2018-2019版高中数学苏教版必修三课件第一单元 1.3.1
苏教版高中数学必修三-第一章-算法初步1.2.3ppt课件

教学时要以选择结构为知识的切入点,从学生的认知水 平和所需的知识特点入手,引导学生结合学过的选择结构, 不断地观察、分析,发现选择结构与循环结构之间的对应关 系;引导学生进行流程图的比较和分析,掌握两种循环结构 的区别和联系,理解循环条件的区别,并通过实例强化对循 环结构的理解和认识;从而化解难点. 引导学生回答所提问题, 理解两种循环结构的应用条件; 通过例题与练习让学生在应用循环结构的过程中体会该种结 构的特点和作用;以强化重点.
●教学建议 学生已经学习了算法的含义、顺序结构、选择结构及简 单的赋值问题.高一学生形象思维、感性认识较强,理性思 维、抽象认识能力还很薄弱,因此教学中选择学生熟悉的, 易懂的实例引入,通过对例子的分析,使学生逐步经历循环 结构设计的全过程,学会有条理的思考问题,表达循环结构, 并整理成流程图.
在教学中,应以学生为主体,教师为主导.指导学生学 会学习.学生在一定情境中对学习材料的亲身经验和发现, 才是学生学习的最有价值的东西.在传授知识的同时,必须 设法教给学生好的学习方法,让他们“会学习”.通过本节 课的教学,让学生学会从不同角度分析问题、解决问题;让 学生学会引申、变更问题,以培养学生发现问题、提出问题 的创造性能力.
【思路探究】 正整数. 【自主解答】 利用循环结构,重复操作,可求出最小
算法如下:
S1 S2 S3
S←1; i←3; 若 S≤5 000,则 S←S×i,i←i+2,重复 S3,否则
2018-2019学年高中数学 第一章 常用逻辑用语 1.3.1 且(and)1.3.2 或(o

1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.了解逻辑联结词“且”“或”“非”的含义,会判断含有这类逻辑联结词的命题的真假.2.结合具体实例,在了解“且”“或”“非”含义的基础上,掌握这类联结词的用法.3.在结合实例学习逻辑联结词的过程中,体会用逻辑语言表达数学内容的准确性和简洁性.1.用逻辑联结词构成新命题构成新命题记作读作用联结词“且”把命题p和命题q联结起来,就得到一个新命题p∧q p且q用联结词“或”把命题p和命题q联结起来,就得到一个新命题p∨q p或q对一个命题p全盘否定,就得到一个新命题﹁p 非p或p 的否定对逻辑联结词的理解(1)“且”表示同时的意思,可联系集合中“交集”的概念.(2)“或”表示至少一个,可联系集合中“并集”的概念.(3)“非”表示对原命题否定,可联系集合中“补集”的概念.2.含有逻辑联结词的命题的真假判断p q p∨q p∧q ﹁p真真真真假真假真假假假真真假真假假假假真确定p∧q,p∨q,﹁p真假的记忆口诀如下:p∧q→见假即假,p∨q→见真即真,p与﹁p→真假相反.判断(正确的打“√”,错误的打“×”)(1)逻辑联结词“且”“或”只能出现在命题的结论中.( )(2)“p∨q为假命题”是“p为假命题”的充要条件.( )(3)命题“p∨(﹁p)”是真命题.( )(4)命题的否定与否命题是相同的概念.( )答案:(1)×(2)×(3)√(4)×命题“矩形的对角线相等且互相平分”是( )A.“p∧q”形式的命题B.“p∨q”形式的命题C.“﹁p”形式的命题D.以上说法都不对答案:A若p:正数的平方大于0,q:负数的平方大于0,则p∨q:________________.(用文字语言表述)答案:正数或负数的平方大于0下列命题:①5>4或4>5;②9≥3;③命题“若a>b,则a+c>b+c”;④命题“菱形的两条对角线互相垂直平分”,其中真命题为________.答案:①②③④探究点1 用逻辑联结词构造新命题分别写出由下列命题构成的“p∨q”“p∧q”“﹁p”形式的命题:(1)p:π是无理数;q:e不是无理数;(2)p:三角形的外角等于与它不相邻的两个内角的和;q:三角形的外角大于与它不相邻的任何一个内角.【解】(1)“p∨q”:π是无理数或e不是无理数;“p∧q”:π是无理数且e不是无理数;“﹁p”:π不是无理数.(2)“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任何一个内角;“p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任何一个内角;“﹁p”:三角形的外角不等于与它不相邻的两个内角的和.用逻辑联结词构造新命题的两个步骤指出下列命题的形式及构成它的简单命题:(1)96是48与16的倍数; (2)方程x 2-3=0没有有理根;(3)不等式x 2-x -2>0的解集是{x |x >2或x <-1}.解:(1)这个命题是“p ∧q ”的形式,其中p :96是48的倍数,q :96是16的倍数. (2)这个命题是“﹁p ”的形式,其中p :方程x 2-3=0有有理根.(3)这个命题是“p ∨q ”的形式,其中p :不等式x 2-x -2>0的解集是{x |x >2},q :不等式x 2-x -2>0的解集是{x |x <-1}.探究点2 含逻辑联结词的命题的真假判断(1)已知命题p :对任意的x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧﹁qC .﹁p ∧qD .﹁p ∧﹁q(2)给出两个命题:p :函数y =x 2-x -1有两个不同的零点;q :若1x<1,则x >1.在下列四个命题中,真命题是( )A .(﹁p )∨qB .p ∧qC .(﹁p )∧(﹁q )D .(﹁p )∨(﹁q )【解析】 (1)因为x >0,x +1>1,所以ln(x +1)>0,所以命题p 为真命题;当b <a <0时,a 2<b 2,故命题q 为假命题,由真值表可知B 正确,故选B .(2)对于p ,函数对应的方程x 2-x -1=0的判别式Δ=(-1)2-4×(-1)=5>0,所以函数有两个不同的零点,故命题p 为真命题.对于q ,当x <0时,不等式1x<1恒成立,所以命题q 为假命题.所以命题(﹁p )∨q 、p ∧q 、(﹁p )∧(﹁q )均为假命题,(﹁p )∨(﹁q )为真命题.【答案】 (1)B (2)D判断命题真假的三个步骤(1)明确命题的结构,即命题是“p ∧q ”“p ∨q ”,还是“﹁p ”. (2)对命题p 和q 的真假作出判断.(3)由“p ∧q ”“p ∨q ”“﹁p ”的真假判断方法给出结论.分别写出由下列命题构成的“p ∨q ”“p ∧q ”“﹁p ”形式的命题,并判断其真假.(1)p :3是9的约数,q :3是18的约数;(2)p :矩形的对角线相等,q :矩形的对角线互相垂直. 解:(1)p ∨q :3是9的约数或是18的约数,此命题为真命题.p ∧q :3是9的约数且是18的约数,此命题为真命题.﹁p :3不是9的约数,此命题为假命题.(2)p ∨q :矩形的对角线相等或互相垂直,此命题为真命题.p ∧q :矩形的对角线相等且互相垂直,此命题为假命题.﹁p :矩形的对角线不相等,此命题为假命题.探究点3 利用含逻辑联结词的命题的真假求参数的取值范围已知p :方程x 2+mx +1=0有两个不等的负实数根;q :方程4x 2+4(m -2)x +1=0无实数根,若“p ∨q ”为真命题,且“p ∧q ”是假命题,求实数m 的取值范围.【解】 p :方程x 2+mx +1=0有两个不等的负实数根⇔⎩⎪⎨⎪⎧Δ=m 2-4>0-m <0⇔m >2.q :方程4x 2+4(m -2)x +1=0无实数根⇔Δ=16(m -2)2-16<0⇔1<m <3.所﹁p :m ≤2,﹁q :m ≤1或m ≥3.因为“p ∨q ”为真命题,且“p ∧q ”是假命题, 所以p 为真且q 为假,或p 为假且q 为真. (1)当p 为真且q 为假时, 即p 为真且﹁q 为真,所以⎩⎪⎨⎪⎧m >2m ≤1或m ≥3,解得m ≥3;(2)当p 为假且q 为真时,即﹁p 为真且q 为真,所以⎩⎪⎨⎪⎧m ≤21<m <3,解得1<m ≤2.综上所述,实数m 的取值范围是(1,2]∪[3,+∞).[变条件]若本例条件变为:(﹁p )∨(﹁q )为假命题,其他条件不变,求实数m 的取值范围.解:由例题解析可知p :m >2,q :1<m <3,若“(﹁p )∨(﹁q )”为假命题,即p ∧q 为真命题,所以⎩⎪⎨⎪⎧m >21<m <3,解得2<m <3.所以实数m 的取值范围是(2,3).应用逻辑联结词求参数范围的四个步骤(1)分别求出命题p ,q 为真时对应的参数集合A ,B . (2)由“p 且q ”“p 或q ”的真假讨论p ,q 的真假. (3)由p ,q 的真假转化为相应的集合的运算. (4)求解不等式或不等式组得到参数的取值范围.[注意] 当p ,q 中有假命题时,求参数范围应从求真命题的补集入手,可简化运算,减少出错.已知命题p :|m +1|≤2成立,命题q :方程x 2-2mx +1=0有实数根,若﹁p 为假命题,p ∧q 为假命题,求实数m 的取值范围.解:由|m +1|≤2得-3≤m ≤1, 即命题p :-3≤m ≤1.由方程x 2-2mx +1=0有实数根,得Δ=(-2m )2-4≥0, 即m ≥1或m ≤-1, 即命题q :m ≥1或m ≤-1. 因为﹁p 为假命题,p ∧q 为假命题,所以p 为真命题,q 为假命题,﹁q 为真命题,﹁q :-1<m <1,由⎩⎪⎨⎪⎧-3≤m ≤1,-1<m <1得-1<m <1. 所以m 的取值范围是(-1,1).1.命题“三角形中最多有一个内角是钝角”的否定是( ) A .三角形中有两个内角是钝角 B .三角形中有三个内角是钝角 C .三角形中至少有两个内角是钝角 D .三角形中没有一个内角是钝角解析:选C .三角形有三个内角,“最多有一个内角是钝角”的含义是“有0个或1个内角是钝角”,它的否定是“有2个或3个内角是钝角”,即“至少有两个内角是钝角”,选C .2.设命题p :函数y =sin 2x的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.下列判断正确的是( )A .p 为真B .﹁q 为假C .p ∧q 为假D .p ∨q 为真解析:选C .由函数y =sin 2x 的最小正周期为π可知命题p 是假命题;由函数y =cosx 的图象关于直线x =k π(k ∈Z )对称可知命题q 是假命题,所以p ∧q 是假命题,可知应选C .3.已知p :点P 在直线y =2x -3上,q :点P 在直线y =-3x +2上,则使命题p ∧q 为真命题的一个点P (x ,y )是 ( )A .(0,-3)B .(1,2)C .(1,-1)D .(-1,1)解析:选C .因为p ∧q 为真命题,所以p ,q 均为真命题,即点P 为直线y =2x -3与y=-3x +2的交点,故有⎩⎪⎨⎪⎧y =2x -3,y =-3x +2,解得⎩⎪⎨⎪⎧x =1,y =-1.故选C . 4.分别写出由下列命题构成的“p ∨q ”“p ∧q ”“﹁p ”形式的新命题.(1)p :方程x 2+2x +1=0有两个相等的实数根,q :方程x 2+2x +1=0两根的绝对值相等;(2)p :正△ABC 的三个内角都相等,q :正△ABC 有一个内角是直角. 解:(1)p ∨q :方程x 2+2x +1=0有两个相等的实数根或两根的绝对值相等.p ∧q :方程x 2+2x +1=0有两个相等的实数根且两根的绝对值相等.﹁p :方程x 2+2x +1=0没有两个相等的实数根.(2)p ∨q :正△ABC 的三个内角都相等或有一个内角是直角.p ∧q :正△ABC 的三个内角都相等且有一个内角是直角.﹁p :正△ABC 的三个内角不都相等.知识结构深化拓展1.命题与集合之间可以建立如下的对应关系:命题形式集合运算p 且q A ∩B ={x |x ∈A 且x ∈B } p 或qA ∪B ={x |x ∈A 或x ∈B }非p ∁U P={x|x∈U,x∉P}2.含有逻辑联结词命题的否定“或”“且”联结词的否定形式:“p或q”的否定形式是“﹁p且﹁q”,“p且q”的否定形式是“﹁p或﹁q”,它类似于集合中的“∁U(A∪B)=(∁U A)∩(∁U B),∁U(A∩B)=(∁U A)∪(∁U B)”.[学生用书P93(单独成册)])[A 基础达标]1.已知p:x∈A∩B,则﹁p是( )A.x∈A且x∉B B.x∉A或x∉BC.x∉A且x∉B D.x∈A∪B解析:选B.x∈A∩B,即x∈A且x∈B,故﹁p是x∉A或x∉B.2.已知命题p:若ab=0,则a=0;命题q:若a=0,则ab=0,则( )A.“p或q”为假B.“p且q”为真C.p真q假D.p假q真解析:选D.由条件易知:命题p为假命题,命题q为真命题,故p假q真.从而“p 或q”为真,“p且q”为假.3.设p,q是简单命题,则“‘p且q’为假”是“‘p或q’为假”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选A.“p且q”为假,即p和q中至少有一个为假;“p或q”为假,即p和q 都为假.故“‘p且q’为假”是“‘p或q’为假”的必要不充分条件.4.设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0.命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是( )A.p∨q B.p∧qC.(﹁p)∧(﹁q) D.p∨(﹁q)解析:选A.取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,所以p是假命题.a,b,c是非零向量,由a∥b知a=x b,由b∥c,知b=y c,所以a=xy c,所以a∥c,所以q是真命题.综上知p∨q是真命题,p∧q是假命题.又因为﹁p为真命题,﹁q为假命题,所以(﹁p)∧(﹁q),p∨(﹁q)都是假命题.5.(2018·福建福州长乐一中高二(上)月考)下列各组命题中,满足“p或q”为真,且“非p”为真的是( )A.p:0=∅;q:0∈∅B.p:在△ABC中,若cos 2A=cos 2B,则A=B;q:函数y=sin x在第一象限是增函数C.p:a+b≥2ab(a,b∈R);q:不等式|x|>x的解集为(-∞,0)D.p:圆(x-1)2+(y-2)2=1的面积被直线x=1平分;q:过点M(0,1)且与圆(x-1)2+(y-2)2=1相切的直线有两条解析:选C.A中,p,q均为假命题,故“p或q”为假,排除A;B中,由在△ABC中,cos 2A=cos 2B,得1-2sin2A=1-2sin2B,即(sin A+sin B)(sin A-sin B)=0,所以A-B=0,故p为真,从而“非p”为假,排除B;C中,p为假,从而“非p”为真,q 为真,从而“p或q”为真;D中,p为真,故“非p”为假,排除D.故选C.6.已知命题(﹁p)∨(﹁q)是假命题,则下列结论中:①命题p∧q是真命题;②命题p∧q是假命题;③命题p∨q是真命题;④命题p∨q是假命题.正确的是________(只填序号).解析:由(﹁p)∨(﹁q)是假命题,知﹁p与﹁q均为假命题,所以p,q均为真命题.故p∧q是真命题,p∨q是真命题.答案:①③7.已知命题p:{2}∈{1,2,3},q:{2}⊆{1,2,3},则下列结论:①p或q为真;②p或q为假;③p且q为真;④p且q为假;⑤非p为真;⑥非q为假.其中所有正确结论的序号是________.解析:因为p:{2}∈{1,2,3},q:{2}⊆{1,2,3},所以p假q真,故①④⑤⑥正确.答案:①④⑤⑥8.已知p:x2-x≥6,q:x∈Z.若“p∧q”“﹁q”都是假命题,则x的值组成的集合为________.解析:因为“p∧q”为假,“﹁q”为假,所以q为真,p为假.故⎩⎪⎨⎪⎧x 2-x <6,x ∈Z ,即⎩⎪⎨⎪⎧-2<x <3,x ∈Z . 因此,x 的值可以是-1,0,1,2. 答案:{-1,0,1,2}9.写出由下列命题构成的“p ∧q ”“p ∨q ”“﹁p ”形式的命题,并判断其真假. (1)p :集合中的元素是确定的,q :集合中的元素是无序的; (2)p :梯形有一组对边平行,q :梯形有一组对边相等. 解:(1)p ∧q :集合中的元素是确定的且是无序的,真命题.p ∨q :集合中的元素是确定的或是无序的,真命题.﹁p :集合中的元素不是确定的,假命题.(2)p ∧q :梯形有一组对边平行且有一组对边相等,假命题.p ∨q :梯形有一组对边平行或有一组对边相等,真命题.﹁p :梯形没有一组对边平行,假命题.10.已知命题p :1∈{x |x 2<a },命题q :2∈{x |x 2<a }. (1)若“p 或q ”为真命题,求实数a 的取值范围; (2)若“p 且q ”为真命题,求实数a 的取值范围. 解:若p 为真命题,则1∈{x |x 2<a }, 故12<a ,即a >1;若q 为真命题,则2∈{x |x 2<a }, 故22<a ,即a >4.(1)若“p 或q ”为真命题,则a >1或a >4,即a >1. 故实数a 的取值范围是(1,+∞).(2)若“p 且q ”为真命题,则a >1且a >4,即a >4. 故实数a 的取值范围是(4,+∞).[B 能力提升]11.已知命题p :函数y =2|x -1|的图象关于直线x =1对称;q :函数y =x +1x在(0,+∞)上是增函数.由它们组成的新命题“p 且q ”“p 或q ”“﹁p ”中,真命题有( )A .0个B .1个C .2个D .3个解析:选B .易知命题p 是真命题,y =x +1x在(0,1)上递减,在(1,+∞)上递增,故q 是假命题.因此“p 且q ”假,“p 或q ”真,“﹁p ”假,故选B .12.已知命题p :y =a x(a >0,且a ≠1)是增函数;命题q :对任意的x ∈[2,4],都有a ≤x 成立,若命题p ∧q 为真命题,则实数a 的取值范围是________.解析:当p 真时,a >1,当q 真时,a ≤2.又因为p ∧q 为真时,p ,q 都为真, 所以实数a 的取值范围是1<a ≤2. 答案:(1,2]13.设命题p :a ∈{y |y =-x 2+2x +8,x ∈R },命题q :关于x 的方程x 2+x -a =0有实根.(1)若p 为真命题,求a 的取值范围;(2)若“p ∧q ”为假命题,且“p ∨q ”为真命题,求a 的取值范围. 解:(1)由题意得,y =-x 2+2x +8=-(x -1)2+9∈[0,3],故p 为真命题时,a 的取值范围为[0,3].(2)当q 为真命题时a 的取值范围为a ≥-14,由题意得,p 与q 一真一假,从而当p 真q 假时有⎩⎪⎨⎪⎧0≤a ≤3,a <-14,a 无解; 当p 假q 真时有⎩⎪⎨⎪⎧a <0或a >3,a ≥-14, 所以a >3或-14≤a <0.所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫-14,0∪(3,+∞). 14.(选做题)设p :函数f (x )=⎝ ⎛⎭⎪⎫a -32x是R 上的减函数.q :函数g (x )=x 2-4x +3在[0,a ]上的值域为[-1,3],若“p ∧q ”为假命题,“p ∨q ”为真命题,求a 的取值范围.解:由0<a -32<1得32<a <52.因为g (x )=(x -2)2-1在[0,a ]上的值域为[-1,3], 所以2≤a ≤4.因为“p ∧q ”为假,“p ∨q ”为真, 所以p ,q 为一真一假.若p 真q 假,得32<a <2;若p 假q 真,得52≤a ≤4.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫32,2∪⎣⎢⎡⎦⎥⎤52,4.。
苏教版高中数学必修三-第一章-算法初步1.1ppt课件

【解析】
算法是解决某类问题而设计的一系列可操作
或可计算的步骤,通过这些可有效地解决问题,显然四个语 句中,①②④都是算法,③不是算法.
【答案】 3
算法的设计(直接应用数学公式的算法)
设计一个算法,求底面边长为 4 2,侧棱长为 5 的正四棱锥的体积.
【思路探究】 由底边长可求底面积.由底面边长及侧
算法的含义
下列叙述能称为算法的个数是________. ①植树需要运苗、挖坑、栽苗、浇水这些步骤; ②顺序进行下列运算:1 +1=2,2+1=3,3+1 =4 ,„, 99+1=100; ③3x>x+1; ④求所有能被 3 整除的正数,即 3,6,9,12„.
【思路探究】 根据算法的特征逐一作出判断.
引导学生回顾解一般的二元一次方程组的步骤,分析解 题过程的结构,写出求一般的二元一次方程组的解的算法, 并把它编成程序,让学生输入数据,体验计算机直接给出方 程组的解. 目的是让学生明白算法是用来解决某一类问题的, 从而提高学生对算法的普遍适用性的认识,从而强化重点.
●教学建议 算法这部分的应用性很强,与日常生活联系紧密,虽然 是新引入的章节,但很容易激发学生的学习兴趣.建议教师 通过多媒体辅助教学,采用“问题探究式”教学法,以多媒 体为辅助手段,让学生主动发现问题、分析问题、解决问题, 培养学生的探究论证、逻辑思维能力.
法二 S1 S2
计算判别式 Δ=(-2)2-4×1×(-3);
将 a = 1 , b = - 2 , c =- 3 代入 求根公 式 x =
-b± b2-4ac ,得 x1=3,x2=-1. 2a
1.对于这类解方程(或方程组)的问题,设计其算法时, 一般按照数学上解方程(或方程组)的方法进行设计. 2.设计时要注意全面考虑方程(或方程组)的解的情况, 即先确定方程(或方程组)是否有解, 有解时, 还需确定几个解, 然后按照求解的步骤设计.
人教版高中数学必修三第一章-算法初步第一节《算法的概念》教学课件3(共21张PPT)

一人带着一只狼、一只羊和一箱蔬菜要过河,但只 有一条小船.乘船时,每次只能带狼、羊和蔬菜中的一 种.当有人在场时,狼、羊、蔬菜都相安无事.一旦人 不在,狼会吃羊,羊会吃菜.请设计一个方案,安全地将狼、 羊和蔬菜带过河.
过河游戏
如何发电子邮件?
假如你的朋友不会发电子邮件,你能教会他么? 发邮件的方法很多,下面就是其中一种的操作步骤:
第四步, 用5除35,得到余数0.因为余数为0, 所以5能整除35.因此,35不是质数.
变式: “判断53是否质数”的算法如下:
第1步,用2除53得余数为1,余数不为0,所以2不能整除53;
第2步,用3除53得余数为2,余数不为0,所以3不能整除53;
……
第52步,用52除53得余数为1,余数不为0,故52不能整除53;
第二步, 给定区间[a,b],满足f(a) ·f(b)<0.
第三步,
取中间点
m
a
2
b.
第四步, 若f(a) ·f(m) < 0,则含零点的区间为
[a,m];否则,含零点的区间b].
第五步,判断f(m)是否等于0或者[a,b]的长 度是否小于d,若是,则m是方程的近似解;否 则,返回第三步.
|a-b| 1
0.5 0.25 0.125 0.062 5 0.031 25 0.015 625 0.007 812 5 0.003 906 25
y=x2-2
1 1.25 1.5
1.375
2
于是,开区间(1.4140625,1.41796875)中 的实数都是当精确度为0.005时的原方程的近 似解.
判断“整数n(n>2)是否是质数”的算法 自然语言描述
第一步 给定大于2的整数n. 第二步 令i=2. 第三步 用i除n,得到余数r. 第四步 判断“r=0”是否成立.若是,则n不是质
2018-2019学年高中数学第一章常用逻辑用语1.3简单的逻辑联结词第2课时“非”课件新人教A版选修2-1

假 ______ 假 ______ 真 ______ 真 ______
含“且”“或”命题的否定
(¬ p)∨(¬ ) ”,“p 3.根据“且”、“或”的含义,“p∧q”的否定为“________ __q ___
(¬ p)∧ (¬ q) ______”. ∨q”的否定为“______ __ ________
[规范解答] 命题的否定为:(1)若x,y都是奇数,则x+y 不是偶数.为假命题. (2)若xy=0,则x≠0或y≠0.为假命题. (3)若一个数是质数,则这个数不一定是奇数.为真命 题. 否命题为:(1)若x,y不都是奇数,则x+y不是偶数.为假 命题. (2)若xy≠0,则x≠0且y≠0.为真命题. (3)若一个数不是质数,则这个数不一定是奇数.为真命 题.
3.已知命题p:若x>y,则-x<-y;命题q:若x>y,则 x2>y2.在命题①p∧q;②p∨q;③p∧(¬ q);④(¬ p)∨q中,真 C 命题是 ( ) A.①③ B.①④ C.②③ D.②④ [解析] 当x>y时,两边乘以-1可得-x<-y,所以命题p 为真命题,当x=1,y=-2时,因为x2<y2,所以命题q为假命 题,所以②③为真命题,故选C.
命题方向3 ⇨命题的否定与否命题
典例 3
写出下列各命题的否定及否命题,并判断它们
的真假. (1)若x,y都是奇数,则x+y是偶数; (2)若xy=0,则x=0或y=0; (3)若一个数是质数,则这个数一定是奇数. [思路分析] 若原命题为“若A,则B”,则其否定为“若 A,则¬ B”,条件不变,否定结论;其否命题为“若¬ A,则 ¬ B”,即要否定条件,又要否定结论.
π π 1.已知命题 p:若 α=2,则 sin α=1;命题 q:若 sin α=1,则 α=2.下面四 个结论中正确的是 A.p∧q 是真命题 C.¬ p 是真命题 B.p∨q 是真命题 D.¬ q 是假命题 ( B )
高中数学必修三《程序框图与算法的基本逻辑结构》课件

第四步,输出S.
S
p
abc 2
p(p a)(p b)(p c)
上述算法的程序框图如何表示?
输出S 结束
教材5页练习
1、任意给定一个正实数,设计一个算法求以这个数为半
径的圆的面积.
开始
第一步: 给定一个正实数r; 第二步: 计算以r为半径的
输入r
圆的面积S=πr2;
S r2
第三步: 得到圆的面积S.
输入x0,y0,A,B,C
d | Ax0 By0 C | A2 B2
输出d
结束
算法的条件结构:
在某些问题的算法中,有些步骤只有在一定条件下才会被执 行,算法的流程因条件是否成立而变化.在算法的程序框图中,由 若干个在一定条件下才会被执行的步骤组成的逻辑结构,称为条 件结构,用程序框图可以表示为下面两种形式:
---用程序框、流程线及文 字说明来表示算法的图形.
在上述程序框图中, 有4种程序框,2种流程 线,它们分别有何特定的名 称和功能?
开始
输入n
i=2
求n除以i的余数r i的值增加1,仍用i表示
i>n-1或r=0?
是
r=0? 是
输出“n 不是质数”
否
否
输出“n 是质数”
结束
图形符号
名称
功能
终端框
表示一个算法的起始和结束
2a 2a 否则,输出“方程没有实数根”,结束算法。
第四步:判断 0是否成立。若是,则输出x1 x2 p; 否则,计算x1 p q, x2 p q,并输出x1, x2
输出p
开始
输入a,b,c
b2 4ac
0?
是 p b
2a
q 2a
高中数学必修三:1.3统计图表 课件(共37张PPT)

一、制作统计图表
例1某地农村某户农民年收入如下(单位:元) 土地收入 打工收入 养殖收入 其他收入 4320 3600 2350 850 请用不同的统计图来表示上面的数据。 解:
5000 4000 3000 2000 1000 0 土地收入 打工收入 养殖收入 其他收入
项目
7
收入(元)
折线统计图
60 50 40 30 20 10 150以下 150~160 160~170 (C) 不低于170 身高(cm)
19
百分数/(%)
例2
下面是关于某个总体包含的所有学生的身高分布
的几种表述,其中哪一种表述反映的总体信息较多?
百分数/(%) 60 50 40 30 20 10 160以下 (A) 百分数/(%) 60 50 40 30 20 10 150以下 150~160 160~170 (C) 不低于170 身高(cm) 不低于160 身高(cm) 60 50 40 30 20 10 150以下 150~160 (B) 不低于160 身高(cm) 百分数/(%)
折线统计图:
用一定单位长度表示一定的数量,并根 据数量的多少描出各点,然后把各点用线 段顺次连接起来,形成折线,用折线的升 降来表示数量之间的关系及变化趋势,这 样的统计图叫作折线统计图。 特点:折线统计图能够清晰的反映数据的 变化趋势或情况。
8
制作折线统计图的步骤:
1、根据图纸大小,画出两条互相垂直的射线。
12
例1 我们对50人的智商情况进行了调查,如果按照区 间[80,85),[85,90),…,[115,120)进行分组,得到的分布情 况如图
13
例1 我们对50人的智商情况进行了调查,如果按照区 间[80,85),[85,90),…,[115,120)进行分组,得到的分布情)有多少人的智商在90~105之间
苏教版高中数学必修三-第一章-算法初步1.2.1ppt课件

已知一个三角形的三边长分别为 2,3,4.利用海伦公式设 计一个算法,求出该三角形的面积,并画出流程图.(海伦公 式:已知三角形的三边长分别为 a,b,c,则三角形的面积 S a+b+c = pp-ap-bp-c,其中 p= 2 )
【解】
先将三角形的各边长赋值,求出三角形周长的
一半,然后利用公式求解. 算法如下: S1 a←2,b←3,c←4;
组成的,其中图框
表示各种操作的类型, 图框中的 文字 和 符号 表示操作的内 容, 流程线 表示操作的先后次序.
2.常见的图框、流程线及功能
图形符号
功能 表示算法的 开始或 结束 ,一般画 起止框 成 圆角矩形 输入、输出 输入、 表示 操作,一般画成 平行四边形 输出框 或 计算 ,一般画成 矩形 处理框 表示 赋值 根据条件决定执行两条路径中 判断框 某一条 菱形 ,一般画成 表示 执行步骤 流程线 箭头线 表示 的
在老师的引导下,充分发挥学生的主观能动性,从问题 入手,通过分析问题、交流方案、解决问题、运用问题的探 索过程,让学生全程参与到问题的探索中而突破难点. 通过学生对常见的图框及功能的理解和认识,结合典型 例题及变式训练,使学生初步掌握顺序结构的流程图的设计 而强化了重点.
●教学流程
演示结束
§1.2 流程图 1.2.1 顺序结构
教师用书独具演示
●三维目标 1.知识与技能:掌握顺序结构的特点,设计方法. 2.过程与方法:学会用算法分析问题;能够使用顺序结 构编写简单的程序解决具体问题.
3.情感态度与价值观:体会用结构化方法解决数学问题 的便捷性;明确结构化在程序设计中的重要作用;激励尝试 使用多种方法解决问题;培养良好的编程习惯和态度. ●重点难点 重点:各种图框的功能,会用算法图框表示顺序结构. 难点:对顺序结构的概念的理解;利用图框表示流程线 顺序结构.