拜耳法赤泥分离洗涤三种流程的比选
第五章 赤泥分离和洗涤

赤泥的分离和洗涤(一)
使溶液进一步脱硅 溶出过程中虽然有脱硅反应,但由于溶液浓度高,硅量指数一般只有100左右,随 着稀释的进行,溶液进一步发生脱硅反应,溶液浓度的降低,二氧化硅平衡浓 度也相应的大大降低。 浆液中含有大量的钠硅渣的赤泥(其实就是晶种),浆液温度100度左右,有利于 脱硅反应的进行,因此,因此稀释后溶液的脱硅反应的硅量指数可达300左右。 有的铝氧厂还往赤泥浆液稀释槽内添加少量石灰,并搅拌3~~4小时补充脱硅, 使溶液的硅量指数提高到600,这样做的目的,是为了减轻蒸发器的加热管壁 的硅渣结垢,提高传热效率。 c) 、便于赤泥洗涤 d)、有利于稳定沉降槽的操作。 5、矿浆稀释岗位的职责是什么? 及时检查稀释浆液的液固比,调整洗液的加入比例, 保持溶液的氧化铝浓度在135~~140范围内,并且连续的均匀的往稀释槽内添加絮 凝剂,保证稀释稀释槽内矿浆的停留时间不低于1.5小时。
赤泥的分离和洗涤(二)
一 、赤泥的分离 (一)、沉降槽 1、它的结构简图
赤泥的分离和洗涤(二)
赤泥的分离和洗涤(二)
2、工作过程 赤泥浆液通过泵的作用,沿进料套筒进入到沉降槽内,在重力的作用 下,赤泥颗粒开始沉浆,上层清夜通过溢流堰流走,底部泥渣在耙机的缓缓转动的推 动下,被耙至底流口,从下部卸料口卸出,完成赤泥浆液的初步分离过程。 3、进料套筒的问题 密封套筒装在槽顶盖的下面,在垂直轴和槽顶盖的连接处密封,防止蒸汽外溢。 它还能够控制进料垂直方向的深度,防止加料时干扰料浆中固体颗粒的沉降,套筒高 度可以调整,以保证加料位置的变化。 4、沉降槽上部内壁的边缘上,焊接有环型溢流堰,其位置比槽壁顶端稍低,环型溢 流堰是锯齿型溢流板,如果槽体倾斜,环型溢流堰有可能局部无清液溢出,为了保证 环型溢流堰各处都有溢流,安装锯齿型溢流板解决这个问题。 5、沉降槽的发展趋势 与单层沉降槽相比,多层沉降的主要优点是单位面积消耗和投资少,节省占地面积。 但单层沉降的操作控制比较简单,当其他条件相同时候,可以获得较多层沉降较低的 底流液固比和较高的单位面积溢流量。 沉降槽的产能和底流压缩程度与其高度有很大关系,当沉降面积固定后,增加槽子高 度对产能有利,因此,近10年来,倾向于采用大直径的单层沉降槽来取代多层。
赤泥洗涤

6 、絮凝剂的使用
(1)良好的赤泥絮凝剂应具备的条件:
①絮凝性能良好; ②用量少,水溶性好; ③经处理后的母液澄清度高,残留于母液中的 有机物不影响后续氢氧化铝的分解; ④所生成的絮团能耐受剪切力 ⑤经沉降分离后,底流泥渣的过滤脱水性能好, 滤饼疏松; ⑥原料来源广泛,价格低廉。
河南产的H001絮凝剂与英国联合肢体公 司ALCLAR600絮凝剂相比,在各种条 件相同的情况下各项性能指标均相当, 完全可以作为ALCLAR600絮凝剂的替 代品而应用于氧化铝行业。 郑州铝厂研究所从1980年开始了对赤泥 絮凝剂的筛选和应用方面的研究,对国 内外几十种产品进行实验,它目前采用 的法国进口絮凝剂(FJ)及聚丙烯酸钠 (SPA)是在赤泥沉降中效果较好的药剂。
②混合效率
(2)工艺条件
9.2 拜耳法赤泥浆液的特性
1、赤泥浆液的组成
①铝酸钠溶液 ②赤泥
物 相 组 成 % 钙霞石 40.2 水化石 榴石 22..6 钙钛矿 10.5 一水硬 铝石 2...0 伊利石 16.0 赤铁矿 4.5
矿石
溶出条件 温度 时间 ℃ min 260 60
2、分离洗涤一般步骤
3、赤泥浆液洗涤沉降槽系统
液面以下 2~2.5m
底流L/S3.0~4.5
(1)概念
①底流液固比L/S
沉降槽底部排出的流股呈稠浆状,称为底流;底流中 清液与泥浆重量比称为底流L/S。 洗涤沉降分离时,清液中碱含量与压缩底流中碱含量 比值的百分数,是评价洗涤效果好坏的指标之一。 进料液固比L/S8~12 进料口送至液面以下2~2.5m处 底流L/S3.0~4.5之间 沉降槽底流一般经5~7次反向洗涤,洗至赤泥中 Na2O的附液损失为0.3%~1.8%(对干赤泥而言); 末次洗涤后的赤泥再过滤,使赤泥含水量降低到45% 以下。
氢氧化铝生产中赤泥的处理与处置

氢氧化铝生产中赤泥的处理与处置摘要:对于拜耳法生产过程中产生的赤泥采用干法堆存,应考虑渣场方案选择、渣场的布局及防渗、坝工设计等内容。
并对其可能产生的风险事故做好预防措施。
关键词:拜耳法赤泥干法堆存渣场防渗1、概述电解铝产业是我国重要的产业之一,而从铝土矿到电解铝分为两个大的工艺流程,氧化铝生产和电解铝的生产。
其中氧化铝的生产目前普遍采用拜耳法,基本流程包括:矿石的粉碎与细磨,矿石溶出,稀释,分解,泥渣和氢氧化铝的分离洗涤,氢氧化铝的煅烧,碳酸钠的苛性化以及母液蒸发等过程。
在拜耳法生产氢氧化铝过程中,生成的固体废物主要为经过洗涤和压滤后的赤泥(含水率30%左右)、石灰消化产生的消化渣和高压溶出、赤泥分离等工段设备敲击下来的结疤渣。
2、赤泥的处理与处置2.1 赤泥渣场的选择对于产生的赤泥等固体废物,目前采用的主要处理处置方式是选取渣场进行堆存,而渣场方案的选择显得十分重要。
赤泥渣场选择应经环境地质调查,对于场地及其外围应未发现滑坡、崩塌、泥石流、地面塌陷、地面沉降及地裂缝等与地质作用有关的地质灾害,场地整体稳定性较好。
场地应属抗震有利地段,场地处于抗震设防烈度6度区,场地土除残坡积层外,基本为硬质厚块状岩体所构成。
场地、环境、地基和抗振等稳定性均较好,场地建筑适宜性较好。
场区水文地质条件简单,地下水埋藏深度较大,对砼和建材无腐蚀性。
2.2 赤泥堆存方法赤泥干法堆存与传统湿法堆存相比,输送至渣场的赤泥较低,干法赤泥含水只有湿法的1/5~1/6,从而大大降低了赤泥附液渗漏污染环境的风险。
赤泥经压滤后(含水率一般在25%~30%)用汽车运输至赤泥渣场进行干法堆存。
干法赤泥渣场一般先构筑初期坝,平均坝高10m~15m。
在整个渣场内采用分区设库,分区布料、分区进行干燥筑坝,以每级6m的高度向上构筑子坝,不断向上延伸。
渣场运行管理的主要内容是实施渣场均匀布料;利用机械辅助干燥赤泥;赤泥分离附液进入回水池后送回氢氧化铝厂内;赤泥子坝外边坡植被绿化护坡。
拜耳法生产氧化铝工艺流程简介

拜耳法生产氧化铝工艺流程简介拜耳法适于处理高品位铝土矿,这是用苛性碱溶液在一定的温度下溶出铝土矿中的氧化铝的生产方法,具有工艺简单、产品纯度高、经济效益好等优点。
基本原理拜耳法的基本原理有两个。
一个是铝土矿的溶出;一个是铝酸钠溶液的分解。
溶出是用苛性碱溶液在一定的条件下(加石灰、碱浓度、温度、时间及搅拌等)溶出铝土矿中的氧化铝,反应为Al2O3·H2O+2NaOH=2NaAlO2+2H2OAl2O3·3H2O+2NaOH=2NaAlO2+4H2OSiO2+NaOH+NaAlO2=Na2O·Al2O3·2SiO 2·2H2O+H2O一水铝石或三水铝石溶解形成铝酸钠进入碱液中,而其它杂质不进入溶液中,呈固相存在,称赤泥。
三水铝石(Al2O3·3H2O)的溶解温度为105℃,一水硬铝石(α-Al2O3·H2O)为220℃,一水软铝石(γ-Al2O3·H2O)为190℃。
分解是利用NaAlO2溶液在降低温度、加入种子及搅拌的条件下析出固相Al(OH)3,分解反应为NaAlO2+2H2O=Al(OH)3↓+NaOH 种子即为Al(OH)3,加入量(以Al2O3量计算)为溶液中Al2O3含量的一倍以上;温度控制为从75℃降到55℃;搅拌时间为60h左右。
所得Al(OH)3再经焙烧脱水变成Al2O3;并使Al2O3晶型转变,满足铝电解的要求,焙烧反应为Al2O3·3H2O 225℃γ-Al2O3·H2O + 2H2Oγ-Al2O3·H2O 500℃γ-Al2O3 + H2Oγ-Al2O3 900~1200℃α-Al2O3工艺流程及主要技术条件拜耳法的生产工艺主要由溶出、分解和焙烧三个阶段组成。
全流程主要加工工序为:矿石的破碎、均化及湿磨、高温高压溶出、赤泥分离洗涤、叶滤、种子分解、母液蒸发及氢氧化铝焙烧。
拜耳法的原理和基本流程

也有写成下式的 Al(OH) 3 NaOH 100C NaAlO 2 2H2O
Al2O3 • 3H2O 2NaOH aq 100C 2NaAlO 2 aq
• 三水铝石典型的主要溶出条件:
溶出温度 溶出压力 溶出碱浓度
140~145℃ 4kg/cm2 120~140g/L
铝土矿中氧化铝的理论溶出率:
n = [w(Al2O3) – w(SiO2)]/ w(Al2O3)×100%
={[ A/S] – 1}/[A/S] ×100%
=[1-1/(A/S)] ×100%
式中A/S为铝土矿的铝硅比(质量比)
∴ A/S越高,矿石越容易溶解,理论溶出率越高。
3.1.2.拜耳法的基本流程
• 拜耳法的实质就是使下一反应在不同的条件下朝
不同的方向交替进行:
溶出
Al2O3(1或3)H2O+2NaOH(aq>)=1分4=0解=℃=2NaAl(OH)4(aq)
<70℃
• 首先是在高温下在压煮器中以NaOH溶液溶出 铝土矿,将其中氧化铝水合物溶浸出来;使反 应向右进行,得到铝酸钠溶液,杂质则进入残 渣中。往彻底分离赤泥后的铝酸钠溶液中添加 晶种,在不断搅拌的条件下进行晶种分解,使 反应向左进行析出氢氧化铝。分解后的母液 (循环母液)再返回用以溶出下一批矿石。氢 氧化铝经煅烧后便得到产品氧化铝。
在拜耳法溶出过程中,赤铁矿实际上不溶于 碱,全部进入沉淀中,成为赤泥的重要组成。
TiO2在溶出过程中的行为
3.2.4 TiO2在溶出过程中的行为
TiO2在铝土矿中通常以金红石、锐钛矿和板钛 矿的形态存在。TiO2先于一水硬铝石与碱反应生成 钛酸钠,其呈胶态包围在矿粒表面,阻止一水硬铝 石与碱反应,导致氧化铝不能溶出,加石灰,生成 钛酸钙,破坏钛酸钠的膜。消除TiO2的有害作用。
氧化铝的生产原理和方法

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载氧化铝的生产原理和方法地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第一章氧化铝的生产原理和方法第一节氧化铝和铝矿烧结法和拜耳法是目前工业生产氧化铝的主要方法。
国外生产氧化铝绝大多数采用拜耳法生产氧化铝,中国结合自己的资源情况,首创了拜耳-烧结混联法,极大地提高了氧化铝的总回收率。
随着生产技术的不断提高,石灰拜耳法、选矿拜耳法等一些新的生产方法不断被应用到生产中来。
一、、氧化铝的特性存在于自然界中的氧化铝称为刚玉(α-Al2O3),是在火山爆发过程中形成的。
它在岩石中呈无色的结晶,也可与其他氧化物杂质(氧化铬和氧化铁等)染(形)成带色的结晶,红色的叫红宝石,蓝色的叫蓝宝石。
工业氧化铝是各种氧化铝水合物经加热分解的脱水产物,按照它们的生成温度可以分为低温氧化铝和高温氧化铝两类。
通常电解炼铝用的氧化铝是α-Al2O3和γ-Al2O3的混合物。
α-Al2O3它属六角晶系,由于有完整坚固的晶格,所以它是所有氧化铝同质异晶体中化学性最稳定的一种,在酸或碱液中不溶解。
γ-Al2O3属于立方晶系,具有很大的分散性,化学性质较为活泼,易与酸或碱溶液作用。
氧化铝的化学纯度成品氧化铝除主要成分是Al2O3外,往往含有少量的SiO2、Fe2O3、Na2O 和H2O等杂质。
氧化铝中残存的结晶水以灼减表示,它也是有害杂质。
因为水与电解质中的AlF3作用而生成HF,造成了氟盐的损失,并且污染了环境。
此外,当灼减高或吸湿后的氧化铝与高温熔融的电解质接触时,则会引起电解质暴溅,危及操作人员的安全。
氧化铝质量的分级根据标准YS/7274-1998分为4个等级,如表1-2所示。
表1-2氧化铝质量等级标准氧化铝的物理性质用于表征氧化铝物理性质的指标有:安息角、α-Al2O3含量、容量、粒度和比表面积以及磨损指数等。
[方案]拜耳法生产氧化铝工艺流程简介
![[方案]拜耳法生产氧化铝工艺流程简介](https://img.taocdn.com/s3/m/5d19abedfbb069dc5022aaea998fcc22bcd143de.png)
拜耳法生产氧化铝工艺流程简介拜耳法适于处理高品位铝土矿,这是用苛性碱溶液在一定的温度下溶出铝土矿中的氧化铝的生产方法,具有工艺简单、产品纯度高、经济效益好等优点。
基本原理拜耳法的基本原理有两个。
一个是铝土矿的溶出;一个是铝酸钠溶液的分解。
溶出是用苛性碱溶液在一定的条件下(加石灰、碱浓度、温度、时间及搅拌等)溶出铝土矿中的氧化铝,反应为Al2O3〃H2O+2NaOH=2NaAlO2+2H2OAl2O3〃3H2O+2NaOH=2NaAlO2+4H2OSiO2+NaOH+NaAlO2=Na2O〃Al2O3〃2SiO 2〃2H2O+H2O一水铝石或三水铝石溶解形成铝酸钠进入碱液中,而其它杂质不进入溶液中,呈固相存在,称赤泥。
三水铝石(Al2O3〃3H2O)的溶解温度为105℃,一水硬铝石(α-Al2O3〃H2O)为220℃,一水软铝石(γ-Al2O3〃H2O)为190℃。
分解是利用NaAlO2溶液在降低温度、加入种子及搅拌的条件下析出固相Al(OH)3,分解反应为NaAlO2+2H2O=Al(OH)3↓+NaOH 种子即为Al(OH)3,加入量(以Al2O3量计算)为溶液中Al2O3含量的一倍以上;温度控制为从75℃降到55℃;搅拌时间为60h左右。
所得Al(OH)3再经焙烧脱水变成Al2O3;并使Al2O3晶型转变,满足铝电解的要求,焙烧反应为Al2O3〃3H2O 225℃γ-Al2O3〃H2O + 2H2Oγ-Al2O3〃H2O 500℃γ-Al2O3 + H2Oγ-Al2O3 900~1200℃α-Al2O3工艺流程及主要技术条件拜耳法的生产工艺主要由溶出、分解和焙烧三个阶段组成。
全流程主要加工工序为:矿石的破碎、均化及湿磨、高温高压溶出、赤泥分离洗涤、叶滤、种子分解、母液蒸发及氢氧化铝焙烧。
铝矿石进厂后经破碎、均化、贮存,碎矿石送下一工序湿磨。
本工序的目的是使铝矿石破碎至≤15㎜粒度,并且使化学成分均匀地向湿磨供料,控制指标是:每7天的供矿量加权平均值A/S波动在±0.5范围内。
拜耳法生产氧化铝的基本流程

氢氧化铝的焙烧
将洗涤后的氢氧化铝在高温下进行焙烧,使其脱水转化为氧化铝。
9
母液的回收与再利用
分解过程中产生的母液(含大量氢氧化钠的溶液)经过蒸发浓缩后,可以重新用于下一批铝土矿的溶出,实现循环利用。
10
产品包装与存储
将焙烧得到的氧化铝产品进行包装,并存储在干燥、通风的仓库中。
拜耳法生产氧化铝的基本流程
步骤编号
工艺流程
描中的杂质。
2
磨矿与制浆
将处理过的铝土矿与氢氧化钠溶液(称为“母液”)混合,通过球磨机形成矿浆。
3
高压溶出
矿浆在高压釜中进行加热和压力处理,使铝土矿中的氧化铝与氢氧化钠反应生成铝酸钠溶液。
4
溶出矿浆的稀释
溶出后的矿浆(称为“溶出矿浆”)进行稀释,降低其氧化铝浓度,以便于后续处理。
5
赤泥的分离与洗涤
通过沉降槽等设备,将赤泥(含铁、硅等杂质的固体废物)从铝酸钠溶液中分离出来,并对赤泥进行多次洗涤,回收其中的碱。
6
晶种分解
向净化后的铝酸钠溶液中添加晶种(即细小的氢氧化铝颗粒),并在控制温度、搅拌等条件下,使铝酸钠分解,析出氢氧化铝。
7
氢氧化铝的分级与洗涤
将分解得到的氢氧化铝浆液进行分级,得到不同粒度的氢氧化铝产品。对产品进行洗涤,去除其中的碱和其他杂质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧化铝氟化盐拜耳法赤泥分离洗涤三种流程的比选韩安玲(沈阳铝镁设计研究院,辽宁沈阳110001)摘要:本文介绍了深锥沉降槽的特点。
列举了三种赤泥沉降分离洗涤工艺流程:(1)深锥沉降槽分离、4次深锥沉降槽洗涤;(2)平底沉降槽分离、3次平底沉降槽加一次过滤洗涤;(3)平底沉降槽分离、2次平底沉降槽加2次深锥沉降槽洗涤。
在同等条件下对上述流程进行洗涤平衡计算及经济分析比较。
关键词:拜耳法;赤泥;沉降分离洗涤;流程;深锥沉降槽中图分类号:TF803.23 文献标识码:B 文章编号:10021752(2005)03001004溶出后的稀释浆液是铝酸钠溶液和赤泥的混合物,将两者分离为纯净的铝酸钠溶液和高固含的赤泥是分离作业的目的;用水洗涤分离赤泥得到高固含、低附碱的弃赤泥浆是洗涤作业的任务。
作为固液分离设备的沉降槽,在氧化铝工业中广泛应用。
由于早期的沉降理论认为,沉降槽的产能只与沉降面积有关与高度无关,因而早期建设的氧化铝厂普遍采用高度1.8~ 2.8m的单层或多层沉降槽。
近些年来,随着沉降理论的发展和技术进步,其结构形式发生了很大变化,沉降槽的性能也有突破性的提高,原来使用的高度小的单层和多层沉降槽已逐步被淘汰。
考核沉降槽固液分离的效果,不仅要看其产能高低,还要看其溢流净度(溢流浮游物含量)和底流固含多少,这些产量、质量指标对于衡量沉降槽性能的先进性和取得较好的技术经济效益是至关重要的。
现代沉降理论、实验和生产实践证明,上述三项指标均与沉降槽高度有关。
适当提高沉降槽的高度,使泥浆层受到进一步压缩,可增加底流固含;液体穿过更高的清液层得到进一步澄清提高了溢流的净度。
因此,在新建的氧化铝厂和老厂的技术改造中,赤泥分离洗涤沉降槽已被大型高帮平底沉降槽、深锥沉降槽所取代。
深锥沉降槽是上世纪70年代由加拿大铝业公司和贝克工业设备公司开发研制并应用于氧化铝工业中的新型沉降槽。
其进料管专利E-DUK的结构能从清液层中汲取溶液,有效地稀释进料浆液的固含,使赤泥的沉降过程在有利于赤泥沉降的状态下进行,其絮凝剂进料方式为多点加入,该絮凝剂具有快速絮凝和降解作用。
不断增大的高度/直径(H/D 1)等诸多方面的改进对提高沉降槽的产量和技术指标起到了很大作用。
1 深锥沉降槽深锥沉降槽的进料结构(见图1)图1 进料筒结构原理图2 大型平底沉降槽和深锥沉降槽的比较大型平底沉降槽、深锥沉降槽的规格和性能指标见表1。
进料技术条件Na2O浓度:Na2O k165g/l收稿日期:2004-10-08固体含量:4%~6%温度:~100固体粒级分布:~500 m100%~315 m 98.5% ~63 m 75%表1 大型平底沉降槽、深锥沉降槽的规格和性能指标大型平底沉降槽深锥沉降槽沉降槽直径D,m3612沉降槽高度H,m 4.5~612~18底流固含,%~30(用于分离赤泥) 4035~40(用于分离赤泥洗涤) 44(1~3次洗涤)48~52(末次洗涤)溢流固含,mg/l<250<200溢流产能,m3/(m2.h)0.5~6固体产能,t/(m2.h)0.04~0.080.3絮凝剂加入量(与絮凝剂种类有关)附碱损失Na2O,kg/t-赤泥(与流程有关)近年来赤泥干法堆存逐渐兴起,对赤泥外排提出了更高要求,除附碱浓度低( 1~2g/l)以外,固含一般在45%以上,因而深锥沉降槽得到广泛应用。
3 赤泥沉降洗涤流程根据大型平底沉降槽和深锥沉降槽的特点,以年产氧化铝80万吨规模为比较基础,组合三种固液分离流程进行分析比较。
3.1 深锥沉降槽分离、4次深锥沉降槽洗涤(流程1)3.1.1 主要设备选用 20m深锥沉降槽2台,用于分离; 20m 深锥沉降槽5台,4台用于洗涤,1台互备,其中三、四次洗涤沉降槽的直筒段较一、二次洗涤槽高3m 。
图2 流程1:深锥沉降槽分离,4次深锥沉降槽洗涤3.1.2 特点(1)流程简单:由于深锥沉降槽底流固含较高,经过四次反向洗涤即可达到弃赤泥附碱损失 5kg/t-干赤泥的指标要求。
省去了赤泥过滤和相配套的稀释浆液脱砂两个工序。
(2)沉降槽的底流固含高,分离沉降槽通常在42%~44%,末次洗涤沉降槽底流固含高达48%~52%,这种高固含的赤泥经剪切泵流化后用GEHO 泵外排适于干法堆存,有利环保。
(3)沉降槽单位面积产能高,泥量、溢流能力均为大型平底沉降槽的几倍之多(见表1)。
(4)占地面积小,约为大型平底沉降槽的30%左右。
(5)由于深锥沉降槽体积小,物料在沉降槽内停留时间短,因而水解损失小,并有利自动化控制。
(6)散热损失小,散热面积约为大型平底沉降槽的80%,不用向槽内通蒸汽即可保证沉降温度之需。
(7)进料装置的专利技术可加大进料L/S,有利沉降,对进料L/S 要求放宽。
由于上述的诸多优点,深锥沉降槽成为当前国内外新建或扩建氧化铝厂逐渐采用的最新的沉降技术及装备。
在国外有40多台,我国在贵州铝厂技术改造工程中引进一套6台 12 (12~15)m 深锥沉降槽,并于2001年11月投产,经2001年11月~2002年6月的适应调整期,2002年7月以来运行效果良好。
其他氧化铝厂也相继采用。
这种流程的不足之处:(1)絮凝剂用量较大,操作控制要求较高,且控制系统引进费用较多。
(2)对生产波动的适应性较差。
(3)在实际操作中,为保证泥筒出料畅通,底流排除量要比正常量加大2倍:1/3排至下一级,2/3返回泥筒中指定的方位,增加了电能消耗,泥浆管道复杂化,安装操作上多有不便。
3.2 平底沉降槽分离、3次平底沉降槽加一次过滤洗涤(流程2)3.2.1 主要设备选用 46 6m 平底沉降槽6台,其中2台用于分离,1台互备,3台洗涤。
8台100m 2转鼓过滤机正常运行6台,清理检修换布2台及与其配套的真空系统。
图3 流程2:平底沉降槽分离,3次平底沉降槽加1次过滤机图4 流程3:平底沉降槽分离,2次平底沉降槽加2次深锥沉降槽洗涤3.2.2 特点:(1)技术成熟可靠,在山西铝厂和平果铝厂有多年的生产实践。
(2)沉降槽操作简便易行适应性强,可在50%~100%负荷范围内稳定运行。
(3)絮凝剂用量较低。
缺点:(1)沉降槽的底流固含低,不宜干法堆存。
如采用干法堆存尚需与过滤机组合,而为保证过滤机的正常运转需加设水旋器除砂、洗砂工序,使该流程复杂化。
(2)通过热平衡计算,即使在一般条件下(环境温度12 ,风速2.6m/s,保温层表面温度35 时,每个沉降槽的温度损失达6 ),为保证过滤机的操作温度80 和沉降槽的正常运行,需向沉降系统通入蒸汽,热耗较高。
目前,山西铝厂的大型 42 6m沉降槽经常通入蒸汽才能保证正常操作。
3.3 平底沉降槽分离、2次平底沉降槽加2次深锥沉降槽洗涤(流程3)3.3.1 主要设备选用 46 6m平底沉降槽5台, 20m深锥沉降槽2台。
其中平底沉降槽2台用于分离,1台互备,2台用于一、二次洗涤;2台深锥沉降槽分别用于三、四次或四次洗涤。
当平底槽4台运行时,2台深锥槽全部投入运行;当平底槽5台全部投入运行时,只投入1台深锥槽,另一台深锥槽清理检修。
DORR-OLIVER公司为中州铝厂拜耳法赤泥沉降分离洗涤做的设计采用了平底沉降槽与深锥沉降槽的组合流程如图4。
这种组合流程具备上述两种流程的优点,同时也在某种程度上存在它们的缺点。
末次洗涤采用深锥沉降槽代替过滤机进一步浓缩赤泥是一项简便易行的举措。
上述三种流程均是为满足赤泥干法堆存对外排赤泥高固含的需要而设置的。
应该指出的是,这种高固含的赤泥浆密度大(1.5左右)、黏度高(50100厘泊甚至更高)难以输送,需要在外排前经流化剪切降低黏度再与高压GEHO泵配套排至堆场,电耗高,费用大。
近来有的氧化铝厂将深锥沉降槽设置在堆场附近;沉降槽排出的低固含赤泥用一般隔膜泵输送至深锥槽就地浓缩,实现干法堆存,这种做法不无可取之处,值得研究。
至于外排赤泥高固含与低固含输送以及赤泥干法堆存等利弊尚需进一步分析。
4 三种流程的经济比较(以年产氧化铝80万吨规模为比较基础)4.1 三种流程洗涤平衡计算计算条件:稀释浆液液体成分:Na2O165g/l Na2O c7g/l k=1.48洗水用量: 4.5t/t-赤泥(洗水含Na2O1g/l)按各设备特点确定分离洗涤各槽的底流L/S。
以1t赤泥为计算基准。
计算结果如表2。
表2 三种流程洗涤平衡计算结果附碱损失Na2O k,kg/t-泥折算碱耗费用元/t-Al2O3流程1 2.1 6.9流程2 2.78.8流程3 3.511.44.2 三种流程的投资费用和运行费用表3 三种流程相关费用的计算结果投资费用,万元运行费用,元/t-Al2O3流程1509431.0流程2905333.6流程3581033.15 结论(1)深锥沉降槽结构特点及絮凝剂的合理加入,使其具备了评价沉降槽的 三高 指标:产能高、底流固含高、溢流净度高,是用于赤泥分离、洗涤比较先进的设备。
但絮凝剂费用高且目前尚需依靠国外进口,对生产波动的适应性较差,操作控制要求较高。
(2)通过对三种流程的比较可以看出:流程1,投资费用和运行费用均较低;流程3次之;流程2投资费用高很多,运行费用亦较高。
应该说明的是,由于大型平底槽对生产波动的适应性很强,操作控制十分简单,后面二级沉降洗涤采用深锥沉降槽又能满足直接外排赤泥高固含的要求,投资费用不高,运行费用尚可,所以流程3目前仍被广泛采用。
参考文献:1 美国贝克工艺设备公司EIM CO Deep Cone Thickener在拜耳法氧化铝生产中应用的简介 Z .2 侯用兴.沉降槽高效化技术改进 A .第四届全国轻金属冶金学术会议论文集 C .2001.3 杨重愚主编.轻金属冶金学 M .中南工业大学,1991.4 杨重愚主编.氧化铝工艺学 M .冶金工业出版社,1982.(责任编辑 张文军)。