实验报告(ESI MS液质)

高效液相色谱与质谱联用 廖宇翔2011202030138 第七组材料物理与化学 实验目的 1. 掌握高效液相色谱与质谱联用的工作原理及仪器的基本结构 2. 了解仪器的操作方法 实验原理 液质联用(HLPC-MS)又叫液相色谱-质谱联用技术,它以液相色谱作为分离系统,质谱为检测系统。样品在色谱部分被分离,通过接口进入质谱,被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。不同离子的质荷比及其在电场中运动的速度不同,质量分析器便能依此进行分离检测并记录,得到质谱图。而对比色谱图与质谱图中峰的位置可进行定性和结构分析,根据峰的强度可进行定量分析。液质联用体现了色谱和质谱优势的互补,将色谱对复杂样品的高分离能力,与MS具有高选择性、高灵敏度及能够提供相对分子质量与结构信息的优点结合起来,在药物分析、食品分析和环境分析等许多领域得到了广泛的应用。 主要仪器 HPLC-ESI-MS 实验所用的质谱仪为电喷雾电离和离子阱检测。电喷雾电离条件温和,分子不易形成碎片,有大量的分子离子。离子阱能有效地保留进入质谱的离子,提高检测器中的离子浓度,有更高的灵敏度。 操作步骤 1.样品预处理。 2.选择合适的工作条件,进样分析。 3.处理数据。 4.在记录质谱数据时可以更据需要选择碎片离子峰的二次或多次质谱图。 思考题 1.质谱仪由哪几部分组成? 质谱仪主要由真空系统、进样系统、离子源、质量分析器和离子检测器五部分组成。

2.为什么实验中要维持高真空? 空气中的大量氧会烧坏离子源的灯丝;残余气体分子会使产生信号,干扰质谱图;残余气体分子会引起额外的离子-分子反应,改变裂解模型,使图谱复杂化;残余气体会干扰离子源中电子束的正常调节;大量气体分子还会使离子很快淬灭,达不到检测器;质谱中的加速电压会使残余气体分子放电,影响检测。 3.离子源的作用是什么?说出几种常见的离子源。 试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子以便被电场加速,进而进入质量分析器被分别记录。即离子源的作用是将分子转化成离子,以便进行检测。常见的离子源有:电子轰击EI、化学电离CI、场致电离FI、场解析电离源FD、快原子轰击FAB、激光解析LDI、电喷雾电离ESI、大气压化学电离APCI等等。 4.常见的ESI电喷雾质谱的合适溶剂有哪些? ESI-MS的合适溶剂主要有水、N,N’-二甲基甲酰胺(DMF)、甲醇、正己烷、乙腈以及挥发性酸碱等等。

现代仪器分析测试题及答案

1.以下属于仪器分析方法的是?光学分析法、色谱分析法 2.色谱分析过程中,欲提高分离度,可采取降低柱温 3.仪器分析法的主要特点是:分析速度快,灵敏度高,重现性好,试样用量少,选择性高 4.同一人员在相同条件下,测定结果的精密度称为:重复性 5.不同人员在不同实验室测定结果的精密度称为:再现性 6.分析测量中系统误差和随机误差的综合量度是:准确度 7.分析方法的灵敏度和精密度的综合指标是:检出限 8.分析仪器的主要性能指标是:精密度、准确度、检出限 9.在1840年发生的法国玛丽投毒案中,采用马氏试砷法进行毒物检验。加热式样中含有砷的化合物,则生成的AsH3在管内生成黑亮的单质砷。此分析方法属于:化学分析法 10.在1840年发生的法国玛丽投毒案中,玛丽被怀疑采用砷毒杀自己的丈夫,法医在鉴定砒霜中毒时,第一次没有检测到死者胃粘膜中的砷,原因是:采样方法有误 11.在1993年发生的史瓦哥投毒案中,毒物鉴定的分析方法属于:仪器分析法 12.在1993年发生的史瓦哥投毒案中,试样的纯化方法属于:色谱法 13.光谱分析法与其他仪器分析法的不同点在于光谱分析法研究涉及的是:光辐射与试样间的相互作用与能级跃迁 14.每一种分子都具有特征的能级结构,因此,光辐射与物质作用时,可以获得特征的分子光谱。根据试样的光谱,可以研究试样的组成和结构。 15.太阳光(日光)是复合光,而各种等(如电灯、酒精灯、煤气灯)光是复合光。× 16.受激物质从高能态回到低能态时,如果以光辐射形式释放多余能量,这种现象称为:光的发射 17.原子光谱是一条条彼此分立的线光谱,分子光谱是一定频率范围的电磁辐射组成的带状光谱。√ 18.不同物质,在产生能级跃迁是,吸收的光的频率是相同的。× 19.频率、波长、波数及能量的关系是:频率越高,波长越短,波数越高,能量越高 20.按照产生光谱的物质类型不同,光谱可以分为:原子光谱、分子光谱、固体光谱 21.光谱分析仪通常由四个基本部分组成:信号发生系统、色散系统、检测系统、信息处理系统 22.原子发射光谱是由于原子的外层电子在不同能级间的跃迁而产生的。 23.原子发射光谱属于线光谱 24.原子发射光谱法利用标准光谱比较法定性时,通常采用铁谱 25.无法用原子发射光谱分析的物质是有机物和大部分非金属元素 26.在原子光谱仪器中,能够将光信号转变为电信号的装置是光电倍增管 27.下面哪一项不是原子发射光谱法使用的光源?空心阴极灯 28.处于第一激发态的电子直接跃迁到基态能级时所发射的谱线成为主共振(发射)线 29.根据待测元素的原子在光激发下所辐射的特征光谱研究物质含量的方法称为原子荧光法 30.大米中的镉含量可以使用下面哪些方法进行检测?原子吸收光谱法、原子发射光谱法、原子荧光法 31.原子吸收光谱法中,背景吸收产生的干扰主要表现为火焰中产生的分子吸收及固体微粒的光散射 32.原子吸收光谱法中的物理干扰可用下述哪种方法消除?标准加入法 33.原子吸收测定中,以下叙述和做法正确的是?在维持稳定和适宜的光强条件下,应尽量选用较低的灯电流

仪器分析--实验报告

仪器分析方法在食品分析中的应用综合实验 摘要:本文分别采用了气质联用技术检测食品中的塑化剂,用高效液相色谱检测食品中的防腐剂,原子吸收光谱检测食品中的金属元素。并对检测结果进行了分析。 关键词:气质联用技术,高效液相色谱,原子吸收光谱 前言 现代食品的显著特点是食品的营养化、功能化、方便化,并保证食品质量与安全,这就要求食品加工从原理的选择、加工过程到最终产品及保藏整个链条中对食品的成分及成分的变化有全面的把握和认识。传统的分析手段和分析方法尽管能从宏观上了解和掌握成分及其变化,但已不能完全适应现代食品加工业的要求,现代仪器分析技术已经成为食品分析中不可缺少的重要分析手段。 实验内容 一.气-质联用技术检测食品中塑化剂的实验 (一)方法[1] 对于食品中邻苯二甲酸酯类化合物的检测,GB/T21911-2008《食品中邻苯二甲酸酯的测定》中规定了GC-MS作为检测方法。 1仪器: 气相色谱-质谱联用仪,凝胶渗透色谱分离系统,分析天平,离心机,旋转蒸发器,振动器,涡旋混合器,粉碎机,玻璃器皿。 2试剂: 正己烷,乙酸乙酯,环己烷,石油醚,丙酮,无水硫酸钠,16种邻苯二甲酸酯标准品,标准储备液,标准使用液。 3步骤: (1)试样制备:取同一批次3个完整独立包装样品(固体样品不少于500g、液体样品不少于500mL),置于硬质玻璃器皿中,固体或半固体样品粉 碎混匀,液体样品混合均匀,待用。 (2)试样处理(不含油脂液体试样):量取混合均匀液体试样5.0mL,加入正己烷2.0mL,振荡1min,静置分层,取上层清液进行GC-MS分析。 (3)空白试验:实验使用的试剂都按试样处理的方法进行处理后,进行GC-MS分析。 (4)色谱条件: 色谱柱:HP-5MS石英毛细管柱[30m×0.25mm(内径)×0.25μm]; 进样口温度:250℃; 升温程序:初始柱温60℃,保持1min,以20℃/min升温至220℃, 保持1min,再以5℃/min升温至280℃,保持4min; 载气:氦气,流速1mL/min; 进样方式:不分流进样; 进样量:1μL。 (5)质谱条件: 色谱与质谱接口温度:280℃; 电离方式:电子轰击源; 检测方式:选择离子扫描模式; 电离能量:70eV;

现代仪器分析

现代仪器分析在金属有机化合物研究方面的应用 摘要: 分析仪器是人类认识世界的关键手段,是现代科学技术研究的重要支撑,科 学技术的突飞猛进和现代分析仪器及其相关技术的发展密不可分 [1] 核磁共振仪 核磁共振( Nuclear Magnetic Resonance,NMR)波谱学是一门发展非常迅速的科学。最早于1946 年由哈佛大学的伯塞尔( E . M . Pu r cell )和斯坦福大学的布洛赫( F . Bloc h ) 等人用实验所证实[ 1 ]。两人由此共同分享了1952 年诺贝尔物理学奖[ 2 ]。 核磁共振技术可以提供分子的化学结构和分子动力学的信息,已成为分子结构解析以及物质理化性质表征的常规技术手段[ 3 ], 核磁共振氢谱具有所需样品量少、灵敏、快速和精确等特点,它成为波谱学分析方法的重要组成部分。核磁共振主要是由原子核的自旋运动引起的。目前研究最多的是1H的核磁共振,它也叫做质子磁共振(Proton Magnetic Resonance) ,简称为PMR或1H-NMR 。在有机物分子中,处于不同化学环境的氢原子具有的化学位移δ不同,即在谱图上出现的位置不同,因此核磁共振氢谱图中,吸收峰的数目表明了有几种不同类型的氢原子,吸收峰的面积比或积分曲线的高度比就等于它们的数目比。清楚什么样的氢原子化学环境相同成为利用核磁共振氢谱推知有机物分子结构的关键。 核磁共振技术在有机合成中,不仅可对反应物或产物进行结构解析和构型确定,在研究合成反应中的电荷分布及其定位效应、探讨反应机理等方面也有着广泛应用[ 7]。核磁共振波谱能够精细地表征出各个氢核或碳核的电荷分布状况,通过研究配合物中金属离子与配体的相互作用,从微观层次上阐明配合物的性质与结构的关系,对有机合成反应机理的研究重要是对其产物结构的研究和动力学数据的推测来实现的[ 8] 1 色谱质谱联用仪 色谱是利用混合物中各个物质在色谱固定相和流动相之间不同的分配作用,使不同的组分在两相间反复分配从而实现混合物分离的方法,其在分析化学、有机化学、生物化学的领域有着广泛的应用[21][22][23]。 质谱法是将物质粒子电离成粒子,通过适当的稳定或变化的电磁场将它们按照空间位置、时间先后等方式实现质荷比分离,通过检测其强度来进行定性定量分析的方法[16]。质谱法检测灵敏度高,无需标样,可通过谱库检索来定性,也可根据目标化合物质谱的特征峰来确定分子结构。在众多的分析方法中,质谱法被认为是一种同时具备高特异性和高灵敏度的普适性方法。 色谱-质谱联用充分发挥了色谱的分离作用和质谱高灵敏度的检测功能,可以实现对混合物更准确的定量和定性分析,同时也简化了样品的前处理过程,使样品制备更加简便。 色谱-质谱联用包括气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS),这两种方法互为补充,适用于不同性质化合物的分析。气质联用技术是最早商品化的联用仪器,适用于小分子、易挥发、热稳定、能气化的化合物,其质谱仪器的电离源一般采用电子轰击电离(EI)源。液质联用主要适用于大分子、难挥发、热不稳定、高沸点化合物的分析,主要包括蛋白质、多肽、聚合物等[22]。 气相色谱-质谱联用仪 在气相色谱中,被逐次洗脱出来的组分在色谱图中是以峰的形式来记录。有关组分的信息通过测量色谱图中该组分峰的峰高和峰面积来确定,这些对应着检测到的组分量以及该组分通过色谱柱的时间。一方面气相色谱能够高效的分离混合物但并不善于鉴定各个组分;另一方面质谱监测器善于鉴别单一的组分却难以鉴别混合物。气相色谱-质谱联用法结合了气相色谱和质谱的优点,弥补了各自的缺陷,因而具有灵敏度高、分析速度快、鉴别能力强等特点,可同时完成待测组分的分离和鉴定,特别适用于多组分混合物中未知组分的定性定量分析、化合物的分子结构判别、化合物分子量测定。

现代仪器分析检测技术1

现代分析检测技术 1.色谱分类: 按固定相所处的状态分类:柱层析:将固定相装填在金属或玻璃制成的管柱中,做成层析柱以进行分离的,为柱层析;毛细管色谱:把固定相附着在毛细管内壁,做成色谱柱的,为毛细管色谱;纸层析:利用滤纸作为固定相以进行层析分离的为纸层析。薄层层析:把吸附剂粉未铺成薄层作为固定相以进行层析分离的为薄层层析。 按色谱分离的原理分类:吸附色谱:固定相为吸附剂,利用它对被分离组分吸附能力强弱的差异来进行分离。气固色谱和液固色谱属于这一类。分配色谱:是利用各个被分离组分在固定相和流动相两相问分配系数的不同来进行分离的,气液层析和液液层析属于这一类。离子交换色谱:以离子交换剂作固定相,利用各种组分的离子交换亲和力的差异来进行分离。凝胶色谱:又称排阻色谱:用凝胶作固定相,利用凝胶对分子大小不同的组分所产生阻滞作用的差异未进行分离。 吸附剂:粒度均匀的细小颗粒;较大的表面积和一定的吸附能力;吸附剂与欲分离的试样和所用的洗脱剂不起化学反应,不溶于洗脱剂中。常用的吸附剂有:氧化铝、硅胶、聚酰胺 氧化铝:氧化铝具有吸附能力强、分离能力强等优点。中性氧化铝:适用于醛、酮、醌、酯、内酯化合物及某些苷的分离;酸性氧化铝:适用于酸性化合物,如酸性色素、某些氨基酸,以及对酸稳定的中性物质的分离;碱性氧化铝:适用于分离碱性化合响如如生物碱、醇以及其它中性和碱性物质。氧化铝的活性:活性和含水量密切有关;活性强弱用活度级I~V级来表示,活度I级吸附能力最强,V级最弱。通过加热至不同温度,可以改变氧化铝的活性,分离弱极性的组分选用吸附活性强一些的吸附剂,分离极性较强的组分,应选用活性弱的吸附剂。 硅胶:硅胶具有微酸性,吸附能力较氧化铝稍弱,可用于分离酸性和中性物质,如有机酸、氨基酸、萜类、甾体等。 聚酰胺:由已内酰胺聚合而成,又称聚己内酰胺,聚酰胺分子内存在着很多的酰胺键,可与酚类、酸类、酮类,硝基化合物等形成氢键,因而对这些物 质有吸附作用,酚类和酸类以其羟基或羧基与酰胺键的羰基形成氢键,芳香硝基化合物和醌类化合物是以硝基或醌基与酰胺键中游离胺基形成氢键。聚酰胺吸附规律:能形成氢键基团较多的溶质,其吸附能力较大,对位、间位取代基团都能形成氢键时,吸附能力增大,邻位的使吸附能力减小,邻位的使吸附能力减小,能形成分子内氢键者,吸附能力减小。 2.流动相及其选择: 流动相的洗脱作用实质上是流动相分子与被分离的溶质分子竞争占据吸附剂表面活性中心的过程。 使试样中吸附能力稍有差异的各种组分分离。就必须根据试样的性质,吸附剂的活性,选择适当活性的流动相。 流动相极性较弱时,可使试样中弱极性的组分洗脱下来,在层析柱中移动较快,而与极性较强的组分分离。 强极性和中兴等极性的流动相适用于强极性和中高等极性组分的分离。 组分极性的一般规律:(1)常见的功能团极性增强次序:烷烃<烯烃,醚类<硝基化合物<二甲胺<酯类<酮类<醛类<硫醇<胺类<酰胺<醇类<酚类<羧酸类。(2)当有机分子的基本母核相同时,取代基团的极性增强,整个分子的极性增强;极性基团增多,整个分子的极性增强。分子中双键多,吸附力强,共轭双键多,吸附力增强。(3)分子中取代基团的空间排列对吸附性能也有影响,如同一母核中羟基处于能形成内氢键位置时,其吸附力弱于不能形成内氢键的 化合物。 流动相按其极性增强顺序:(1)石油醚<环己烯<四氯化碳<三氯乙烯<苯<甲苯<二氯甲烷<氯仿<乙醚<乙酸乙酯<乙酸甲酯<丙酮<正丙醇<乙醇<甲醇<吡啶<酸,水(2)溶剂按不同的配比配成混合溶剂可以调节溶剂的极性,优化流动相(3)溶解试样用的溶剂,其极性应与流动相接近,以免因它们极性相差过大而影响层析分析。 3. 分配色谱: (1)分配层析是根据预分离组分在两种互不混溶(或部分混溶)溶剂间溶解度的差异

现代仪器分析课程报告

电感耦合等离子体质谱(ICP-MS)技术的基本原理及其在地学研究中的应用 一、ICP-MS技术概况 电感耦合等离子体质谱技术从1980年发展至今已有二十多年。此间,ICP-MS技术发展相当迅速,不仅从最初在地质科学研究中的应用迅速发展到广泛应用于环境、冶金、石油、生物、医学、半导体、核材料分析等领域,成为公认的最强有力的元素分析技术,而且随着近年来人们对ICP-MS技术内在缺陷的研究革新,等离子体质谱的分析性能,尤其是同位素分析能力有了显著提高。 我国的ICP-MS研究工作进展也很快,这些仪器在地质、环境、冶金、半导体工业分析等方面发挥了重要作用,在应用研究方面也取得了一批重要成果。近年来ICP-MS的最大研究进展是围绕着解决四极杆ICP-MS的多原子离子干扰新途径的研究(如动态碰撞/反应池技术)以及提高同位素比值分析精密度的新途径(如多接收器磁扇形等离子体质谱仪和飞行时间等离子体质谱仪),随着基础研究和仪器的进步,该技术在元素分析、同位素比值分析等方面都显示出巨大的优势。 二、ICP-MS的基本原理 众所周知电电感耦合等离子体质谱仪(ICP- MS)灵敏度极高,溶液固液比大,样品处理过程中任何一个极小的误差在测量时都会被成倍放大,因此无论采取哪种方法,样品处理过程都应十分仔细谨慎,

实验要尽量采用高纯试剂,工作过程要经常检查试剂纯度,注意容器及工作环境的污染,否则测试结果仍然不能保证。只有在彻底掌握仪器工作原理的基础上,有效的选择合适的样品分解方法,采取正确的干扰消除或校正方法,才能得到高质量的检测数据。在这种情况下了解仪器的工作原理就显的尤为重要,下面对电感耦合等离子体质谱(ICP-MS)技术的基本工作原理作简要介绍: 质谱法是通过将样品转化为运动的气态离子并按质荷比(M/Z)大小进行分离并记录其信息的分析方法。所得结果以图谱表达,即所谓的质谱图(亦称质谱,Mass Spectrum)。根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析、复杂化合物的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等。它是利用电磁学原理使离子按照质荷比进行分离,而后分别被检测来实现痕量元素的测定或同位素分析,把1CP作为电离源与质谱仪结合起来的等离子体质谱法(ICP-MS)工作原理及仪器布局可见图1。

现代仪器分析与实验技术复习题

现代仪器分析与实验技术复习题. 版权所有--毛毛雨制作 现代仪器分析与实验技术 一.名词解释 标准曲线:是待测物质的浓度或含量与仪器信号的关系曲线,由于是用标准溶液测定绘制的,所以称为标准曲线。 准确度:是指多次测定的平均值与真值(或标准值)相符合的程度,常用相对误差来表示。 超临界流体:某些具有三相点和临界点的纯物质,当它在高于其临界点即高于其

临界温度和临界压力时,就变成了既不是气体也不是液体而是一种性质介于气体和液体之间的流体,称为超临界流体。 延迟荧光:分子跃迁至T1态后,因相互碰撞或通过激活作用又回到S1态,经振动弛豫到达S1的最低振动能级再发射荧光。这种荧光称为延迟荧光。 精密度:是指在相同条件下用同一方法对同一试样进行的多次平行测定结果之间的符合程度。 灵敏度:指被测组分在低浓度区,当浓度改变一个单位时所引起的测定信号的改变量,它受校正曲线的斜率比较和仪器设备本身精密度的限制。 检出限:是指能以适当的置信度被检出的组分的最低浓度或最小质量。 线性范围:指定量测定的最低浓度到遵循线性响应关系的最高浓度间的范围。梯度洗脱:指在一个分析周期中,按一定的程序连续改变流动相中溶剂的组成(如溶剂的极性、离子强度、pH等)和配比,使样品中的各个组分都能在适宜的条件下得到分离。 锐线光源:锐线光源是空心阴极灯中特定元素的激发态,在一定条件下发出的半宽度只有吸收线五分之一的辐射光。 自吸收:指当浓度较大时,处于激发光源中心的原子所发射的特征谱线被外层处于基态的同类原子所吸收,使谱线的强度减弱,这种现象称为自吸收。 原子线:原子外层电子吸收激发能后产生的谱线称为原子线。 离子线:离子外层电子从高能级跃迁到低能级时所发射的谱线。 电离能:使原子电离所需要的最小能量。 共振线:在所有原子发射的谱线中凡是由各高能级跃迁到基态时所长生的谱线。最后线:指样品被测元素的含量如果不断降低,强度弱的谱线就从光谱图上消失,接着是次强的谱线消失,当含量将至一定值后,只剩下最后的谱线称为最后线。荧光:分子从S1态的最低振动能级跃迁至S0各个振动能级所产生的辐射光称为荧光。 桑榆非晚!东隅已逝 2 毛毛雨制作版权所有-- 接着发生快速的振动弛豫到达三重态的最低振,磷光:单重态的分子发生系间窜跃到三重态后发射出的光便是磷光。,再由该激发态跃迁回基态的各个振动能级时,动能级称为化学发光。因吸收化学反应能激发发光,化学发光:因发生在生物体内有酶类物质参与的化学发光。生物发光:电子由高振动能,,可被激发到任一振动能级。在同一电子能级中振动松弛:分子吸收光辐射后这样的,,而将多余的能量以分子振动能形式消耗掉一部分(约10-12s)转至低振动能级级迅速是一种无辐射去激过程。过程称之为振动弛豫, :内转换相同多重态间的无辐射去激叫内转换。:不同多重态间的一种无辐射跃迁过程叫系间窜跃。系间窜跃其它反映了荧光物质发射荧光的的能力,量子产率:荧光量子产率是物质荧光特性的重要参数, /吸收的光子数。,物质的荧光越强。定义为φf=发射的光子数值越大 ,都是激发态分子重回基态得得途径。去激发光:荧光或磷光去活化的过程,S1态的最低振动能级斯托克斯位移:由于荧光物质分子吸收的光经过无辐射去激的消耗后降至这种现象称为斯托克斯位移。,能量比激发光小,因而发射的荧光的波长比激发光长物质因吸收光能而激发发光的现象。光致发光:其荧光强度随卤素的相对原子质量,,系间窜跃加强、Br、I后、重原子效应:苯环上取代上FCl 磷

最新现代仪器分析试题(1)

《现代仪器分析》复习题(第一套)一、选择 1.用氢焰检测器,当进样量一定时,色谱峰面积与载气流速() A. 成正比 B. 成反比 C. 无关 D. 有关,但不成比例 2.物质的吸光系数与()因素无关。 A. 跃迁几率 B. 物质结构 C. 测定波长 D. 溶液浓度 3.下列化合物中νC=O最大者是() A.C O R B. R O C O C. OR C O CH2 D. OR C O O CH2 4.下列化合物在NMR谱图上峰组数目最多的是() A. (CH3)2CHOH B. CH3CH2CH2OH C. HOCH2CH2CH2OH D. CH2CH3 5.表示色谱柱柱效的物理量是() A.R B. t R C. n D. V R 6.Van Deemter方程中,影响A项的因素有() A. 载气分子量 B. 固定相颗粒大小 C. 载气流速 D. 柱温 7.气相色谱中,相对校正因子与()无关。 A. 载气种类 B. 检测器结构 C. 标准物 D. 检测器类型 8.化学位移δ值与下列()因素有关。 A. 电子云密度 B. 溶剂 C. 外磁场强度 D.与A、B、C均无关 二、判断: 1.组分被载气完全带出色谱柱所消耗的载气体积为保留体积。() 2.内标法定量时,样品与内标物的质量需准确称量,但对进样量要求不严。() 3.在反相HPLC中,若组分保留时间过长,可增加流动相中水的比例,使组分保留时间适当。() 4.分子骨架中双键数目越多,其UV最大波长越长。() 5.在四种电子跃迁形式中,n→π*跃迁所需能量最低。() 6.由于简并和红外非活性振动,红外光谱中的基频峰数目常少于基本振动数。() 7.红外光谱中,基频峰峰位仅与键力常数及折合质量有关。() 8.化合物CHX3中,随X原子电负性增强,质子共振信号向低磁场方向位移。() 9.不同m/z的碎片离子进入磁偏转质量分析器后,若连续增大磁场强度(扫场),则碎片离子以m/z由大到小顺序到达接收器。() 三、填空: 1. 化合物气相色谱分析结果:保留时间为 2.5min,死时间为0.5min,则保留因子为____。 2. 气相色谱中,α主要受_____影响。k主要受_____影响。 3. 热导池检测器是基于_____而给出电信号的。 4. 化合物UV光谱显示在正己烷中λmax为230nm,而在乙醇中λmax为243nm,此最大吸收峰由____跃迁引起,此现象称为_____。 5. 对线性分子,振动自由度为3N - 5,其中5的含意为_____。 6. IR光谱区分苯乙腈与苯酚的主要依据是_____。 7. 自旋量子数不为零的原子核,产生能级分裂的必要条件是__ 、 __ 。 8.质谱图中,若M:M+2:M+4为1:2:1则含_____个_____原子,若为9:6:1 则含___个____原子。 四、计算 1.精称某化合物标准品0.1012克及样品0.1087克,分别置250mL容量瓶中溶解,定容。各精密量取2.00mL分别置于100mL容量瓶中定容。 以1cm比色皿,在254nm处测吸光度,标准品As = 0.652,样品Ax = 0.690(已知溶液符合比尔定律,化合物的分子量为190)。 (1)计算样品中化合物的百分含量。(2)求摩尔吸光系数。 2. 用长度为2m的色谱柱分离A与B的混合物,已知柱的死体积为10mL,载气流速为40mL/min,记录纸速为2.0cm/min。 A组分:t R=90(s) W 1/2=0.22(cm) B组分: t R=135(s) W1/2=0.34(cm) 求:(1)组分A 与B的分离度(2)以组分B计算色谱柱的有效塔板高度

现代仪器分析实验报告.

实验一双波长分光光度法测定混合样品溶液中 苯甲酸钠的含量 一、目的 1 ?熟悉双波长分光光度法测定二元混合物中待测组分含量的原理和方法。 2 ?掌握选择测定波长(入1)和参比波长(& )的方法。 二、原理 混合样品溶液由苯酚和苯甲酸钠组成,在0.04mol/LHCI溶液中测得其吸收光谱,苯甲酸钠的吸收峰 在229nm处,苯酚的吸收峰在210nm处。若测定苯甲酸钠,从光谱上可知干扰组分(苯酚)在229和 251 nm处的吸光度相等,则AA= KC A A仅与苯甲酸钠浓度成正比,而与苯酚浓度无关,从而测得苯甲酸钠的浓度。 三、仪器与试剂紫外分光光度计苯酚苯甲酸钠蒸馏水盐酸 四、操作步骤及主要结果 1 ?样品的制备 (1)标准储备液的配制精密称取苯甲酸钠0.1013g和苯酚0.1115g,分别用蒸馏水溶解,定量转 移至500ml容量瓶中,用蒸馏水稀释至刻度,摇匀,即得浓度为200卩g/ml的储备液,置于冰箱中保存。 (2)标准溶液的配制分别吸取标准苯酚储备液 5.00ml和标准苯甲酸钠储备液 5.00ml至100ml容 量瓶中,用0.04mol/LHCI溶液稀释至刻度,摇匀,即得浓度为10卩g/ml的标准溶液。 2 ?样品的测定(1 )波长组合的选择于可见-紫外分光光度计上分别测定苯酚和苯甲酸钠标准溶 液的吸收光谱(检测波长200~320nm),确定双波长法测定苯甲酸钠含量时的参比波长(入s=257.5nm) 和测定波长(入m=231.2nm)。(2)苯甲酸钠工作曲线的绘制配制不同浓度的I苯甲酸钠/0.04MHCl 溶液。以0.04mol/L HCl溶液为参比溶液,测定系列浓度的苯甲酸钠/0.04M HCl溶液在入m和入s处的吸 光度差值(见表1),计算其回归方程Y=0.0652X+0.0311(R 2=0.999)。(3)测定以0.04mol/L HCl溶液为参比溶液,测定混和溶液的吸光度值(n=3 ),根据回归方程计算混和溶液中苯甲酸钠的含量(X , RSD%)。见表2 表1双波长法测定不同浓度下苯甲酸钠标准溶液的吸光度 标准溶液浓度(ug/ml )231.2 nm 吸光度257.5nm吸光度吸光度差值 20.1630.0120.151 40.3240.0210.303 60.4550.0340.421 80.6050.0460.559 100.7350.0540.681 120.8710.0620.809 表2 混合溶液不同波 长下的吸光度 测量次数231.2 nm 吸光度257.5nm吸光度吸光度差值10.6120.1100.502 20.6140.1130.501 30.613 ,0.1120.501 平均值0.6120.1120.500 RSD 均小于0.1%将Y=0.500 代入回归方程Y=0.0652X+0.0311 得X=7.2 ,则样品浓度为:7.2936ug/ml 则其含量为:7.3*100/1000=0.73mg 五讨论:本试验采用双波长法测定苯酚和苯甲酸钠的混合液中苯甲酸钠的含量,关键是两个波长 的选择,同时应使两波长下苯甲酸钠的吸光度值足够大,以减小测量误差。

现代仪器分析考试题目答案

现代仪器分析与技术思考题 一、近红外光谱分析 ?近红外吸收光谱与中红外吸收光谱有何关系及差别? 答:近红外谱区是介于可见谱区与中红外谱区之间的电磁波,其范围为12800~3960cm-1(780~2526nm)。近代研究证实,该区域的吸收主要是分子中C-H、N—H、o —H基团基频振动的倍频吸收与合频吸收产生的。 ?近红外光谱区的吸收峰,主要是哪些基团的何种振动形式的吸收产生的? 答:由X—H(X=C,N,O,S)键的伸缩振动所产生。 ?近红外光谱分析有哪些特点? (1)答:由于近红外光谱的产生来自分子振动跃迁的非谐振效应,能级跃迁的概率较低,与 中红外谱图相比,其语带较宽且强度较弱,特别在短波近红外区域,主要是第三级倍频及一、二级倍频的合频,其吸收强度就更弱。 (2)因为物体对光的散射率随波长的减少而增大,所以与中红外区相比,近红外谱区光的波 长短,散射的效率高,因此近红外谱区适合做固体、半固体、液体的漫反射光谱或散射光谱分析,可以得到较高的信噪比,较宽的线性范围。 (3)近红外光谱记录的倍频、合频吸收带比基频吸收带宽很多,这使得多组分样品的近红外 光谱中不同组分的谱带、同一组分中不同基团的谱带以及同一基团不同形式的倍频、合频谱带发生严重的重叠,从而使近红外光谱的图谱解析异常困难。 (4)近红外分析的缺点。谱带重叠.特别对复杂体系,光谱信息特征性不足,没有定性鉴别 优势;灵敏度较差,特别在近红外短波区域,对微量组分的分析仍较困难。 ?试述近红外光谱的用途。 答:(1) 药物和化学物质中水分的含量测定 由于水分子在近红外区有一些特征性很强的合频吸收带,而其他各种分子的倍频与合频吸收相对较弱,这使近红外光谱能够较为方便地测定药物和化学物质中水分的含量。近红外法避免了空气中水分的干扰。 (2) 药物鉴别分析 对药物和其他化学物质进行可靠的鉴定是分析试验室一项重要的任务,这种鉴定可基于近红外光谱分析技术进行。采用主成分分析和偏最小二乘算法进行光谱的特征选择,可实现对不同原料药和不同剂量的同种药物制剂的区分。 (3) 制药过程分析 制药过程分析是药物分析的一个重要研究内容。近红外光谱分析的最大特点是操作简便、快速.可不被坏样品进行原位测定,可不使用化学试剂,不必对样品进行预处理,可直接对颗粒状、固体状、糊状、不透明的样品进行分析。 (4) 生命科学领域 在生命科学领域,NIR用于生物组织的表征.研究皮肤组织的水分、蛋白质和脂肪。除此之外,NIR还用于血液中血红蛋白、血糖及其他成分的测定,均取得较好的结果。 二、拉曼光谱分析 ?试述拉曼光谱法与红外吸收光谱法的关系与区别。 答:拉曼光谱与红外光谱都是研究分子的振动.但其产生的机理却截然不同。红外光谱是由于极性基团和非对称分子,在振动过程中吸收红外光后,发生永久偶极矩的变化而产生的。拉曼散射光谱产生于分子诱导偶极矩的变化。非极性基团或全对称分子.其本身没有偶极短.当分子中的原子在平衡位置周围振动时,由于人射光子的外电场的作用,使分子的电子

《现代仪器分析》实验指导书(实验报告)

现代仪器分析实验指导书

目录 实验一紫外-可见分光光度法测定水中苯酚的含量 (3) 实验二固体样品红外吸收光谱的测定与分析 (5) 实验三高效液相色谱法的应用-芳香烃的分离 (7)

实验一紫外-可见分光光度法测定水中苯酚的含量 1.实验目的: (1) 学习使用UV757CRT紫外可见分光光度计; (2) 进一步巩固郞伯-比尔定律,掌握紫外-可见分光光度法测定水中微量苯酚含量的方法。 2.实验仪器、试剂: 3.实验原理: 紫外-可见吸收光谱属分子吸收光谱法,当分子吸收到外来的辐射能量(光区范围在200-800 nm)时,分子外层价电子发生能级跃迁,进而产生吸收光谱。紫外光谱具有灵敏度高、准确度好、仪器价格低廉、操作简便等许多优点,主要应用于化合物的定量分析。其定量分析的主要依据为朗伯-比尔定律 A= bc 根据上述公式,吸光度与溶液浓度呈线性关系,如已知某物质的摩尔吸光系数,就可以根据吸光度值得出待测溶液的摩尔浓度。 4.实验步骤: (1) 配制苯酚标准溶液 a. 精确称取苯酚0.3000 g,放入1 L容量瓶中,加蒸馏水摇匀,定容至1 L; b. 分别精确量取上述标准液2.0、3.0、4.0、5.0、6.0 mL,分别定容至50 mL,按序编号。 (2) 绘制苯酚的标准吸收曲线 取上述3(4)号标准液,放置于1 cm的吸收池内(不能超过比色皿容积的4/5),以蒸馏水为参比溶液,在200-400 nm波长范围内进行扫描,绘制苯酚的标准吸收曲线,并选取270 nm附近最大吸收波长为本实验的入射波长。 (3) 绘制吸光度-浓度工作曲线 分别取上述配制的5组溶液,放置于1 cm的吸收池内,以蒸馏水为参比溶液,以上述选定的入射波长为测定波长,测定其吸光度值,并绘制成吸光度-浓度曲线,计算得到回归方程。 (4) 待测溶液浓度的测定 取待测苯酚溶液,放置于1 cm的吸收池内,以蒸馏水为参比溶液,以上述选定的入射波长为测定波长,测定其吸光度值,代入回归方程中,计算待测溶液的克浓度和摩尔浓度(mol/L);并通过朗伯-比尔定律计算苯酚的摩尔吸光系数。 5.结果与讨论 (1) 标准溶液

13-14(1)现代仪器分析实验讲义

实验一ICP-AES测定水的镁(钙) 一、实验目的 1.了解全谱只读等离子体发射光谱仪ICP的主要结构及其使用方法; 2.掌握ICP分析原理及其定量分析方法; 二、实验原理 ICP-OES全谱直读光谱仪,可以进行各类样品中的多种微量元素的同时测定,尤其是对水溶液中多种微量元素的测定它是一种极有竞争力的分析方法。本实验采用美国瓦里安公司产VISTA-MPX型全谱直读光谱仪。该仪器采用CCD电荷耦合二维检测器作为光电元件,具有暗电流小、灵敏度高、信噪比较高的特点,具有很高的量子效率,接近理想器件的理论极限值,且是超小型的、大规模集成的元件,可以制成线阵式和面阵式的检测器。每个CCD 检测器包含2500个像素,将若干CCD检测器环形排列于罗兰园上,可同时分析175-785nm 波长范围的千上万条谱线,这些谱线可被同时采集、测量和储存。 当样品经雾化器雾化并由载气带入等离子体光源中的分析通道时就会被蒸发、原子化、激发、电离、并产生辐射跃迁。激发态原子或离子发出的特征辐射经过分光后照射到CCD 感光单元上,在这些感光单元中就会产生电荷积累,电荷积累的快慢与谱线的发射强度成正比。如果分析物在蒸发时没有发生化学反应,并且等离子体光源中谱线的自吸收效应可忽略时,谱线强度就与分析物浓度之间存在着简单的线性关系,由此即可测出样品中分析物的含量。 三、仪器和试剂 仪器:全谱直读电感耦合等离子发射光谱仪(ICP-AES):VISTA-MPX型,美国瓦里安公司;试剂:HNO3、HF、HCl试剂:优级纯,上海振兴化工厂;钙(镁)标准储备液(1000 mg·L-1):国家标准物质研究中心;钙(镁)标准使用液(50mg·L-1):准确移取待测金属离子标准储备液各5mL,置于100mL容量瓶中,定容至刻度线。 试验用水:超纯水。 四、实验步骤 1、标准系列溶液的配制 准确移取0、2.0、5.0、10.0mL钙(镁)标准使用液,分别置于4个50mL容量瓶中,各加入1mLHNO3,定容至刻度线,摇匀后,用0.4um的过滤头过滤,待用。此标准系列溶液浓度为:0.0、2.0、5.0、10.0ug/mL。 2、待测样品及样品加标液配制 分别移取5ml自来水置于2个50mL容量瓶中,其中一个容量瓶中再加入2.0mL钙(镁)标准使用液,各加入1mLHNO3,定容至刻度线,摇匀后,用0.4um的过滤头过滤,待用。 3、ICP-OES分析检测

刘约权仪器分析课后习题答案

第1章绪 论 内容提要 1.1.1 基本概念 分析化学 一一研究物质的组成、 含量、状态和结构的科学 。 化学分析一一是利用化学反应及其计量关系进行分析测定的一类分 析方法。 仪器分析一一则是以物质的物理性质或物理化学性质 及其在分析过 程中所产生的分析信号与物质的内在关系为基础 ,并借助于比较复杂或 特殊的现代仪器,对待测物质进行 定性、定量及结构分析和动态分析的 一类分析方法。 准确度一一指多次测定的平均值与真值(或标准值)之间的符合程 度。常用相对误差 E r 来描述,其值越小,准确度越高。 X E r 100% 式中,X 为样品多次测定的平均值; 卩为真值(或标准值)。 精密度一一指在相同条件下用同一方法对同一样品进行多次平行测 定结果之间的符合程度。 误差——测量值与真实值之差。 偏差一一测量值与平均值之差。用来衡量精密度的高低。为了说明 分析结果的精密度,以测量结果的平均偏差 d 和相对平均偏差 d r 表示。 单次测量结果的偏差 d i ,用该测量值 X i 与其算术平均值 X 之差来表示。 d d r 100% x 相对标准偏差 一一指标准偏差在平均值中所占的比例,常用 S r 或 RSD 表示: d 1 d 2 ... d n d j x i X 标准偏差 n (X X ) 2 S Tn 1

含量)的平均值; A 为响应信号测量值的平均值。 相关系数 一一是标准溶液浓度所对应的响应信号测量值 A 与浓度e 之间线性关系好坏程度的统计参数,通常以相关系数 来表征。 样品的采集一一从大量的不均匀的待测物质中采集能代表全部待测 物质的分析样品的过程。 样品的制备一一样品得粉碎、混匀、缩分的过程,称为样品 的制备。 样品的提取 一一采用适当的溶剂和方法,将样品中不同成分从中分 离出来的过程,称为提取。 样品的消解 把难溶或难解离的化合物的待测样品转化为便于测 定的物质称为样品的消解。 样品的纯化 ——在测定之前,除掉样品中杂质的操作 。 样品的浓缩 一一在测定前出去过多的溶剂,提高待测组分浓度的过 程称为浓缩。 样品的衍生一一是用化学反应将某种仪器分析方法无法测定的待测 组分定量的转化 S S r S 100% x 灵敏度一一仪器分析方法的灵敏度是只待测 组分单位浓度或单位质 量的变化所引起测定信号 值的变化程度,以b 表示。 b 信号变化量 dx 浓度(质量)变化量 de (或dm ) \ 检出限一一即检出下限,是指某一分析方法在给定的置信度可以检 出待测物质的最小浓度(或最小质量),以 D 表示。 D 3S 0/b \ 标准曲线一一是待测物质的浓度或含量与仪器响应(测定)信号的 关系曲线。 一元线性回归法 一一把反映物质浓度 e 仪器响应信号的测量值 A 之 间关系的一组相关的分析数据,用一元线性回归方程( A a be )表示 出来的方法,其中: a A be , b 式中,b 为回归系数, n (e C )(A A) i 1 n g e)2 i 1 即回归直线的斜率; n G — A n n A i 1 n a 为直线的截距; e 为浓度(或

相关文档
最新文档