【高中数学专项突破】专题20 幂函数(含答案)

合集下载

高三数学幂函数试题答案及解析

高三数学幂函数试题答案及解析

高三数学幂函数试题答案及解析1.若,则满足的取值范围是 .【答案】【解析】根据幂函数的性质,由于,所以当时,当时,,因此的解集为.【考点】幂函数的性质.2.已知函数f(x)=,则不等式f(a2-4)>f(3a)的解集为________.【答案】(-1,4)【解析】作出函数f(x)的图象,如图所示,则函数f(x)在R上是单调递减的.由f(a2-4)>f(3a),可得a2-4<3a,整理得a2-3a-4<0,即(a+1)(a-4)<0,解得-1<a<4.所以不等式的解集为(-1,4).3.已知幂函数f(x)的图像经过点(9,3),则f(2)-f(1)=()A.3B.1-C.-1D.1【答案】C【解析】设幂函数为f(x)=xα,由f(9)=9α=3,即32α=3,可得2α=1,α=.所以f(x)==,故f(2)-f(1)=-1.4.幂函数的图像经过点,则的值为 .【答案】2【解析】本题要求出幂函数的表达式,才能求出函数值,形如的函数叫幂函数,故,,因此.【考点】幂函数的定义.5.函数是幂函数,且在x ∈(0,+∞)上为增函数,则实数m的值是()A.-1B.2C.3D.-1或2【答案】B【解析】由幂函数定义可知:,解得或,又函数在x ∈(0,+∞)上为增函数,故.选B.【考点】幂函数6.函数由确定,则方程的实数解有( )A.0个B.1个C.2个D.3个【答案】D【解析】因为,所以.方程为:,化简得,其根有3个,且1不是方程的根.【考点】幂的运算,分式方程的求解.7.已知幂函数的部分对应值如图表:则不等式的解集是【答案】【解析】将()代入得,,所以,,其定义域为,为增函数,所以可化为,解得,故答案为。

【考点】本题主要考查幂函数的解析式,抽象不等式解法。

点评:简单题,抽象不等式解法,一般地是认清函数的奇偶性、单调性,转化成具体不等式求解。

8.当x∈(0,+∞)时,幂函数y=(m2-m-1)为减函数, 则实数m的值为( )A.m=2B.m=-1C.m=-1或m=2D.m≠【答案】A【解析】因为此函数为幂函数,所以,当m=2时,它在(0,+∞)是减函数,当m=-1时,它在(0,+∞)是增函数.9.如图,下图为幂函数y=x n在第一象限的图像,则、、、的大小关系为.【答案】<<<【解析】观察图形可知,>0,>0,且>1,而0<<1,<0,<0,且<.10.幂函数的图像经过点,则的值为。

高三数学幂函数试题答案及解析

高三数学幂函数试题答案及解析

高三数学幂函数试题答案及解析1.图中曲线是幂函数y=x n在第一象限的图象,已知n取±2,±四个值,则对应于曲线C1,C2,C3,C4的n值依次为()A.-2,-,,2B.2,,-,-2C.-,-2,2,D.2,,-2,-【答案】B【解析】当n大于0时,幂函数为单调递增函数,当n小于0时,幂函数为单调递减函数,并且在x=1的右侧幂指数n自下而上依次增大,故选B.2.已知f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则y=f(x)的值域为______.【答案】[1,]【解析】∵f(x)=ax2+bx+3a+b是偶函数,∴其定义域[a-1,2a]关于原点对称,∴即a-1=-2a,∴a=,∵f(x)=ax2+bx+3a+b是偶函数,即f(-x)=f(x),∴b=0,∴f(x)=x2+1,x∈[-,],其值域为{y|1≤y≤}.3.已知函数f(x)=,则不等式f(a2-4)>f(3a)的解集为________.【答案】(-1,4)【解析】作出函数f(x)的图象,如图所示,则函数f(x)在R上是单调递减的.由f(a2-4)>f(3a),可得a2-4<3a,整理得a2-3a-4<0,即(a+1)(a-4)<0,解得-1<a<4.所以不等式的解集为(-1,4).4.已知函数f(x)=x2-2ax+5在(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,则实数a的取值范围为______.【答案】[2,3]【解析】函数f(x)=(x-a)2+5-a2在(-∞,2]上是减函数,∴a≥2,函数f(x)在[1,a]上是减函数,在[a,a+1]上是增函数,要使x1,x2∈[1,a+1]时,总有|f(x1)-f(x2)|≤4,只要又f(1)≥f(a+1),∴只要f(1)-f(a)≤4,即(6-2a)-(5-a2)≤4,解得-1≤a≤3.又a≥2,故2≤a≤3.5.若幂函数y=f(x)的图象经过点,则f(25)=________.【答案】【解析】设f(x)=xα,则=9α,∴α=-,即f(x)=x-,f(25)=6.若直线与幂函数的图象相切于点,则直线的方程为 .【答案】【解析】由已知,在幂函数的图象上,即,,.由导数的几何意义,切线的斜率为,所以,由直线方程的点斜式得直线的方程为.【考点】幂函数,导数的几何意义.7.(本小题满分12分)已知幂函数为偶函数,且在区间上是单调增函数.⑴求函数的解析式;⑵设函数,若的两个实根分别在区间内,求实数的取值范围.【答案】(1)(2) .【解析】(1)由幂函数,在区间上是增函数,可得a>0,又因为是偶函数。

高中数学幂函数的定义练习及答案

高中数学幂函数的定义练习及答案

高中数学幂函数的定义练习及答案题型一:幂函数的定义【例1】 下列所给出的函数中,是幂函数的是( )A .3x y -=B .3-=x yC .32x y =D .13-=x y【考点】幂函数的定义 【难度】1星【题型】选择【关键词】无【解析】 形如(01)x y a a a =>≠且的函数叫做幂函数,答案为B .【答案】B【例2】 11.函数的定义域是 .【考点】幂函数的定义 【难度】1星【题型】填空【关键词】无 【解析】【答案】【例3】 如果幂函数()f x x α=的图象经过点,则(4)f 的值等于( ). A. 16 B. 2 C. 116 D. 12【考点】幂函数的定义 【难度】1星 【题型】选择 【关键词】无 【解析】 【答案】D【例4】 幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 .【考点】幂函数的定义 【难度】1星 【题型】填空 【关键词】无 【解析】典例分析【例5】 下列幂函数中过点(0,0),(1,1)的偶函数是( ).A.12y x = B. 4y x = C. 2y x -= D.13y x =【考点】幂函数的定义 【难度】1星【题型】选择【关键词】无 【解析】 【答案】B【例6】 下列命题中正确的是( )A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限【考点】幂函数的定义 【难度】2星 【题型】选择【关键词】无【解析】 A 错,当0α=时函数y x α=的图象是一条直线(去掉点(0,1));B 错,如幂函数1y x -=的图象不过点(0,0);C 错,如幂函数1y x -=在定义域上不是增函数;D 正确,当0x >时,0x α>.【答案】D【例7】 函数2221(1)mm y m m x --=--是幂函数,求m 的值.【考点】幂函数的定义 【难度】2星 【题型】解答【关键词】无 【解析】 幂函数需要保证系数为1,同时指数为有理数,从此两个条件入手,可以得到关于m 的等式和不等式,从而解出m 的值. ∵2221(1)mm y m m x --=--是幂函数,∴函数可以写成如下形式a y x =(a 是有理数) ∴211m m --=,解得121,2m m =-= 当11m =-时,211212m m Q --=∈22m =时,222211m m Q --=-∈∴m 的值域为-1或2.【点评】本题为幂函数的基本题目,注意不要忘了检验a 是有理数. 【答案】-1或2【例8】 求函数1302(3)y x x x -=+--的定义域.【考点】幂函数的定义 【难度】2星 【题型】解答 【关键词】无 【解析】 这是几个幂函数的复合函数,求复合函数的定义域需要保证每一个函数都有意义,即分母不为0、被开方数大于等于0.使函数有意义,则x 必须满足0030x x x ≥⎧⎪≠⎨⎪-≠⎩,解得:0x >且3x ≠即函数的定义域为{|0,3}x x x >≠且.【答案】{|0,3}x x x >≠且【例9】 函数1224(42)(1)y mx x m m mx -=++++-+的定义域是全体实数,则实数m 的取值范围是( ).A.12),B.1)+,∞ C.(22)-,D.(11--+ 【考点】幂函数的定义【难度】2星【题型】选择【关键词】无【解析】 要使函数1224(42)(1)y mx x m m mx -=++++-+的定义域是全体实数,可转化为2420mx x m +++>对一切实数都成立,即0m >且244(2)0m m ∆=-+<.解得1m >.故选(B) 【答案】B【例10】 讨论幂函数a y x =(a 为有理数)的定义域. 【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 (1)若*a N ∈,则x ∈R ,这是函数的定义域为R .(2)若a ∈{负整数} {0}U ,则(,0)(0,)x ∈-∞+∞U ,这时函数的定义域是(,0)(0,)-∞+∞U (3)若na m=*(,,,)m n N m n ∈且互质,则: ①m 是偶数,x R -∈,这是函数的定义域是R -; ②m 是奇数,x R ∈,这时函数的定义域为R(4)若na m=-*(,,,)m n N m n ∈且互质,则:①m 是偶数,x R +∈,这是函数的定义域是R +;②m 是奇数,(,0)(0,)x ∈-∞⋃+∞,这时函数的定义域是(,0)(0,)-∞⋃+∞.【答案】(1)若*a N ∈,则x ∈R ,这是函数的定义域为R .(2)若a ∈{负整数} {0}U ,则(,0)(0,)x ∈-∞+∞U ,这时函数的定义域是(,0)(0,)-∞+∞U(3)若na m=*(,,,)m n N m n ∈且互质,则: ①m 是偶数,x R -∈,这是函数的定义域是R -; ②m 是奇数,x R ∈,这时函数的定义域为R(4)若na m=-*(,,,)m n N m n ∈且互质,则:①m 是偶数,x R +∈,这是函数的定义域是R +;②m 是奇数,(,0)(0,)x ∈-∞⋃+∞,这时函数的定义域是(,0)(0,)-∞⋃+∞.【例11】 已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.【考点】幂函数的定义 【难度】2星 【题型】解答【关键词】无【解析】 ∵ 幂函数图象与x 、y 轴都没有公共点,∴ 6020m m -<⎧⎨-<⎩,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =.【答案】4m =【例12】 幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 ∵ ()f x 是幂函数, ∴ 311t t -+=,解得1,10t =-或.当0t =时,75()f x x =是奇函数,不合题意;当1t =-时;25()f x x =是偶函数,在(0,)+∞上为增函数; 当1t =时;85()f x x =是偶函数,在(0,)+∞上为增函数. 所以,25()f x x =或85()f x x =.【答案】25()f x x =或85()f x x =.【例13】 已知幂函数223()()mm f x x m Z --=∈ 的图形与x 轴对称,y 轴无交点,且关于y 轴对称,试确定的解析式.【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 由()22230232m m m m n n N m Z ⎧--≤⎪--∈∈⎨⎪∈⎩得113m =-,, 1m =-和3时解析式为()0f x x =,1m =是解析式为()4f x x -=【答案】()4f x x -=题型二:幂函数的性质与应用【例14】 下列函数在区间(0,3)上是增函数的是( ).A. 1y x =B. 12y x = C. 1()3x y = D. 2215y x x =--【考点】幂函数的性质与应用 【难度】1星 【题型】选择【关键词】无 【解析】 【答案】B【例15】 下列函数中既是偶函数又是(,0)-∞上是增函数的是( )A .43y x = B .32y x = C .2y x -= D .14y x-=【考点】幂函数的性质与应用 【难度】1星 【题型】选择 【关键词】无 【解析】 A 、D 中的函数为偶函数,但A 中函数在(,0)-∞为减函数.【答案】C【例16】 942--=a ax y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .【考点】幂函数的性质与应用 【难度】1星【题型】填空【关键词】无 【解析】【答案】5;【例17】 比较下列各组中两个值大小(1)6110.6与6110.7(2)5533(0.88)(0.89).--与【考点】幂函数的性质与应用 【难度】1星 【题型】解答【关键词】无【解析】 (1)∵函数611y x =在(0,)+∞上是增函数且00.60.7<<<+∞∴6611110.60.7<(2)函数53y x =在(0,)+∞上增函数且89.088.00<< ∵55330.880.89<∴55330.880.89->-,即5533(0.88)(0.89).-<-【答案】(1)6611110.60.7<(2)5533(0.88)(0.89).-<-【例18】 幂函数(1)knmy x-=(,,*,,m n k N m n ∈互质)图象在一、二象限,不过原点,则n m k ,,的奇偶性为 .【考点】幂函数的性质与应用 【难度】2星 【题型】填空【关键词】无 【解析】【答案】k m ,为奇数,n 是偶数;【例19】 求证:函数3x y =在R 上为奇函数且为增函数. 【考点】幂函数的性质与应用 【难度】2星【题型】解答【关键词】无 【解析】【答案】显然)()()(33x f x x x f -=-=-=-,奇函数;令21x x <,则))(()()(22212121323121x x x x x x x x x f x f ++-=-=-, 其中,显然021<-x x ,222121x x x x ++=2222143)21(x x x ++,由于0)21(221≥+x x ,04322≥x ,且不能同时为0,否则021==x x ,故043)21(22221>++x x x .从而0)()(21<-x f x f . 所以该函数为增函数.【例20】 设120.7a =,120.8b =,c 3log 0.7=,则( ).A. c <b <aB. c <a <bC. a <b <cD. b <a <c 【考点】幂函数的性质与应用 【难度】2星 【题型】选择 【关键词】无 【解析】 【答案】B【例21】 比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.【考点】幂函数的性质与应用 【难度】2星 【题型】填空【关键词】无 【解析】【答案】>,≤, <,【例22】 (1)若0a <,比较12,(),0.22aa a 的大小;(2)若10a -<<,比较1333,,a a a 的大小.【考点】幂函数的性质与应用 【难度】2星 【题型】解答 【关键词】无 【解析】 (1)当0a <时,幂函数a y x =在(0,)+∞上单调减,∵10.222<<,∴12()0.22a a a <<. (2)当10a -<<时,13330,0,0aa a ><<, 指数函数()x y a =-在(0,)+∞上单调减,∵133>,∴1330()()a a <-<-,∴ 1330a a >>, ∴ 1333a a a >>【答案】(1)12()0.22aa a <<(2)1333a a a >>【例23】 函数2-=x y 在区间]2,21[上的最大值是( )A .41 B .1- C .4D .4-【考点】幂函数的性质与应用 【难度】1星 【题型】选择 【关键词】无【解析】 函数2y x -=在区间1[,2]2上单调减,当12x =时,max 4y =.【答案】C【例24】 函数2422-+=x x y 的单调递减区间是【考点】幂函数的性质与应用 【难度】2星【题型】填空【关键词】无【解析】 由22240x x +-≥得:46x x ≥≤-或,∵ 函数12y t =在[0,)+∞上为增函数,函数2224t x x =+-在(,6]-∞上为减函数,故所给函数的单调减区间为(,6]-∞-.【答案】(,6]-∞-【例25】 函数R x x x y ∈=|,|,满足( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数【考点】幂函数的性质与应用 【难度】2星【题型】选择【关键词】无 【解析】【答案】C【例26】 已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 【考点】幂函数的性质与应用 【难度】2星【题型】解答【关键词】无【解析】 设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【答案】R 上单调递增【例27】 对于幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( ) A .)2(21x x f +>2)()(21x f x f + B . )2(21x x f +<2)()(21x f x f + C . )2(21x x f +=2)()(21x f x f + D . 无法确定 【考点】幂函数的性质与应用【难度】2星【题型】选择【关键词】无 【解析】【答案】A【例28】 已知0<a <1,试比较()(),,aa a a a a a a 的大小.【考点】幂函数的性质与应用 【难度】2星 【题型】解答 【关键词】无 【解析】 本题考查的是幂函数的单调性知识,这里三个表达式的底数和幂都分别不同,所以需要转化看待,将它们化成同类幂函数进行比较.为比较a a 与()a a a 的大小,将它们看成指数相同的两个幂,由于幂函数()()01a f x x a =<<在区间[0,]+∞上是增函数,因此只须比较底数a 与a a 的大小,由于指数函数x y a = (0<a <1)为减函数,且1>a ,所以a a a <,从而()a a a a a <.比较a a 与()aa a 的大小,也可以将它们看成底数相同(都是a α)的两个幂,于是可以利用指数函数 (),01x a yb b a a ==<<是减函数,由于1>a ,得到a a a <.由于a a a <,函数x y a = (0<a <1)是减函数,因此()aa a a a >.综上,()()aa a a a a a a >>【点评】解答本题的关键都在于适当地选取一个函数,函数选得恰当,问题可以顺利地获得解决..【答案】()()aa a a a a a a >>【例29】 已知1133(1)(32)a a --+<-,求a 的取值范围.【考点】幂函数的性质与应用 【难度】2星 【题型】解答【关键词】无【解析】 13()f x x -=在(,0)-∞、(0,)+∞上是减函数,对于不同的a +1和3-2a 进行讨论,将它们等价转化到同一个单调区间..∵13(1)a -+和13(32)a --是幂函数13()f x x -=的两个函数值, 且13()f x x -=在(,0)-∞、(0,)+∞上是减函数当10,320a a +>->时,有1320a a +>->,解得2332a <<; 当10,320a a +<-<时,有3210a a -<+<,此时无解当(1)(32)0a a +-<时,有10a +<且320a ->,解得1a <-综上可知a的取值范围为23 (,1)(,)32 -∞-⋃.【答案】23(,1)(,)32-∞-⋃.【例30】若11(1)(32)m m--+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】(分类讨论):(1)10320132mmm m+>⎧⎪->⎨⎪+>-⎩,,,解得2332dm<<;(2)10320132mmm m+<⎧⎪-<⎨⎪+>-⎩,,,此时无解;(3)10320mm+<⎧⎨->⎩,,,解得1m<-.综上可得23(1)32m⎛⎫∈-- ⎪⎝⎭U,,∞.【答案】23(1)32m⎛⎫∈-- ⎪⎝⎭U,,∞【例31】若33(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】(利用单调性):由于函数3y x=在()-+,∞∞上单调递增,所以132m m+<-,解得23m<.【答案】23m<【例32】若1122(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】由图3,10320321mmm m+⎧⎪->⎨⎪->+⎩,,,,解得213m-<≤.【答案】213m-<≤【例33】若44(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】作出幂函数4y x=的图象如图4.由图象知此函数在(0)(0)-+U,,∞∞上不具有单调性,若分类讨论步骤较繁,把问题转化到一个单调区间上是关键.考虑4α=时,44x x=.于是有44(1)(32)m m+<-,即44132m m+<-..又∵幂函数4y x=在(0)+,∞上单调递增,∴132m m+<-,解得23m<,或m>4.【答案】23m<,或m>4【例34】已知函数2()f x x=,设函数()[()](21)()1g x qf f x q f x=-+-+,问是否存在实数(0)q q<,使得()g x在区间(]4--,∞是减函数,且在区间(40)-,上是增函数?若存在,请求出来;若不存在,请说明理由.【考点】幂函数的性质与应用【难度】3星【题型】解答【关键词】无【解析】∵2()f x x=,则42()(21)1g x qx q x=-+-+.假设存在实数(0)q q<,使得()g x满足题设条件,设12x x<,则4242121122()()(21)(21)g x g x qx q x qx q x-=-+-+--22122112()()[()(21)]x x x x q x x q =+-+--.若(]124x x ∈--,,∞,易知120x x +<,210x x ->,要使()g x 在(]4--,∞上是减函数,则应有2212()(21)0q x x q +--<恒成立.∵14x <-,24x -≤,∴221232x x +>.而0q <, ∴2212()32q x x q +<.. 从而要使2212()21q x x q +<-恒成立,则有2132q q -≥,即130q -≤. 若12(40)x x ∈-,,,易知1221()()0x x x x +-<,要使()f x 在(40)-,上是增函数,则应有2212()(21)0q x x q +-->恒成立.∵140x -<<,240x -<<,∴221232x x +<,而0q <,∴2212()32q x x q +>. 要使2212()21q x x q +>-恒成立,则必有2132q q -≤,即130q -≥. 综上可知,存在实数130q =-,使得()g x 在(]4-∞-,上是减函数,且在(40)-,上是增函数.【答案】存在,130q =-【例35】 由于对某种商品开始收税,使其定价比原定价上涨x 成(即上涨率为10x),涨价后,商品卖出个数减少bx 成,税率是新定价的a 成,这里a,b 均为正常数,且a <10,设售货款扣除税款后,剩余y 元,要使y 最大,求x 的值.【考点】幂函数的性质与应用 【难度】3星【题型】解答【关键词】无【解析】 设原定价A 元,卖出B 个,则现在定价为A (110x+), 现在卖出个数为110bx B ⎛⎫- ⎪⎝⎭,现在售货金额为111110101010x bx x bx A B AB ⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,应交税款为11101010x bx a AB ⎛⎫⎛⎫+-⋅ ⎪⎪⎝⎭⎝⎭,剩余款为21111111010101010010x bx a a b b y AB AB x x -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-⋅-=--++ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以5(1)b x b -=时y 最大 要使y 最大,x 的值为5(1)b x b-=.【答案】5(1)b x b-=题型三:幂函数的图像【例36】 函数3x y =和31x y =图象满足( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称【考点】幂函数的图像 【难度】1星【题型】选择【关键词】无 【解析】【答案】D【例37】 函数43y x =的图象是( )【考点】幂函数的图像 【难度】1星【题型】选择【关键词】无 【解析】 【答案】A【例38】 幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ).A .101n m -<<<<B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <-> 【考点】幂函数的图像 【难度】2星 【题型】选择 【关键词】无 【解析】 由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【答案】B.【例39】 【答案】如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<【考点】幂函数的图像 【难度】2星【题型】选择【关键词】无 【解析】 【答案】D【例40】 下图为幂函数y x α=在第一象限的图象,则1234,,,αααα按由小到大的顺序排列为 。

(完整版)幂函数练习题及答案

(完整版)幂函数练习题及答案

幂函数练习题及答案、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,填在题后的括号内(每小题 5 分,共50 分).B.幂函数的图象都经过(0 ,0)和(1,1 )点C .若幂函数y x 是奇函数,则y x 是定义域上的增函数D.幂函数的图象不可能出现在第四象限1 6.函数y x3和y x3图象满足请把正确答案的代号1.下列函数中既是偶函数又是( ,0)上是增函数的是4x32.函数3B.y x 221y x 2在区间[ ,2] 上的最大值是2C.D.1A.4 B.1C.D.3.下列所给出的函数中,是幂函数的是A.y x3 3B.y x C.2x3D.5.下列命题中正确的是A.当0 时函数y x的图象是一条直线yy14 4A.关于原点对称B.关于x 轴对称7. 函数 y x|x|,x R ,满足A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数28.函数 y x 2 2x 24 的单调递减区间是 ( )A . ( , 6]B .[ 6, )C .( , 1]D .[ 1, )9. 如图 1— 9所示,幂函数 y x 在第一象限的图象,比较x 1 x 2 f (x 1)f (x 2 )f(x 12x2),f(x 1)2f(x 2)大小关系是( )奇偶性为 . 三、解答题:解答应写出文字说明.证明过程或演算步骤 (共 76 分) .15 .( 12 分)比较下列各组中两个值大小6 6 5 5C .关于 y 轴对称D .关于直线 y x 对称0, 1, 2, 3 , 4 ,1的大小(A.1 34 21 B . 012 3 41C.2 4 0 31 1D.3 24 11410 . 对于幂函数 f (x) x , 若 0 x 1 x 2 ,则A . f(x 1x 2 2f (x 1) f (x 2)2 B . f(x 1x2)f (x 1) f(x 2)2C .x 1f( 1x 22f (x 1) f (x 2 )2D . 无法确定、填空题:请把答案填在题中横线上(每小题6 分,共 24 分)k n( 1)k14 .幂函数 yxm(m,n,kN*, m,n 互质 ) 图象在一、二象限,不过原点,则 k,m,n 的34(1 )0.611与0.7 11;(2)( 0.88)1与( 0.89)3 .16.(12分)已知幂函数2f(x) x m 2m 3(m Z)的图象与x轴,y轴都无交点,且关于y 轴对称,试确f (x)的解析式.117 .(12 分)求证:函数y x3在R上为奇函数且为增函数18 .(12 分)下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系3 1 21)y x2;(2)y x3;(3)y x3;14)y x 2;(5)y x 3;(6)y x 219.(14分)由于对某种商品开始收税,使其定价比原定价上涨后,商品卖出个数减少bx 成,税率是新定价的a成,这里a,b 均为正常数,且a<10 ,设售货款扣除税款后,剩余y 元,要使y 最大,求x的值.20 .(14 分)利用幂函数图象,画出下列函数的图象(写清步骤)x2 2x 22x2 2x 152)y (x 2)3 1.xx成(即上涨率为10),涨价A)(B)(C)(D )(E)(F)参考答案、CCBADDCADA二、11 .(0, );12.f (x)4x3 (x 0);13.5;14.m, k为奇数,n是偶数;三、15 .解:( 1 ) 函数y6x11在(0, )上是增函数且0 0.6 0.76 0.61160.711(2 )5函数y x3在(0, ) 上增函数且0.88 0.895 0.88350.89350.88350.893 ,即5( 0.88)350.89) 3 .16 .解:2 m 由m22m2mZ303是偶数得m 1,1,3.m 1和3时解析式为 f (x) 0 x ,m 1时解析式为f (x) x17 .解:显然 f ( x) x)3 f (x) ,奇函数;令x1 x2 ,则 f (x1) f (x2 ) 3x13x2 (x1 2x2 )(x12x1x2 x2 ) ,其中,显然x1x2 0,2x1 x1x2 x2 1= (x1 2x2)3x2422,由于且不能同时为0 ,否则x1x2 0 ,故(x11(x1 x2 )1221 2 3 2x2 ) x222420,3x22420,0.从而f(x1) f (x2) 0. 所以该函数为增函数18 .解:六个幂函数的定义域,奇偶性,单调性如下:3(1) y x2x3定义域[0,) ,既不是奇函数也不是偶函数,在[0,) 是增函数;12)y x 3 3 x 定义域为 R ,是奇函数,在 [0, )是增函数;23)y x 3 3 x 2 定义域为 R ,是偶函数,在 [0, )是增函数; 21 4)y x 2 12 定义域 R UR 是偶函数,在 (0, )是减函数;x 315)y x 3 13定义域 R UR 是奇函数,在 (0, )是减函数;x16)y x 2 1定义域为 R 既不是奇函数也不是偶 函数,在 (0, ) x 上减函数 .通过上面分析,可以得出( 1) (A ),( 2) (F ),( 3) (5 ) (D ),( 6 ) (B ) .x19.解:设原定价 A 元,卖出 B 个,则现在定价为 A (1+ 1x 0),20 .解:E ),( 4) ( C ),现在卖出个数为 B (1 - bx ),现在售货金额为 A (1+ x ) B(110 10bx )=AB(1+10x1x 0)(1bx-10),x应交税款为 AB(1+ )(110bx a-10 ) ·10 ,x剩余款为 y = AB(1+)(1 105(1 b) 时y 最大b所以 x-b 1x 0)(1 1a 0)= AB (1要使 y 最大, x 的值为a )( 10 100 5(1 b) xb 1b x 101),向上平移 x 2 2x 2x 2 2x 11 x2 2x(x1 1)21把函数 ,y12的图象向左平移x 21 个单位,再1 个单位可以得到函数2x 2 x2x 2的图象 .2x 1 5(x 2) 31的图象可以由5x 3 图象向右平移 2 个单位,再向下平移。

高二数学幂函数试题答案及解析

高二数学幂函数试题答案及解析

高二数学幂函数试题答案及解析1.如果幂函数的图象经过点,则的值等于().A.B.2C.D.16【答案】A【解析】∵幂函数的图象经过点,,解得,,故.【考点】幂函数.2.设,则使幂函数为奇函数且在上单调递增的a值的个数为( ) A.0B.1C.2D.3【答案】C【解析】因为是奇函数,所以应该为奇数,又在是单调递增的,所以则只能1,3.【考点】幂函数的性质.3.幂函数 f(x)=xα(α∈R)过点,则 f(4)= .【答案】2【解析】将点代入幂函数,得,解得,所以,那么考点:幂函数的性质4.等比数列的各项均为正数,且,则( )A.12B.10C.8D.【答案】B【解析】由于数列是等比数列,所以,又因为,所以得到..所以选B.【考点】1.等比数列的性质.2.同底对数的求和运算.3.对数的性质.5.函数的图像是()A B C D【答案】B.【解析】函数的定义域为R,奇函数,图象关于原点对称,在(0,+∞)是增函数,在(0,1)上凸且高于直线y=x,所以,选B。

【考点】幂函数的图象点评:简单题,函数与图象配伍问题,由注意定义域、值域、奇偶性(对称性)、单调性等。

6.幂函数的图像经过点,那么。

【答案】【解析】设幂函数,∵幂函数的图像经过点,∴,∴a=-2,∴【考点】本题考查了幂函数的求值点评:熟练掌握幂函数的概念是解决此类问题的关键,属基础题7.若幂函数的图象经过点,则它在点处的切线方程为A.B.C.D.【答案】B【解析】解:∵f(x)是幂函数,设f(x)=xα∴图象经过点∴=()α∴α=∴f(x)=xf'(x)=它在A点处的切线方程的斜率为f'()=1,又过点A所以在A点处的切线方程为4x-4y+1=0故选B8.已知幂函数f(x)=xα的部分对应值如下表:则不等式f(|x|)≤2的解是__________.A. -4≤x≤4. B 0≤x≤4. C 0≤x≤2 D -2≤x≤2.【答案】A【解析】解:因为幂函数f(x)=xα的对应表可知幂指数为,那么利用幂函数的性质可知不等式f(|x|)≤2的解是,即为|x|≤4,解得为选项A9.函数的图像一定经过的定点的坐标为【答案】(-3,2)【解析】10.幂函数,当取不同的正数时,在区间上它们的图像是一簇美丽的曲线,如图所示,设点,连接,线段恰好被其中两个幂函数图像三等分,即有,那么=___▲___.【答案】1【解析】解:解:BM=MN=NA,点A(1,0),B(0,1),所以M (1/ 3 ,2 /3 ) N (2/ 3 ,1/ 3 ),分别代入y=xα,y=xβα="log"1/ 3 2/ 3 ,β="log"2/ 31/ 3αβ="log"2/ 3 1/ 3 •log1/ 32/ 3 =111.已知幂函数f ( x )过点(2,),则f ( 4 )的值为【答案】【解析】解:设f(x)= ,则由过点(2,),所以12.(1)求函数(的最小值以及相应的的值;(2)用20cm长得一段铁丝折成一个面积最大的矩形,这个矩形的长、宽各为多少?并求出这个最大值.【答案】解:(1)由,得,所以当且仅当,即时等号成立,故函数(的最小值为12,相应的.(2)设矩形的长、宽分别为cm,cm,由题意得,即矩形的面积为,由均值不等式的(当且仅当时等号成立)得,所以矩形的长、宽都为5cm时,矩形的面积最大,最大为25【解析】略13.给出命题:若函数是幂函数,则函数的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是:【答案】1【解析】略14.设,则使函数的定义域为R且为奇函数的所有的值为( )A.1,3B.-1,1C.-1,3D.-1,1,3【答案】A【解析】本题考查幂函数的奇偶性.当时,,函数定义域为,,函数是奇函数;当时,函数的定义域为R,是奇函数;当时,函数,定义域为,是非奇非偶函数;当时,函数,定义域是R,是奇函数.故选A15.已知幂函数y=f(x)的图像过点(3,),则函数f(x)=__________;【答案】【解析】略16.幂函数 (m∈Z)为偶函数,且在区间(0,+∞)上是单调递减函数,则m=.【答案】 1【解析】略17.幂函数的图象经过点,则其定义域为 .【答案】【解析】略18.幂函数的图象经过点,则其定义域为 .【答案】【解析】略19.幂函数,当取不同的正数时,在区间上它们的图像是一族美丽的曲线(如图).设点,连接AB,线段AB恰好被其中的两个幂函数的图像三等分,即有那么,ab=()A.B.C.2D.1【答案】D【解析】【考点】函数与方程的综合运用;幂函数的实际应用.分析:先根据题意结合图形确定M、N的坐标,然后分别代入y=xα,y=xβ求得α,β;最后再求αβ的值即得.解:BM=MN=NA,点A(1,0),B(0,1),所以M (,)N (,),分别代入y=xα,y=xβα=,β=αβ=?=1故选D.20.已知幂函数的图像过点,则_________________;函数的定义域为_________________.【答案】3【解析】幂函数中系数,代入点得,的定义域需满足【考点】1.函数定义域;2.幂函数。

高三数学幂函数试题答案及解析

高三数学幂函数试题答案及解析

高三数学幂函数试题答案及解析1.若,则满足的取值范围是 .【答案】【解析】根据幂函数的性质,由于,所以当时,当时,,因此的解集为.【考点】幂函数的性质.2.对于函数f(x)若存在x0∈R,f(x)=x成立,则称x为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.【答案】(1)-1和3.(2)(0,1)(3)-【解析】解:(1)∵a=1,b=-2时,f(x)=x2-x-3,f(x)=x⇒x2-2x-3=0⇒x=-1,x=3,∴函数f(x)的不动点为-1和3.(2)即f(x)=ax2+(b+1)x+b-1=x有两个不等实根,转化为ax2+bx+b-1=0有两个不等实根,需有判别式大于0恒成立,即Δ=b2-4a(b-1)>0⇒Δ1=(-4a)2-4×4a<0⇒0<a<1,∴a的取值范围为(0,1).(3)设A(x1,x1),B(x2,x2),则x1+x2=-,则A,B中点M的坐标为(,),即M(-,-).∵A,B两点关于直线y=kx+对称,且A,B在直线y=x上,∴k=-1,A,B的中点M在直线y=kx+上.∴-=+⇒b=-=-,利用基本不等式可得当且仅当a=时,b的最小值为-.3.若幂函数y=f(x)的图象经过点,则f(25)=________.【答案】【解析】设f(x)=xα,则=9α,∴α=-,即f(x)=x-,f(25)=4.设α∈{-1,1,,3},则使函数y=xα的定义域为R且为奇函数的所有α值为() A.1,3B.-1,1C.-1,3D.-1,1,3【答案】A【解析】当α=-1时函数定义域为{x|x≠0}.当α=时,定义域是[0,+∞),都不符合条件.当α=1,3时,幂函数定义域为R且为奇函数.故选A.5.幂函数y=f(x)的图像经过点(4,),则f()的值为()A.1B.2C.3D.4【答案】B【解析】设幂函数,由,得.【考点】幂函数6.已知幂函数为偶函数,且在区间上是单调增函数(1)求函数的解析式;(2)设函数,其中.若函数仅在处有极值,求的取值范围.【答案】(1);(2).【解析】(1)根据函数的单调性分析出指数大于零,解不等式可得的取值范围,再利用得,然后根据幂函数为偶函数可得;(2)根据导数求极值,为使方程只有一个根,则必须恒成立,于是根据判别式可求.试题解析:(1)在区间上是单调增函数,即又 4分而时,不是偶函数,时,是偶函数,. 6分(2)显然不是方程的根.为使仅在处有极值,必须恒成立, 8分即有,解不等式,得. 11分这时,是唯一极值. . 12分【考点】1.幂函数;2.函数的单调性;3.导数公式;4.函数的极值.7.已知幂函数为偶函数,且在区间上是单调增函数(1)求函数的解析式;(2)设函数,其中.若函数仅在处有极值,求的取值范围.【答案】(1);(2).【解析】(1)根据函数的单调性分析出指数大于零,解不等式可得的取值范围,再利用得,然后根据幂函数为偶函数可得;(2)根据导数求极值,为使方程只有一个根,则必须恒成立,于是根据判别式可求.试题解析:(1)在区间上是单调增函数,即又 4分而时,不是偶函数,时,是偶函数,. 6分(2)显然不是方程的根.为使仅在处有极值,必须恒成立, 8分即有,解不等式,得. 11分这时,是唯一极值. . 12分【考点】1.幂函数;2.函数的单调性;3.导数公式;4.函数的极值.8.函数是幂函数,且在上为增函数,则实数的值是()A.B.C.D.或【答案】【解析】是幂函数或 . 又上是增函数,所以.【考点】幂函数的概念及性质.9.函数由确定,则方程的实数解有( )A.0个B.1个C.2个D.3个【答案】D【解析】因为,所以.方程为:,化简得,其根有3个,且1不是方程的根.【考点】幂的运算,分式方程的求解.10.下列对函数的性质描述正确的是()A.偶函数,先减后增B.偶函数,先增后减C.奇函数,减函数D.偶函数,减函数【答案】B【解析】是偶函数,图象关于y轴对称,而在(0,+∞)是减函数,所以,在(-∞.0)是增函数,故选B。

幂函数的图像专题含答案

幂函数的图像专题含答案

幂函数的图像专题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 幂函数f(x)=xα的图象必不经过平面直角坐标系中的第几象限( )A.一B.二C.三D.四2. 已知幂函数y=x n,y=x m,y=x p的图象如图,则()A.m>n>pB.m>p>nC.n>p>mD.p>n>m3. 函数y=|x−1|的图象是()A. B.C. D.4. 下列图象中幂函数y=x 32的大致形状的是()A. B.C. D.5. 已知幂函数y=x a,y=x b,y=x c的部分图象如下,则点(ab−b,c2−c)所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限6. 幂函数y=x a(α是常数)的图象()A.一定经过点(0, 0)B.一定经过点(1, 1)C.一定经过点(−1, 1)D.一定经过点(1, −1)7. 在直角坐标系xOy的第一象限内分别画出了函数y=x,y=√x,y=x2,y=x3,y=x−1的部分图象,则函数y=x4的图象通过的阴影区域是()A. B.C. D.8. 函数y=x 43的图象是()A. B. C. D.9. 下图为两幂函数y=xα和y=xβ的图象,其中α,β∈{−12, 12, 2, 3},则不可能的是()A. B. C. D.10. 下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系.()(1)y=x32;(2)y=x13;(3)y=x23;(4)y=x−2;(5)y=x−3;(6)y=x−12.A.(1)↔(A),(2)↔(F),(3)↔(E),(4)↔(C),(5)↔(D),(6)↔(B)B.(1)↔(B),(2)↔(E),(3)↔(C),(4)↔(D),(5)↔(A),(6)↔(F)C.(1)↔(A),(2)↔(E),(3)↔(B),(4)↔(D),(5)↔(C),(6)↔(F)D.(1)↔(B),(2)↔(F),(3)↔(A),(4)↔(C),(5)↔(D),(6)↔(E)11. 如图,曲线是幂函数y=x n在第一象限的图象,已知n取2,3,12,−1四个值,则相应于曲线C1,C2,C3,C4的n依次为________.12. 已知幂函数f(x)=(m2−5m+7)x−m−1(m∈R)为偶函数.则m=________.13. 若幂函数f(x)=xα的图象经过点(3, 81),则实数α的值为________.14. 幂函数f(x)图象过点A(2,√2),则f(4)的值为________.15. 当α∈{12, 1, 3}幂函数y=xα的图象不可能经过的是第________象限(符合条件的要全填).16. 函数f(x)=(x−1)1m+1的图象恒过定点________.17. 如果幂函数y=(m2−3m+3)x m2−m−1的图象不过原点,则m的值是________.18. 若y=x n的图象在x>1时,位于y=x的上方,则n的取值范围是________.19. 当x∈(1, +∞)时,幂函数y=xα的图象恒在直线y=x的下方,则α的取值范围________.20. 把函数y=x 12的图象上各点的横坐标扩大到原来的3倍,纵坐标也扩大到原来的3倍,所得图象的函数解析式是________.21. 画出y=x−12的函数图象.22. 画出y=x−12,y=x−13,y=x12,y=x13的图象.23. 已知幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴,y轴都无交点,且关于y轴对称.(1)确定f(x)的解析式;(2)画出f(x)的图象.24. 已知幂函数f(x)=x9−3m(m∈N∗)的图象关于原点对称,且在R上函数值随x的增大而增大.(1)求f(x)表达式;(2)求满足f(a+1)+f(2a−3)<0的a的取值范围.25. 已知幂函数y=f(x)的图象经过点(8,m)和(9,3).(1)求实数m的值;(2)若函数g(x)=logaf(x) (a>0,a≠1)在区间[16,36]上的最大值比最小值大1,求实数a的值.26. 若点(√2, 2)在幂函数f(x)的图象上,点(2, 12)在幂函数g(x)的图象上,定义ℎ(x)={f(x),f(x)≤g(x)g(x),f(x)>g(x)求函数ℎ(x)的最大值及单调区间.27. 已知幂函数f(x)=x−m2+2m+3(m∈Z)为偶函数,且在区间(0, +∞)上是单调增函数.(1)求函数f(x)的解析式;(2)设函数g(x)=q⋅√f(x)+2x(q>0),若g(x)≥0对任意x∈[1, +∞)恒成立,求实数q的取值范围.28. 已知幂函数y=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点,且关于y轴对称,求m的值.29. 已知幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴、y轴无公共点且关于y轴对称.(1)求m的值;(2)画出函数y=f(x)的图象(图象上要反映出描点的“痕迹”).30. a、b、c、m∈R+,a m=b m+c m,若长为a、b、c三线段能构成三角形,求m的取值范围.31. 已知函数f(x)=(m2+3m−3)x m为幂函数,且在区间(0,+∞)上单调递减.(1)求实数m的值;(2)请画出函数f(x)的草图.32. 已知幂函数f(x)=x m2−2m−3(m∈N∗)的图象关于y轴对称,且在(0, +∞)上是减函数.(1)求m的值;(2)求满足(1+a)−2m3<(1−2a)−2m3的a的取值范围.33. 已知函数y=x 2 3,(1)求定义域;(2)判断奇偶性;(3)已知该函数在第一象限的图象如图所示,试补全图象,并由图象确定单调区间.参考答案与试题解析幂函数的图像专题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】幂函数的图像【解析】利用幂函数性质,直接求解即可.【解答】解:利用幂函数的性质即可得:当x>0时,xα不可能为负数,所以不经过第四象限.故选D.2.【答案】C【考点】幂函数的图像【解析】根据幂函数的图象特征:在区间(1, +∞)上,幂函数的指数越大,图象越远离x轴,结合图象即可得到答案.【解答】解:因为在区间(1, +∞)上,幂函数的指数越大,图象越远离x轴,所以由图象可得:n>p>m,故选:C.3.【答案】A【考点】幂函数的图像【解析】先根据函数的定义域排除B、C,然后根据函数的值域可排除D,从而得到正确的选项.【解答】解:根据函数的定义域为{x|x≠0}可知选项B,选项C不正确;根据函数y=|x−1|的值恒正可知选项D不正确.故选A.4.【答案】B【考点】幂函数的图像【解析】根据幂函数y=x 32性质,即可得出正确的选项.【解答】解:幂函数y=x 32的定义域是[0,+∞),可以排除CD选项;当x>1时,幂函数y=x 32的函数值大于y=x的函数值,故当x>1时,幂函数y=x 32的图象高于y=x的图象,故排除选项A.故选B.5.【答案】C【考点】幂函数的图像【解析】由幂函数的由幂函数的图像得,a>1,b<0,0<c<1,进而判断得结论.【解答】解:由幂函数的图象得,a>1,b<0,0<c<1,∴ ab−b=(a−1)b<0,c2−c=c(c−1)<0,∴ 点(ab−b,c2−c)在第三象限.故选C.6.【答案】B【考点】幂函数的图像【解析】利用幂函数的图象与性质及1α=1即可得出.【解答】解:取x=1,则y=1α=1,因此幂函数y=x a(α是常数)的图象一定经过(1, 1)点.故选B.7.【答案】B【考点】幂函数的图像【解析】根据幂函数的图象和性质判断函数y=x14的单调性和大小关系即可.【解答】解:当0<x<1时,函数y=x n为单调递减函数,所以x4<x3.排除A,D.当x>1时,函数y=x n为单调递增函数,所以x4>x3.排除C.故选B.8.【答案】A幂函数的图像【解析】本题要用函数的性质与图象性质的对应来确定正确的选项,故解题时要先考查函数y= x43性质,单调性奇偶性等,再观察四个选项特征,选出正确答案.【解答】解:研究函数y=x 43知,其是一个偶函数,且在(0, +∞)上增,在(−∞, 0)上减,由此可以排除C,D,又函数的指数43>1,故在(0, +∞)其递增的趋势越来越快,由此排除B,故A正确.故选A.9.【答案】B【考点】幂函数的图像【解析】根据所给的幂函数的α,β的值,逐个说明函数的图象所经过的象限,最后得到函数的图象情况,从而得出答案.【解答】解:α,β∈{−12, 12, 2, 3}时,幂函数y=xα和y=xβ的图象列举如下:则不可能的是:B.故选B.10.【答案】A【考点】幂函数的图像函数(1)的定义域为[0, +∞)且幂指数大于0故(1)↔(A)函数(2)的定义域为R且为奇函数图象关于原点对称幂指数大于0在第一象限单调递增故(2)↔(F)观察答案知选A.【解答】解:函数(1)的定义域为[0, +∞)且幂指数大于0在第一象限单调递增故:(1)↔(A)函数(2)的定义域为R且为奇函数图象关于原点对称幂指数大于0在第一象限单调递增故:(2)↔(F)函数(3)的定义域为R且为偶函数图象关于y轴对称且幂指数大于0小于1在第一象限单调递增且上凸;故(3)↔(E)函数(4)的定义域为(−∞, 0)∪(0, +∞)且为偶函数图象关于y轴对称且幂指数小于0在第一象限单调递减故:(4)↔(C)函数(5)的定义域为(−∞, 0)∪(0, +∞)且为奇函数图象关于原点对称且幂指数小于0在第一象限单调递减故:(5)↔(D)函数(6)的定义域为(0, +∞)且幂指数小于于0在第一象限单调递减故:(6)↔(B)故选A二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】3,2,1,−12【考点】幂函数的图像【解析】利用幂函数的图象与性质即可得出.【解答】解:利用幂函数的图象与性质可得:相应于曲线C1,C2,C3,C4的n依次为3,2,1,−1.2,−1.故答案为:3,2,1212.【答案】3【考点】幂函数的图像【解析】根据幂函数的定义和函数奇偶性的性质进行求解建立.【解答】解:∵f(x)是幂函数,∴m2−5m+7=1,即m2−5m+6=0,解得m=2或m=3,若m=2,则f(x)=x−2−1=x−3为奇函数,不满足条件.若m=3,则f(x)=x−3−1=x−4为偶函数,满足条件.故m=3,故答案为:3.13.【答案】4【考点】幂函数的图像【解析】将点的坐标代入函数解析式,求出f(x),将x用100代替,求出值.【解答】解:∵幂函数f(x)=xα的图象经过点(3, 81),∴81=3α,解得α=4.故答案为:4.14.【答案】2【考点】幂函数的图像【解析】先由已知条件求幂函数的解析式,再求f(4)【解答】解:设幂函数f(x)=x a∵f(x)的图象过点(2, √2)∴2a=√2=212∴a=12∴f(x)=x12∴f(4)=412=2故答案为:215.【答案】二、四【考点】幂函数的图像【解析】利用幂函数的图象与性质即可得出.【解答】解:当α=1时,y=x值经过第一、三象限和原点;时,y=√x值经过第一象限和原点;当α=12当α=3时,y=x3值经过第一、三象限和原点.综上可知:幂函数y=xα的图象不可能经过的是第二、四象限.故答案为:二、四.16.【答案】【解析】根据幂函数的性质即可得到结论.【解答】解:∵对所有的幂函数都过定点(1, 1),∴当x−1=1,即x=2时,f(2)=1+1=2,即函数f(x)=(x−1)1m+1的图象恒过定点(2, 2).故答案为:(2, 2).17.【答案】1【考点】幂函数的图像【解析】幂函数的图象不过原点,所以幂指数小于0,系数为1,求解即可.【解答】解:幂函数y=(m2−3m+3)x m2−m−1的图象不过原点,所以{m 2−m−1≤0m2−3m+3=1解得m=1,符合题意.故答案为:118.【答案】n>1【考点】幂函数的图像【解析】幂函数图象恒过(1, 1)点,结合图象容易推出n的取值范围.【解答】解:由题意画出幂函数图象,如图在第一象限内的图象,显然n>1故答案为:n>119.【答案】【解析】直接利用幂函数的图象,结合已知条件,求出a的范围.【解答】解:根据幂函数的图象的特点,画出函数的图象,当x∈(1, +∞)时,幂函数y=xα的图象恒在直线y=x的下方,则α的取值范围是:(−∞, 1).故答案为:(−∞, 1).20.【答案】)12.y=3×(x3【考点】幂函数的图像【解析】,纵坐图象的变换体现在自变量和函数的变化,横坐标扩大到原来的3倍就是将x→x3标也扩大到原来的3倍就是将y→y,从而得解.3【解答】解:∵函数y=lg x图象横坐标扩大到原来的3倍∴得y=(x)123∵纵坐标也扩大到原来的3倍∴得y=3×(x)12.3)12.故填:y=3×(x3三、解答题(本题共计 13 小题,每题 10 分,共计130分)21.【答案】,所以定义域为(0, +∞),解:将函数化为y=√x<0.根据幂函数的性质可知,图象在第一象限为减函数.且过点(1, 1).又指数为−12做出图象如下:【考点】幂函数的图像【解析】研究函数的定义域,单调性,根据幂函数的性质判断.【解答】,所以定义域为(0, +∞),解:将函数化为y=1√x<0.根据幂函数的性质可知,图象在第一象限为减函数.且过点(1, 1).又指数为−12做出图象如下:22.【答案】解:根据幂函数的图象与性质,在同一坐标系中画出函数y=x−12,y=x−13,y=x12,y=x13的图象,如图所示;【考点】幂函数的图像【解析】根据幂函数的图象与性质,在同一坐标系中画出这几个函数的图象即可.【解答】解:根据幂函数的图象与性质,在同一坐标系中画出函数y=x−12,y=x−13,y=x12,y=x13的图象,如图所示;23.【答案】解:(1)∵幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴,y轴都无交点,且关于y轴对称∴m2−2m−3≤0且m2−2m−3为偶数解得−1≤m≤3∴m=−1或m=0或m=1或m=2或m=3∴f(x)=x−4或f(x)=x0=1(x≠0)(2)【考点】幂函数的概念、解析式、定义域、值域【解析】(1)有幂函数的性质判断出幂函数的指数小于或等于0;指数为偶数.列出不等式求出m(2)借助幂函数的解析式画出幂函数的图象. 【解答】解:(1)∵ 幂函数f(x)=x m 2−2m−3(m ∈Z)的图象与x 轴,y 轴都无交点,且关于y 轴对称∴ m 2−2m −3≤0且m 2−2m −3为偶数 解得−1≤m ≤3∴ m =−1或m =0或m =1或m =2或m =3 ∴ f(x)=x −4或f(x)=x 0=1(x ≠0)(2)24.【答案】 解:(1)∵ 函数在(0, +∞)上递增,∴ 9−3m >0,解得m <3. 又m ∈N ∗,∴ m =1,2.又函数的图象关于原点对称,∴ 3m −9为奇数,故m =2,故f(x)=x 3. (2)∵ f(a +1)+f(2a −3)<0,∴ f(a +1)<−f(2a −3). 又f(x)为奇函数,∴ f(a +1)<f(3−2a), 又函数在R 上递增,∴ a +1<3−2a , 解得a <23,即a 的范围为(−∞, 23).【考点】函数单调性的性质函数解析式的求解及常用方法 幂函数的图像【解析】(1)函数在(0, +∞)上递增,可得9−3m >0,再由m ∈N ∗,且3m −9为奇数,可得m 的值,从而得到f(x)的解析式.(2)由题意可得不等式即f(a +1)<f(3−2a),根据函数在R 上递增,可得a +1<3−2a ,由此求得a 的范围.【解答】 解:(1)∵ 函数在(0, +∞)上递增,∴ 9−3m >0,解得m <3. 又m ∈N ∗,∴ m =1,2.又函数的图象关于原点对称,∴ 3m −9为奇数,故m =2,故f(x)=x 3.又f(x)为奇函数,∴ f(a +1)<f(3−2a), 又函数在R 上递增,∴ a +1<3−2a , 解得a <23,即a 的范围为(−∞, 23). 25.【答案】解:(1)设f(x)=x a ,依题意可得9a =3. 所以a =12. 所以f(x)=x 12.所以实数m =f(8)=812=2√2. (2)函数g(x)=log a f(x), 即为g(x)=log a √x .又因为√x ∈[4,6],所以:①当0<a <1时,g(x)min =log a 6,g(x)max =log a 4, 由log a 4−log a 6=log a 23=1, 解得a =23.②当a >1时,g(x)min =log a 4,g(x)max =log a 6, 由log a 6−log a 4=log a 32=1, 解得a =32.综上,所求实数a 的值为23或32.【考点】 幂函数的性质 幂函数的图像 对数函数的值域与最值【解析】 此题暂无解析 【解答】解:(1)设f(x)=x a ,依题意可得9a =3. 所以a =12. 所以f(x)=x 12.1(2)函数g(x)=log a f(x), 即为g(x)=log a √x .又因为√x ∈[4,6],所以:①当0<a <1时,g(x)min =log a 6,g(x)max =log a 4, 由log a 4−log a 6=log a 23=1, 解得a =23.②当a >1时,g(x)min =log a 4,g(x)max =log a 6, 由log a 6−log a 4=log a 32=1, 解得a =32.综上,所求实数a 的值为23或32. 26. 【答案】解:设f(x)=x α,因为点(√2,2)在幂函数f(x)的图象上, 所以(√2)α=2,解得α=2,所以f(x)=x 2. 设f(x)=x β,因为点(2,12)在幂函数g(x)的图象上, 所以(√2)β=12,解得β=−1,所以g(x)=x −1.在同一坐标系中画出函数f(x)=x 2和g(x)=x −1的图象,由题意及图,可知 ℎ(x)={x −1,x <0或x >1x 2,0<x ≤1.根据函数ℎ(x)的解析式及图象(如图),可知函数ℎ(x)的最大值为1.ℎ(x)的单调递增区间是(0,1],单调递减区间是(−∞,0)和(1,+∞).【考点】幂函数的图像函数的单调性及单调区间分段函数的解析式求法及其图象的作法【解析】设f(x)=x n,g(x)=x m,代入点的坐标,解方程可得f(x),g(x)的解析式,再由定义,求得ℎ(x)的解析式,通过二次函数和反比例函数的性质,可得最大值和单调区间.【解答】解:设f(x)=xα,因为点(√2,2)在幂函数f(x)的图象上,所以(√2)α=2,解得α=2,所以f(x)=x2.设f(x)=xβ,因为点(2,12)在幂函数g(x)的图象上,所以(√2)β=12,解得β=−1,所以g(x)=x−1.在同一坐标系中画出函数f(x)=x2和g(x)=x−1的图象,由题意及图,可知ℎ(x)={x−1,x<0或x>1 x2,0<x≤1.根据函数ℎ(x)的解析式及图象(如图),可知函数ℎ(x)的最大值为1.ℎ(x)的单调递增区间是(0,1],单调递减区间是(−∞,0)和(1,+∞).27.【答案】解:(1)幂函数f(x)=x−m2+2m+3(m∈Z)为偶函数,且在区间(0, +∞)上是单调增函数∴−m2+2m+3>0,∴−1<m<3,又m∈Z,函数f(x)为偶函数,故m=1,∴f(x)=x4;(2)g(x)=q⋅√f(x)+2x =qx2+2x≥0对任意x∈[1, +∞)恒成立,∴q≥−2x2对任意x∈[1, +∞)恒成立,∴q≥−2,而q>0,∴q>0.【考点】函数恒成立问题幂函数的概念、解析式、定义域、值域幂函数的图像幂函数图象及其与指数的关系【解析】(1)利用幂函数f(x)=x−m2+2m+3(m∈Z)为偶函数,且在区间(0, +∞)上是单调增函数,确定m的值,即可求函数f(x)的解析式;(2)分离参数,求最值,即可求实数q的取值范围.【解答】解:(1)幂函数f(x)=x−m2+2m+3(m∈Z)为偶函数,且在区间(0, +∞)上是单调增函数∴−m2+2m+3>0,∴−1<m<3,又m∈Z,函数f(x)为偶函数,故m=1,∴f(x)=x4;(2)g(x)=q⋅√f(x)+2x =qx2+2x≥0对任意x∈[1, +∞)恒成立,∴q≥−2x2对任意x∈[1, +∞)恒成立,∴q≥−2,而q>0,∴q>0.28.【答案】解:由题意可得:根据题意,幂函数y=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点,则m2−2m−3≤0,①m2−2m−3=0,解可得m=−1或3,此时y=1(x≠0),符合题意;②m2−2m−3<0解得−1<m<3,∴m2−2m−3是偶数,故m的值为±1或3.【考点】幂函数的实际应用幂函数的图像【解析】幂函数y=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点说明指数为负数或0,而图形关于y轴对称说明函数为偶函数.【解答】解:由题意可得:根据题意,幂函数y=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点,则m2−2m−3≤0,①m2−2m−3=0,解可得m=−1或3,此时y=1(x≠0),符合题意;②m2−2m−3<0解得−1<m<3,又∵m∈Z,∴m=0,1,2∵图象关于y轴对称∴m2−2m−3是偶数,故m的值为±1或3.29.【答案】解:(1)由于幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴、y轴都无公共点,且关于y轴对称,故幂函数是偶函数,且m2−2m−3=(m−3)(m+1)为非正的偶数.由m2−2m−3≤0可得−1≤m≤3,即m=−1、0、1、2,3.再由m2−2m−3为偶数,可得m=−1、1、3.(2)当m=−1或3时,f(x)=x0;当m=1时,f(x)=x−4;图象如图所示.【考点】幂函数的单调性、奇偶性及其应用幂函数的性质幂函数的图像幂函数的概念、解析式、定义域、值域【解析】(1)幂函数f(x)=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点说明指数为负数,而图形关于y轴对称说明指数数为偶函数,由此求得整数m的值.(2)根据(1)中结论写出幂函数的解析式,画出函数y=f(x)的图象.【解答】解:(1)由于幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴、y轴都无公共点,且关于y轴对称,故幂函数是偶函数,且m2−2m−3=(m−3)(m+1)为非正的偶数.由m2−2m−3≤0可得−1≤m≤3,即m=−1、0、1、2,3.再由m2−2m−3为偶数,可得m=−1、1、3.(2)当m=−1或3时,f(x)=x0;当m=1时,f(x)=x−4;图象如图所示.30.【答案】解:根据题意,由a m=b m+c m,可得(ba )m+(ca)m=1,且a>b,a>c;设(ba )m=sin2θ;(ca)m=cos2θ,(0∘<θ<90∘)化简可得:b =a ⋅√sin 2θm,c =a ⋅√cos 2θm;若长为a 、b 、c 三线段能构成三角形,则b +c >a ,即a ⋅√sin 2θm+a ⋅√cos 2θm>a ;整理可得,√sin 2θm+√cos 2θm>1=sin 2θ+cos 2θ,由幂函数的性质分析可得,当且仅当m >1时,√sin 2θm>sin 2θ与√cos 2θm>cos 2θ同时成立,即b +c >a ,故m 的取值范围为m >1. 【考点】同角三角函数基本关系的运用 幂函数的图像 【解析】根据题意,由a m =b m +c m 变形可得(b a )m +(ca )m =1,由常数1联系同角三角函数的平方关系,可以设(b a )m =sin 2θ;(ca )m =cos 2θ,(0∘<θ<90∘),又由题意,可得b +c >a ,将b 、c 与a 的关系代入可得,a ⋅√sin 2θm+a ⋅√cos 2θm>a ;进而整理变形可得,√sin 2θm+√cos 2θm >1=sin 2θ+cos 2θ,结合幂函数的性质,分析可得答案.【解答】解:根据题意,由a m =b m +c m ,可得(ba)m +(ca)m =1,且a >b ,a >c ;设(b a )m =sin 2θ;(ca )m =cos 2θ,(0∘<θ<90∘)化简可得:b =a ⋅√sin 2θm,c =a ⋅√cos 2θm;若长为a 、b 、c 三线段能构成三角形,则b +c >a ,即a ⋅√sin 2θm+a ⋅√cos 2θm>a ;整理可得,√sin 2θm+√cos 2θm>1=sin 2θ+cos 2θ,由幂函数的性质分析可得,当且仅当m >1时,√sin 2θm>sin 2θ与√cos 2θm>cos 2θ同时成立,即b +c >a ,故m 的取值范围为m >1. 31.【答案】解:(1)由m 2+3m −3=1,得m =1或m =−4,①当m =1时,f(x)=x ,此时函数在区间(0,+∞)为增函数,不符合题意; ②当m =−4时,f(x)=x −4,此时函数在区间(0,+∞)为减函数,符合题意. 故实数m 的值为−4.(2)由(1)知f(x)=x−4,由函数f(x)的定义域为(−∞,0)∪(0,+∞),f(−x)=f(x)可知函数f(x)为偶函数,可画出函数f(x)草图为:【考点】幂函数的单调性、奇偶性及其应用幂函数的图像幂函数的概念、解析式、定义域、值域【解析】此题暂无解析【解答】解:(1)由m2+3m−3=1,得m=1或m=−4,①当m=1时,f(x)=x,此时函数在区间(0,+∞)为增函数,不符合题意;②当m=−4时,f(x)=x−4,此时函数在区间(0,+∞)为减函数,符合题意. 故实数m的值为−4.(2)由(1)知f(x)=x−4,由函数f(x)的定义域为(−∞,0)∪(0,+∞),f(−x)=f(x)可知函数f(x)为偶函数,可画出函数f(x)草图为:32.【答案】解:(1)∵幂函数f(x)=x m2−2m−3在(0, +∞)上是减函数,∴m2−2m−3<0,解得−1<m<3,∵m∈N∗,∴m=1,或m=2.当m=1时,f(x)=x−4,其图象关于y轴对称,符合题意;当m=2时,f(x)=x−3是奇函数,不符合题意,∴m=1.(2)∵ m =1,∴ 满足(1+a)−2m3<(1−2a)−2m3的a 即满足(1+a)−23<(1−2a)−23. ∵ y =x −23为偶函数,且定义域为(−∞, 0)∪(0, +∞),在(0, +∞)上单调减, ∴ {|1+a|>|1−2a|1+a ≠01−2a ≠0,即{(1+a)2>(1−2a)2a ≠−1a ≠12, 从而0<a <2且a ≠12,故a 的取值范围是(0, 12)∪(12,2). 【考点】其他不等式的解法幂函数的单调性、奇偶性及其应用 幂函数的性质 幂函数的图像幂函数的概念、解析式、定义域、值域 【解析】(1)由幂函数f(x)=x m 2−2m−3在(0, +∞)上是减函数,知m 2−2m −3<0,由此能求出m .(2)由m =1,知满足(1+a)−2m 3<(1−2a)−2m 3的a 即满足(1+a)−23<(1−2a)−23.由此能求出a 的取值范围. 【解答】解:(1)∵ 幂函数f(x)=x m 2−2m−3在(0, +∞)上是减函数, ∴ m 2−2m −3<0, 解得−1<m <3,∵ m ∈N ∗,∴ m =1,或m =2.当m =1时,f(x)=x −4,其图象关于y 轴对称, 符合题意;当m =2时,f(x)=x −3是奇函数,不符合题意, ∴ m =1.(2)∵ m =1, ∴ 满足(1+a)−2m 3<(1−2a)−2m 3的a 即满足(1+a)−23<(1−2a)−23.∵ y =x −23为偶函数,且定义域为(−∞, 0)∪(0, +∞),在(0, +∞)上单调减, ∴ {|1+a|>|1−2a|1+a ≠01−2a ≠0,即{(1+a)2>(1−2a)2a ≠−1a ≠12, 从而0<a <2且a ≠12,故a 的取值范围是(0, 12)∪(12,2).33. 【答案】解:(1)∵ 函数y =x 23=√x 23,∴ 函数的定义域为R .(2)∵ f(−x)=√(−x)23=√x 23=f(x),∴ 函数y =x 23=√x 23是偶函数. (3)∵ 函数y =x 23=√x 23是偶函数.∴ 函数图象关于y 轴对称,且(−∞, 0]为减函数,[0, +∞)为增函数, 对应的图象为: 【考点】 幂函数的性质 幂函数的图像【解析】根据幂函数的性质分别求出函数的定义域和奇偶性. 【解答】解:(1)∵ 函数y =x 23=√x 23,∴ 函数的定义域为R .(2)∵ f(−x)=√(−x)23=√x 23=f(x),∴ 函数y =x 23=√x 23是偶函数. (3)∵ 函数y =x 23=√x 23是偶函数.∴ 函数图象关于y 轴对称,且(−∞, 0]为减函数,[0, +∞)为增函数, 对应的图象为:。

幂函数知识归纳及习题(含答案)

幂函数知识归纳及习题(含答案)

自主梳理1.幂函数的概念形如________的函数叫做幂函数,其中____是自变量,____是常数. 2.幂函数的性质(1)五种常见幂函数的性质,列表如下: 定义域 值域 奇偶性 单调性 过定点y =x R R 奇 Z (1,1)y =x 2 R [0,+∞)偶 [0,+∞)Z (-∞,0][y =x 3R R 奇 ZY =x 12[0,+∞) [0,+∞) 非奇 非偶 [0,+∞)Z Y =x -1(-∞,0) ∪(0,+∞)(-∞,0) ∪(0,+∞)奇(-∞,0)[(0,+∞)[(2)所有幂函数在________上都有定义,并且图象都过点(1,1),且在第____象限无图象. (3)α>0时,幂函数的图象通过点____________,并且在区间(0,+∞)上是________,α<0时,幂函数在(0,+∞)上是减函数,图象______原点.1.已知幂函数y =f (x )的图像经过点⎝⎛⎭⎫4,12,则f (2)=( ) A.14 B .4C.22D. 2 2.下列函数中,其定义域与值域不同的函数是( ) A .y =x 12B .y =x -1 C .y =x 13D .y =x 23.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b )4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)5.(2013·蚌埠二中调研)设二次函数f (x )=ax 2+bx +c ,如果f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)=( )A .-b2aB .-baC .c D.4ac -b 24a6.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值( ) A .正数 B .负数 C .非负数D .与m 有关 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图像关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图像都是抛物线型. 其中正确的有________.8.(2012·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.9.(2012·无锡联考)设函数f (x )=mx 2-mx -1,若f (x )<0的解集为R ,则实数m 的取值范围是________.10.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数.且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.11.已知二次函数f(x)的图像过点A(-1,0)、B(3,0)、C(1,-8).(1)求f(x)的解析式;(2)求f(x)在x∈[0,3]上的最值;(3)求不等式f(x)≥0的解集.12.设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图像是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.(1)求函数f(x)在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f(x)的草图;(3)写出函数f (x )的值域.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12 C.34D .12.(2013·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.3.(2012·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.答 案 课时跟踪检测(九)A 级1.选C 设f (x )=x α,因为图像过点⎝⎛⎭⎫4,12,代入解析式得:α=-12, ∴f (2)=2-12=22.2.选D 对A ,定义域、值域均为[0,+∞);对B ,定义域、值域均为(-∞,0)∪(0,+∞);对C ,定义域值域均为R ;对D ,定义域为R ,值域为[0,+∞).3.选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a . 4.选D 由已知可得二次函数图像关于直线x =1对称,又f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.选C 由题意得:a ≠0,x 1+x 22=-b 2a ,x 1+x 2=-b a .得f (x 1+x 2)=f ⎝⎛⎭⎫-b a =a ·b 2a 2-b 2a +c =c .6.选B 法一:∵f (x )=x 2-x +a 的对称轴为x =12,而-m ,m +1关于12对称,∴f (m +1)=f (-m )<0.法二:∵f (-m )<0,∴m 2+m +a <0,∴f (m +1)=(m +1)2-(m +1)+a =m 2+m +a <0. 7.①②⑤⑥8.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.解析:若m =0,显然-1<0恒成立, 若m ≠0,则⎩⎨⎧m <0,Δ<0.∴-4<m <0.故所求范围为:-4<m≤0.答案:(-4,0]10.解:∵f(x)在(0,+∞)上是增函数,∴-12+p+32>0,2p即p2-2p-3<0.∴-1<p<3.又∵f(x)是偶函数且p∈Z,∴p=1,故f(x)=x2.11.解:(1)由题意可设f(x)=a(x+1)(x-3),将C(1,-8)代入得-8=a(1+1)(1-3),得a=2.即f(x)=2(x+1)(x-3)=2x2-4x-6.(2)f(x)=2(x-1)2-8,当x∈[0,3]时,由二次函数图像知,f(x)min=f(1)=-8,f(x)max=f(3)=0.(3)f(x)≥0的解集为{x|x≤-1,或x≥3}.12.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图像如图,(3)由图像可知,函数f (x )的值域为(-∞,4].B 级1.选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像如图所示,结合图像可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像有两个交点.答案:⎝⎛⎦⎤-94,-2 3.解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高中数学专项突破】专题19幂函数题组1幂函数的概念1.若y=x2,y=()x,y=4x2,y=x5+1,y=(x-1)2,y=x,y=a x(a>1),上述函数中幂函数的个数为()A.0B.1C.2D.32.幂函数f(x)=x3m-5(m∈N)在(0,+∞)上是减函数,且f(-x)=f(x),则m等于()A.0B.1C.2D.0或13.当x∈(0,+∞)时,幂函数y=(m2-m-1)·x-m-1为减函数,则实数m等于()A. B.-1 C.2或-1 D.2题组2求幂函数的解析式4.已知点(,)在幂函数y=f(x)的图象上,则f(x)的表达式是()A.f(x)=3xB.f(x)=x3C.f(x)=x-2D.f(x)=()x5.已知幂函数y=f(x)的图象经过点(16,4),则f()的值为()A.3B.C.D.题组3 幂函数的定义域和值域6.若函数f(x)=,则函数y=f(4x-3)的定义域是()A.(-∞,+∞)B.(-∞,)C.[,+∞)D.(,+∞)7.有四个幂函数:①f(x)=x-1;②f(x)=x-2;③f(x)=x3;④f(x)=.某同学研究了其中的一个函数,他给出这个函数的两个性质:(1)定义域是{x|x∈R,且x≠0};(2)值域是{y|y∈R,且y≠0}.如果这个同学给出的两个性质都是正确的,那么他研究的函数是()A.①B.②C.③D.④题组4比较幂值的大小8.下列关系中正确的是()A.<<B.<<C.<<D.<<9.设a=0.60.6,b=0.61.5,c=1.50.6,则a、b、c的大小关系是()A.a<b<cB.a<c<bC.b<a<cD.b<c<a题组5 幂函数的图像10.函数y=的图象是()A. B. C. D.11.函数y=ax2+a与y=(a≠0)在同一坐标系中的图象可能是()A. B. C. D.12.如图所示,幂函数y=xα在第一象限的图象,比较0,α1,α2,α3,α4,1的大小()A.α1<α3<0<α4<α2<1B.0<α1<α2<α3<α4<1C.α2<α4<0<α3<1<α1D.α3<α2<0<α4<1<α113.幂函数y=x-1及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数y=的图象经过的“卦限”是()A.④⑦B.④⑧C.③⑧D.①⑤题组6 幂函数的性质14.幂函数y=xα,对于给定的有理数α,其定义域与值域相同,则此幂函数()A.一定是奇函数B.一定是偶函数C.一定不是奇函数D.一定不是偶函数15.函数f(x)=在[-1,1]上是()A.增函数且是奇函数B.增函数且是偶函数C.减函数且是奇函数D.减函数且是偶函数16.函数y=x-2在区间[,2]上的最大值是()A. B.-1 C.4 D.-417.下列结论中,正确的是()A.幂函数的图象都经过点(0,0),(1,1)B.幂函数的图象可以出现在第四象限C.当幂指数α取1,3,时,幂函数y=xα是增函数D.当α=-1时,幂函数y=xα在其整个定义域上是减函数18.已知幂函数的图象过点(2,),则它的单调增区间为________.19.已知幂函数f(x)=x3m-9(m∈N*)的图象与x轴、y轴都无公共点且关于y轴对称,求满足≤的a的取值范围.题组7 幂函数的综合应用20.已知幂函数f(x)=x(2-k)(1+k)(k∈Z)满足f(2)<f(3).(1)求实数k的值,并写出相应的函数f(x)的解析式;(2)对于(1)中的函数f(x),试判断是否存在正数m,使函数g(x)=1-mf(x)+(2m-1)x在区间[0,1]上的最大值为5.若存在,求出m的值;若不存在,请说明理由.21.集合A是由具备下列性质的函数f(x)组成的:①函数f(x)的定义域是[0,+∞);②函数f(x)的值域是[-2,4);③函数f(x)在[0,+∞)上是增函数,试分别探究下列两小题:(1)判断函数f1(x)=-2(x≥0)及f2(x)=4-6·()x(x≥0)是否属于集合A?并简要说明理由;(2)对于(1)中你认为属于集合A的函数f(x),不等式f(x)+f(x+2)<2f(x+1)是否对于任意的x≥0恒成立?若不成立,为什么?若成立,请说明你的结论.专题20 幂函数题组1幂函数的概念1.若y=x2,y=()x,y=4x2,y=x5+1,y=(x-1)2,y=x,y=a x(a>1),上述函数中幂函数的个数为()A.0B.1C.2D.3【答案】C【解析】由幂函数的定义知,y=x2,y=()x,y=4x2,y=x5+1,y=(x-1)2,y=x,y=ax(a>1)七个函数中,是幂函数的是y=x2和y=x,故选C.2.幂函数f(x)=x3m-5(m∈N)在(0,+∞)上是减函数,且f(-x)=f(x),则m等于()A.0B.1C.2D.0或1【答案】B【解析】因为f(x)=x3m-5(m∈N)在(0,+∞)上是减函数,所以3m-5<0,故m<.又因为m∈N,所以m=0或m=1,当m=0时,f(x)=x-5,f(-x)≠f(x),不符合题意;当m=1时,f(x)=x-2,f(-x)=f(x),符合题意.综上知,m=1.3.当x∈(0,+∞)时,幂函数y=(m2-m-1)·x-m-1为减函数,则实数m等于()A. B.-1 C.2或-1 D.2【答案】D【解析】因当x∈(0,+∞)时,幂函数y=(m2-m-1)·x-m-1为减函数,所以m2-m-1=1,且-m-1<0,解得m=2或-1,且m>-1,即m=2.故选D.题组2求幂函数的解析式4.已知点(,)在幂函数y=f(x)的图象上,则f(x)的表达式是()A.f(x)=3xB.f(x)=x3C.f(x)=x-2D.f(x)=()x【答案】B【解析】幂函数f(x)=xα的图象过点(,),所以=()α,解得α=3,所以幂函数为f(x)=x3,故选B.5.已知幂函数y=f(x)的图象经过点(16,4),则f()的值为()A.3B.C.D.【答案】C【解析】∵幂函数y=f(x)=xα的图象经过点(16,4),∴16α=4,解得α=,∴f(x)=,∴f()==.故选C.题组3 幂函数的定义域和值域6.若函数f(x)=,则函数y=f(4x-3)的定义域是()A.(-∞,+∞)B.(-∞,)C.[,+∞)D.(,+∞)【答案】D【解析】幂函数f(x)==,其定义域为(0,+∞),∴4x-3>0,∴x>,∴函数y=f(4x-3)的定义域是(,+∞).7.有四个幂函数:①f(x)=x-1;②f(x)=x-2;③f(x)=x3;④f(x)=.某同学研究了其中的一个函数,他给出这个函数的两个性质:(1)定义域是{x|x∈R,且x≠0};(2)值域是{y|y∈R,且y≠0}.如果这个同学给出的两个性质都是正确的,那么他研究的函数是()A.①B.②C.③D.④【答案】A【解析】对于①,具有(1)定义域是{x|x∈R,且x≠0};(2)值域是{y|y∈R,且y≠0}.对于②,具有性质(1)定义域是{x|x∈R,且x≠0};但不具有性质(2)值域是{y|y∈R,且y≠0}.对于③,不具有性质(1)定义域是{x|x∈R,且x≠0};也不具有性质(2)值域是{y|y∈R,且y≠0}.对于④,不具有性质(1)定义域是{x|x∈R,且x≠0};也不具有性质(2)值域是{y|y∈R,且y≠0}.故选A.题组4比较幂值的大小8.下列关系中正确的是()A.<<B.<<C.<<D.<<【答案】D【解析】由于幂函数y=在(0,+∞)上递增,因此<,又指数函数y=()x在(0,+∞)上递减,因此<,故<<.故选D.9.设a=0.60.6,b=0.61.5,c=1.50.6,则a、b、c的大小关系是()A.a<b<cB.a<c<bC.b<a<cD.b<c<a【答案】C【解析】∵0.6∈(0,1),∴y=0.6x是减函数,∴0.60.6>0.61.5,又y=x0.6在(0,+∞)是增函数,∴1.50.6>0.60.6,∴b<a<c,故选C.题组5 幂函数的图像10.函数y=的图象是()A. B. C. D.【答案】A【解析】设y=f(x)=,f(-x)=====f(x),又函数f(x)的定义域为R,故f(x)为偶函数,即其图象关于y轴对称.又∵>0,∴f(x)在(0,+∞)上为增函数,又∵>1,∴f(x)在第一象限的图象与函数y=x2的图象相类似,故选A.11.函数y=ax2+a与y=(a≠0)在同一坐标系中的图象可能是()A. B. C. D.【答案】D【解析】当a>0时,二次函数y=ax2+a的图象开口向上,且对称轴为x=0,顶点坐标为(0,a),故排除A,C;当a<0时,二次函数y=ax2+a的图象开口向下,且对称轴为x=0,顶点坐标为(0,a),函数y=的图象在第二、四象限,故选D.12.如图所示,幂函数y=xα在第一象限的图象,比较0,α1,α2,α3,α4,1的大小()A.α1<α3<0<α4<α2<1B.0<α1<α2<α3<α4<1C.α2<α4<0<α3<1<α1D.α3<α2<0<α4<1<α1【答案】D【解析】由图知取x=2得0<<<1<<,∴α3<α2<0<α4<α1.又α1>1,0<α4<1,故选D.13.幂函数y=x-1及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数y=的图象经过的“卦限”是()A.④⑦B.④⑧C.③⑧D.①⑤【答案】D【解析】幂函数y=的图象形状是上凸形,在经过(1,1)点以前在y=x上方,而过了(1,1)点后在y =x下方,故可知y=过①⑤“卦限”.题组6 幂函数的性质14.幂函数y=xα,对于给定的有理数α,其定义域与值域相同,则此幂函数()A.一定是奇函数B.一定是偶函数C.一定不是奇函数D.一定不是偶函数【答案】D【解析】函数y=的定义域和值域都是[0,+∞),它既不是奇函数,也不是偶函数;函数y=x3的定义域和值域都是R,它是奇函数;如果一个幂函数是偶函数,它的图象一定分布在第一和第二象限,它的值域是(0,+∞)或[0,+∞),与它的定义域不同,所以如果一个幂函数的定义域与值域相同,它一定不是偶函数,答案为D.15.函数f(x)=在[-1,1]上是()A.增函数且是奇函数B.增函数且是偶函数C.减函数且是奇函数D.减函数且是偶函数【答案】A【解析】因为f(-x)==-=-f(x),所以f(x)是奇函数.因为>0,f(x)=在第一象限内是增函数,所以f(x)=在[-1,1]上是增函数,综上可知,f(x)=在[-1,1]上是增函数且是奇函数.16.函数y=x-2在区间[,2]上的最大值是()A. B.-1 C.4 D.-4【答案】C【解析】函数y=x-2在区间[,2]上是减函数,所以x=时,y取最大值,最大值是()-2=4.故选C.17.下列结论中,正确的是()A.幂函数的图象都经过点(0,0),(1,1)B.幂函数的图象可以出现在第四象限C.当幂指数α取1,3,时,幂函数y=xα是增函数D.当α=-1时,幂函数y=xα在其整个定义域上是减函数【答案】C【解析】当幂指数α=-1时,幂函数y=x-1的图象不经过原点,故A错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα>0,所以幂函数的图象不可能出现在第四象限,故B错误;当α>0时,y=xα是增函数,故C正确;当α=-1时,y=x-1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误,故选C.18.已知幂函数的图象过点(2,),则它的单调增区间为________.【答案】[0,+∞)【解析】设幂函数的解析式为y=xα,∵幂函数y=f(x)的图象过点(2,),∴=2α,解得α=,∴y=,所以其单调增区间为[0,+∞).19.已知幂函数f(x)=x3m-9(m∈N*)的图象与x轴、y轴都无公共点且关于y轴对称,求满足≤的a的取值范围.【答案】由已知得3m-9≤0,∴m≤3.又∵幂函数f(x)的图象关于y轴对称,∴3m-9为偶数,又∵m∈N*,∴m=1,3.当m=1或m=3时,有≤或(a+1)-1≤(3-2a)-1.又∵y=和y=x-1在(-∞,0),(0,+∞)上均单调递减,∴a+1≥3-2a>0或0>a+1≥3-2a或a+1<0<3-2a,解得≤a<或a<-1.故a的取值范围是(-∞,-1)∪[,).题组7 幂函数的综合应用20.已知幂函数f(x)=x(2-k)(1+k)(k∈Z)满足f(2)<f(3).(1)求实数k的值,并写出相应的函数f(x)的解析式;(2)对于(1)中的函数f(x),试判断是否存在正数m,使函数g(x)=1-mf(x)+(2m-1)x在区间[0,1]上的最大值为5.若存在,求出m的值;若不存在,请说明理由.【答案】(1)对于幂函数f(x)=x(2-k)(1+k)满足f(2)<f(3),因此(2-k)(1+k)>0,解得-1<k<2.因为k∈Z,所以k=0或k=1.当k=0时,f(x)=x2,当k=1时,f(x)=x2,综上所述,k的值为0或1,f(x)=x2.(2)函数g(x)=1-mf(x)+(2m-1)x=-mx2+(2m-1)x+1,由于要求m>0,因此抛物线开口向下,对称轴方程为x=,当m>0时,=1-<1,因为在区间[0,1]上的最大值为5,所以或解得m=+,满足题意.21.集合A是由具备下列性质的函数f(x)组成的:①函数f(x)的定义域是[0,+∞);②函数f(x)的值域是[-2,4);③函数f(x)在[0,+∞)上是增函数,试分别探究下列两小题:(1)判断函数f1(x)=-2(x≥0)及f2(x)=4-6·()x(x≥0)是否属于集合A?并简要说明理由;(2)对于(1)中你认为属于集合A的函数f(x),不等式f(x)+f(x+2)<2f(x+1)是否对于任意的x≥0恒成立?若不成立,为什么?若成立,请说明你的结论.【答案】(1)函数f1(x)=-2不属于集合A.因为f1(x)的值域是[-2,+∞),所以函数f1(x)=-2不属于集合A.f2(x)=4-6·()x(x≥0)在集合A中,因为①函数f2(x)的定义域是[0,+∞);②f2(x)的值域是[-2,4);③函数f2(x)在[0,+∞)上是增函数.(2)∵f(x)+f(x+2)-2f(x+1)=6·()x(-)<0,∴不等式f(x)+f(x+2)<2f(x+1)对任意的x≥0恒成立.。

相关文档
最新文档