工程热力学与传热学总结与复习
工程热力学与传热学总结与复习

一、基本要求严格遵守考试纪律,绝不做任何有作弊嫌疑的动作。
二、考试需要携带的物品相关身份证件、笔、计算器三、复习要点(一)基本概念(红色粗体部分是热力学与传热学最基本的概念,要求掌握其定义、物理意义、表达式、单位)第一章基本概念工质、热源、热力系统、外界(环境)、闭口系统、开口系统、绝热系统、孤立系统、平衡状态、热力状态、状态参数、基本状态参数、压力(Pa,mmH2O,mmHg,atm, at换算)、温度、比体积、密度、状态公理、状态方程式、准平衡过程、可逆过程、不可逆过程、功、膨胀功、热量、比熵、熵、定熵过程第二章热力学第一定律储存能、热力学能、稳定流动、焓、比焓、流动功、技术功第三章理想气体的性质和热力过程理想气体、状态方程式、气体常数、摩尔气体常数、热容、比热容、过程方程式、多变指数第四章热力学第二定律自发过程、热力循环、正向循环、逆向循环、动力循环、循环热效率、制冷系数、供热系数、克劳修斯积分等式、克劳修斯不等式、熵流、熵产、闭口系统熵方程第五章水蒸气与湿空气饱和状态、饱和液体、饱和蒸气、饱和温度、未饱和水、饱和水、湿(饱和)蒸汽、干度、干(饱和)蒸气、汽化潜热、过热蒸气、饱和水线(下界线)、干饱和蒸汽线(上界线)、临界点、未饱和湿空气、饱和湿空气、露点(温度)、绝对湿度、相对湿度、含湿量。
第六章蒸汽动力装置、蒸汽动力循环、郎肯循环(循环的过程构成及主要装置)、提高蒸汽动力循环效率的途径。
第八章导热、一维稳态导热、热流量、热导率(导热系数)、导热热阻(平壁)、热流密度、热对流、对流换热、表面传热系数、对流换热热阻、热辐射、辐射换热、传热过程、传热热阻、传热系数第九章温度场、非稳态温度场、稳态温度场、稳态导热、等温线、等温面、温度梯度、热量密度矢量、热导率、保温材料、热扩散率(导温系数)、单值性条件、边界条件、导热热阻(圆筒壁)、傅里叶数、毕渥数、特征数、集总参数法、特征长度、时间常数。
第十章平均表面传热系数、局部表面传热系数、对流换热影响因素、特征长度(定型尺寸)、流动边界层、边界层区、主流区、层流边界层、湍流边界层、层流底层、缓冲层、临界距离、临界雷诺数、热边界层、普朗特数、特征数关联式、努塞尔数、平均努塞尔数、相似原理、管内强迫对流换热的特点及影响因素(修正系数大于?小于?1)、外掠壁面强迫对流换热影响因素、体膨胀系数、格拉晓夫数。
工程热力学与传热学课程总结与体会

工程热力学与传热学题目:工程热力学与传热学课程总结与体会院系:水利建筑工程学院给排水科学与工程班级:给排水科学与工程一班姓名:***指导老师:***日期:2016年5月1日认识看法地位作用存在问题解决措施未来发展展望传热学在高新技术领域中的应用摘要: 热传递现象无时无处不在【2】它的影响几乎遍及现代所有的工业部门【1】也渗透到农业、林业等许多技术部门中。
本文介绍了航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等诸多高新技术领域在不同程度上应用传热研究的最新成果。
可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。
不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识【1】而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。
在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。
前言:通过对传热学这门课程的学习,了解了传热的基本知识和理论。
发现传热学是一门基础学科应用非常广泛,它会解决许许多多的实际问题更是与机械制造这门学科息息相关。
传热学是研究由温度差异引起的热量传递过程的科学。
传热现象在我们的日常生活中司空见惯。
早在人类文明之初人们就学会了烧火取暖。
随着工业革命的到来,蒸汽机、内燃机等热动力机械相继出现,传热研究更是得到了飞速的发展,被广泛地应用于工农业生产与人们的日常生活之中。
当今世界国与国之间的竞争是经济竞争,而伴随着经济的高速发展也带来了资源、人口与环境等重大国际问题。
传热学在促进经薪发展和加强环境保护方面起着举足轻重的作用。
20世纪以前传热学是作为物理热学的一部分而逐步发展起来的。
工程热力学与传热学(第二十七)复习题部分答案

《工程热力学与传热学》复习题答案渤海石油职业学院石油工程系——晏炳利第一篇工程热力学第一章绪论一、填空题1.水力能、风能、太阳能、地热能、燃料化学能、原子能等2.①以机械能的形式直接利用(如水力能、风能);②以热能的形式利用(如太阳能、地热能、燃料化学能、原子能等)。
3.①直接利用热能加热物体(如采暖、烘烤、冶炼、蒸煮等);②间接利用。
4.吸气、压缩、爆发、排气5.①热力学第一、第二定律;②研究工质的热物理性质;③研究各种热力设备中的能量转换过程二、概念题1.热力学:是一门研究与热现象有关的能量、物质和它们之间相互作用规律的科学。
2.工程热力学:是从工程应用的角度研究热能与机械能之间相互转换的规律,达到提高能量有效利用率目的的学科。
三、简答题1.工程热力学的基本任务.:通过对各种用能设备及系统中的能量转换过程及影响因素的研究,探索有效、合理利用能量的技术途径和基本方法。
第二章基本概念一、概念题1.工质:工程热力学中,把实现热能与机械能相互转换的媒介物或工作介质称为工质。
2.环境(外界):指系统以外与系统相联系的部分称为环境。
3.热力状态:系统在某一瞬间的宏观物理状况称为系统的热力状态简称状态。
4.平衡态:指在不受外界影响的条件下,系统的宏观性质不随时间改变的状态。
5.绝对压力(P):一般情况下,容器内系统的实际压力称为绝对压力(P)。
测压计测出的不是绝对压力,而是气体的绝对压力与当地大气压力的差值,是一个相对压力。
6.表压力(Pg):当容器内气体的实际压力大于大气压力时,测压计(压力表)的读数为正,读数称为表压力。
7.真空度(Pv):当容器内气体的实际压力小于大气压力时,测压计(真空表)的读数为负,读数的绝对值称为真空度。
状态方程:表示基本状态参数之间函数关系的方程称为状态方程。
热力过程(过程):系统从一个状态变化到另一个状态所经历的状态称为热力过程。
准静态(准平衡)过程:系统由平衡态(I)变化到平衡态(II)的过程中,所经历的每一个中间状态都可看作平衡态,这样的过程均称为准静态(准平衡)过程。
工程热力学与传热学复习资料

第一章基本概念及定义一、热力学系统1、热力系统热力学系统:人为划定的一定范围内的研究对象称为热力学系统,简称热力系或系统。
外界:系统以外的所有物质边界:系统与外界间的分界面2、热力系统的分类根据系统与外界的物质交换情况分类:1.开口系统:存在质量交换2.闭口系统:不存在质量交换根据系统与外界的能量交换情况分类:1.绝热系统:系统与外界无热量交换2.孤立系统:既无能量交换又无物质交换系统3.简单热力系统:只交换热量及一种形式的功4.复杂热力系统:交换热量及两种形式以上的功简单可压缩系统:在简单热力系统中,工质若是可压缩流体,并且系统与外界交换的功的形式是容积变化功(膨胀功或压缩功),则此热力系统称为简单可压缩系统。
(仅需两个状态参数就能确定系统的状态)3、工质与热源工质:实现热能和机械能之间转换的媒介物质。
热源:在能量交换中与工质有热量交换的物系。
分为高温热源和低温热源。
二、热力学系统的状态及基本状态参数1、定义平衡状态:指系统在不受外界影响的情况下,其本身宏观性质不随时间发生变化的状态。
平衡的本质:不存在不平衡势系统热力平衡状态的条件:热平衡(无温差)、力平衡(无压差)2、状态参数特点:1、状态确定,则状态参数也确定,反之亦然;2、状态参数具有积分特征:状态参数的变化量与路径无关,只与初终态有关;3、状态参数具有全微分特性: 3、基本状态参数1、比体积v :单位质量物质所拥有的容积。
2、压力(绝对压力):力学定义——3、温度T :俗称物体冷热程度的标志三、平衡状态和状态参数坐标图状态参数坐标图的说明:1)系统任何平衡态可表示在坐标图上。
2)图中的每一点都代表系统中的一个平衡状态。
3)不平衡态无法在图中表示。
dy yzdx x z dz x y )()(∂∂+∂∂=AF p =四、状态方程式1、理想气体模型气体分子是具有弹性但不占据体积的质点;除相互碰撞外无其它作用力。
2、摩尔气体常数R与气体常数RgR单位:J/(mol·K) Rg单位:J/(kg·K)五、热力过程和准静态过程1、热力过程处于平衡状态的工质,在受到外界作用时,从一个状态经过一系列的中间状态变化到另一个平衡状态所经历的全部状态的总和称为热力过程。
工程热力学与传热学总结与复习

工程热力学与传热学总结与复习一、工程热力学1.热力学基本概念:温度、压力、体积、能量、功、热量等。
2.热力学第一定律:能量守恒原理,能量的转化与传递。
3.热力学第二定律:熵增原理,能量转化的方向性和能量质量的评价。
4.热力学循环:热力学循环的性质和效率计算。
5.热力学性质:热容、比热、比容等,理想气体方程等。
6.相变与理想气体:气体的状态方程,相变的特性和计算。
7.热力学平衡与稳定性:热力学平衡条件和稳定性判据。
8.热力学性能分析:绝热效率、功率、热效率等。
二、传热学1.传热基本概念:传热方式(传导、对流、辐射)、传热热流量。
2.热传导:热传导过程的数学模型、导热系数、傅里叶热传导定律等。
3.对流传热:强制对流和自然对流,传热换热系数的计算和影响因素。
4.辐射传热:黑体辐射、斯特藩—玻尔兹曼定律、辐射传热换热系数等。
5.热传导与热对流的复合传热:壁面传热、换热器传热、管壳传热等。
6.传热器件性能:传热器件的热阻、效率、流动阻力等。
1.理解基本概念:温度、压力、体积、能量、功、热量等的概念和关系。
2.强化热力学基本定律:热力学第一定律和第二定律的应用,能量转化与传递的分析。
3.熟悉状态方程:理想气体方程等的使用,相变的特性和计算方法。
4.学会评价热力学性能:热力学循环的性质和效率计算,热力学性能分析的方法。
5.掌握传热方式和模型:传热方式的概念和特点,热传导、对流传热和辐射传热的数学模型。
6.熟练计算传热换热系数:热传导、对流传热和辐射传热的传热换热系数的计算方法。
7.理解传热过程中的复合传热:热传导与热对流的复合传热的分析和计算方法。
8.增强对传热器件性能的认识:传热器件性能评价的指标和计算方法。
在复习过程中,可以通过阅读教材和相关的参考书籍深入学习热力学和传热学的理论知识。
同时,要结合例题和习题进行练习,加强对概念和公式的运用和理解。
此外,可以通过查找工程实例和实验数据来应用所学知识,加深对热力学和传热学的认识和理解。
工程热力学与传热学复习资料总体(主要是一些概念)

工程热力学第一章工质——实现热能和机械能相互转化的媒介物质。
热力学系统——简称系统、体系,人为分割出来作为热力学分析对象的有限物质系统。
闭口系统——与外界只有能量交换而无物质交换的热力系统,闭口系统又叫做控制质量。
开口系统——与外界不仅有能量交换而且有物质交换的热力系统,开口系又叫做控制容积,或控制体。
区分闭口系和开口系的关键是有没有质量越过了边界,并不是系统的质量是不是发生了变化。
绝热系统——与外界无热量交换的热力系统。
绝热系是从系统与外界的热交换的角度考察系统,不论系统是开口系还是闭口系,只要没有热量越过边界,就是绝热系。
简单可压缩系——由可压缩流体构成,与外界可逆功交换只有体积变化功(膨胀功)一种形式,没有化学反应的有限物质系统。
对于简单可压缩系,只要有两个独立的状态参数即可确定一个平衡状态,所有其它状态参数均可表示为这两个独立状态参数的函数。
准平衡过程——又称准静态过程,不致显著偏离平衡状态,并迅速恢复平衡的过程。
准平衡过程进行的条件是破坏平衡的势无穷小,过程进行足够缓慢,工质本身具有恢复平衡的能力。
准平衡过程在坐标图中可用连续曲线表示。
可逆过程——工质能沿相同的路径逆行而回复到原来状态,并使相互作用中所涉及到的外界回复到原来状态,而不留下任何改变的过程。
过程不可逆的成因一是有限势差的作用,二是物系本身的耗散作用,所以可逆过程,首先应是准平衡过程,同时在过程中没有任何耗散效应。
实际热力设备中所进行的一切热力过程都是不可逆的,可逆过程是不引起任何热力学损失的理想过程。
可逆过程可用状态参数图上连续实线表示。
膨胀功——又称“体积功”。
机械功的一种。
由系统体积变化而由系统对环境所做的功或环境对系统所做的功。
第二章热力学能——原称内能,由分子或其他微观粒子的热运动及相互作用力形成的内动能、内位能及维持一定分子结构的化学能和原子核内部的原子能以及电磁场作用下的电磁能等一起构成的内部储存能。
工程热力学与传热学总结与复习.

一、基本要求严格遵守考试纪律,绝不做任何有作弊嫌疑的动作。
二、考试需要携带的物品相关身份证件、笔、计算器三、复习要点(一)基本概念(红色粗体部分是热力学与传热学最基本的概念,要求掌握其定义、物理意义、表达式、单位)第一章基本概念工质、热源、热力系统、外界(环境)、闭口系统、开口系统、绝热系统、孤立系统、平衡状态、热力状态、状态参数、基本状态参数、压力(Pa,mmH2O,mmHg,atm, at换算)、温度、比体积、密度、状态公理、状态方程式、准平衡过程、可逆过程、不可逆过程、功、膨胀功、热量、比熵、熵、定熵过程第二章热力学第一定律储存能、热力学能、稳定流动、焓、比焓、流动功、技术功第三章理想气体的性质和热力过程理想气体、状态方程式、气体常数、摩尔气体常数、热容、比热容、过程方程式、多变指数第四章热力学第二定律自发过程、热力循环、正向循环、逆向循环、动力循环、循环热效率、制冷系数、供热系数、克劳修斯积分等式、克劳修斯不等式、熵流、熵产、闭口系统熵方程第五章水蒸气与湿空气饱和状态、饱和液体、饱和蒸气、饱和温度、未饱和水、饱和水、湿(饱和)蒸汽、干度、干(饱和)蒸气、汽化潜热、过热蒸气、饱和水线(下界线)、干饱和蒸汽线(上界线)、临界点、未饱和湿空气、饱和湿空气、露点(温度)、绝对湿度、相对湿度、含湿量。
第六章蒸汽动力装置、蒸汽动力循环、郎肯循环(循环的过程构成及主要装置)、提高蒸汽动力循环效率的途径。
第八章导热、一维稳态导热、热流量、热导率(导热系数)、导热热阻(平壁)、热流密度、热对流、对流换热、表面传热系数、对流换热热阻、热辐射、辐射换热、传热过程、传热热阻、传热系数第九章温度场、非稳态温度场、稳态温度场、稳态导热、等温线、等温面、温度梯度、热量密度矢量、热导率、保温材料、热扩散率(导温系数)、单值性条件、边界条件、导热热阻(圆筒壁)、傅里叶数、毕渥数、特征数、集总参数法、特征长度、时间常数。
第十章平均表面传热系数、局部表面传热系数、对流换热影响因素、特征长度(定型尺寸)、流动边界层、边界层区、主流区、层流边界层、湍流边界层、层流底层、缓冲层、临界距离、临界雷诺数、热边界层、普朗特数、特征数关联式、努塞尔数、平均努塞尔数、相似原理、管内强迫对流换热的特点及影响因素(修正系数大于?小于?1)、外掠壁面强迫对流换热影响因素、体膨胀系数、格拉晓夫数。
工程热力学与传热学与复习总结

一、基本要求严格遵守考试纪律,绝不做任何有作弊嫌疑的动作。
二、考试需要携带的物品相关身份证件、笔、计算器三、复习要点(一)基本概念(红色粗体部分是热力学与传热学最基本的概念,要求掌握其定义、物理意义、表达式、单位)第一章基本概念工质:热能与机械能之间转换的媒介物质。
热源:热容量很大、并且在吸收或放出有限热量时自身温度及其他的热力学参数无明显变化的物体。
热力系统:人为选取的研究对象(空间或工质)。
外界(环境):系统以外的所有物质。
闭口系统:与外界无物质交换的系统。
开口系统:与外界有物质交换的系统。
绝热系统:与外界无热量交换的系统。
孤立系统:与外界既无热量交换又无物质交换的系统。
平衡状态:在不受外界影响(重力场作用除外)的条件下,工质或系统的状态参数不随时间而变化的状态。
热力状态:工质在某一瞬间所呈现的宏观物理状况。
状态参数:压力、温度、比体积、热力学能、焓、熵等。
基本状态参数:压力、温度、比体积压力(Pa ,mmH 2O ,mmHg ,atm, at 换算):1 bar = 105 Pa 1 MPa = 106 Pa1 atm = 760 mmHg = 1.013105 Pa 1 mmHg =133.3 Pa 1 at=735.6 mmHg = 9.80665104 Pa1 psi=0.006895MPa温度:处于同一热平衡状态的各个热力系,必定有某一宏观特征彼此相同,用于描述此宏观特征的物理量。
(标志冷热程度的物理量) 比体积:单位质量的工质所占有的体积。
密度:单位体积工质的质量。
ρν=1。
状态公理:对组元一定的闭口系,独立状态参数个数 N =n +1 状态方程式:Ϝ(p ,ν,T)=0。
独立参数数目N =不平衡势差数=能量转换方式的数目=各种功的方式+热量= n +1准平衡过程:系统所经历的每一个状态都无限接近平衡态的过程。
可逆过程:系统经历某一过程后,如果再沿着原路径逆行而回到初始状态,外界也随之恢复到原来的状态,而不留下任何变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
287 J
/ kg K
摩尔气体常数:R = ������0������0 = 8.314������/(������������������ ∗ ������)
������0
热容:物体温度升高 1K(或
所需要的热量
C δQ δQ dT dt
比热容():单位物量的物质升高 1K 或 1oC 所需的热量
3, 水蒸气在汽轮机中的可逆绝热膨胀过程 1-2;
4, 乏汽在冷凝器中定压放热过程 2-3。
提高蒸汽动力循环效率的途径:再热循环(增加蒸汽的干度)、回热
循环(提高锅炉前给水的温度)。
第八章
导热:在物体内部或相互接触的物体表面之间,由于分子、原子及自
由粒子等微观粒子的热运动而产生的热量传递现象称为热传导。
特征长度:V/A 具有长度的量纲,称之为物体的特征长度。
时间常数:
第十章
平均表面传热系数:h,������ = Ah(tw − tf),q = h(tw − tf) 其中������������为固体表面的平均温度,������������为流体温度。 对于外部绕流,������������取远离壁面的平均温度t∞,对于内部流动,������������取流 体的平均温度。
压力(Pa,mmH2O,mmHg,atm, at 换算):
p pb pv p pe pb
1 bar = 105 Pa 1 MPa = 106 Pa 1 atm = 760 mmHg = 1.013 105 Pa 1 mmHg =133.3 Pa 1 at=735.6 mmHg = 9.80665 104 Pa 1 psi=0.006895MPa
对流换热热阻: Rh
1 Ah
单位:K/W
热辐射:由于物体内部微观粒子的热运动而使物体向外发射辐射能的
现象称为热辐射。
说明:热辐射总是伴随着物体的热能和辐射能这两种能量形式的相互
转化、热辐射不依靠中间媒介、物体间热辐射是双向的、辐射换热量
与物体温度、辐射特性、物体大小、形状、相对位置等有关。
辐射换热:当物体之间存在温差时,以热辐射的方式进行能量交换的
理想气体:凡遵循克拉贝龙方程式的气体。
状态方程式:
1mol : pVm RT mkg : pV mRgT
1kg : pv RgT
nmol : pV nRT
气体常数:
Rg
R M
J/ kg K
Rg空气
R M 空气
8.314 J mol K
28.9 10-3 kg mol
k h1 λ h2
第九章
温度场: 在某一时刻 ,物体内所有各点的温度分布,在直角坐标系
中,温度场可表示为: t f (x, y, z, ) 。
非稳态温度场:随时间变化的温度场。
稳态温度场:不随时间变化的温度场。
稳态导热:稳态温度场中的导热。
等温线:在同一时刻,温度场中温度场中的点所连接成的线。
结果使高温物体失去热量,低温物体得到能量,这种热量传递的现象。
传热过程:这种热量从固体壁面一侧的流体通过固体壁面传递到另一
侧流体的过程。Φ
=
= tf1−tf2
tf1−tf2
A1h1+Aδλ+A1h2
Rk
传热热阻:Rk
=
1 Ah1
+
δ Aλ
+
1 =R
Ah2
h1
+
Rλ
+
Rh2
单位:K/W
传热系数:1 = 1 + δ + 1 单位: W冷却时,物体内温度变化的快慢
热扩散率 a 越大,温度随时间的变化率∂t越大,即温度变化越快。
∂τ
单值性条件:为完整地描写某个具体的导热过程,还必须说明导热过
程的具体特点,即给出导热微分方程的单值性条件,或定解条件,使 导热微分方程具有唯一解。
定解条件:几何条件,物理条件,时间条件,边界条件。 边界条件:说明导热物体边界上的热状态以及与周围环境之间的相互 作用,例如边界上的温度分布、热流密度分布以及物体通过边界与周 围环境之间的热量传递情况等。
对流换热:流体与固体表面之间的热量传递是热对流与导热两种基本
传递共同作用的结果。
表面传热系数:h 的大小反映对流换热的强度,与物性(热导率、粘
度、密度、比热容等)、流态(湍流、层流)、流动成因(自然对流、
强迫对流)、物体形状和尺寸、换热时流体有无相变(沸腾或凝结)
有关。不是物性参数。 Ah tw t f
毕渥数: Bi h
1h
分子为导热物体内部单位面积上的导热热阻������⁄������,分母为边界处的单 位表面积上的对流换热热阻 1/h。物理意义为物体内部的导热热阻与
边界处的对流换热热阻之比,所以 Bi 的大小,反映了边界条件对平
壁内温度分布的影响。
特征数:Bi 和 F0称为特征数。也称为准则数,具有特定的物理意义。 集总参数法:忽略物体内部导热热阻的简化分析方法。
温度:处于同一热平衡状态的各个热力系,必定有某一宏观特征彼此 相同,用于描述此宏观特征的物理量。(标志冷热程度的物理量) 比体积:单位质量的工质所占有的体积。 v V
m
密度:单位体积工质的质量。ρν = 1。 状态公理:对组元一定的闭口系,独立状态参数个数 N=n+1 状态方程式:Ϝ(p,ν,T) = 0。
逆的,则是不可逆循环。
克劳修斯积分等式:工质经历任意可逆循环后,沿整个循环积分等于
零
Q
Tr 0
克劳修斯不等式:工质经历任意不可逆循环后,沿整个循环积分小于
零
Q Q1' Q2' 0 T T1 T2
熵流:
dSf
Q T
熵产:熵产是过程不可逆性大小的度量。
闭口系统熵方程 S Sf Sg 第五章 水蒸气与湿空气
λ的大小反映材料的导热能力, λ越大,材料导热能力越强。
导热热阻(平壁):Rλ
=
δ λA
表示物体对热量传递的阻力单位:K/W
热流密度:q:单位时间通过单位面积的热流量。单位:W/m2 q tw1 tw2
A
热对流:由于流体的宏观运动使温度不同的流体相对位移而产生的热
量传递现象。(只能发生在流体中、必然伴随导热)
一、基本要求 严格遵守考试纪律,绝不做任何有作弊嫌疑的动作。 二、考试需要携带的物品 相关身份证件、笔、计算器 三、复习要点
(一)基本概念(红色粗体部分是热力学与传热学最基本的概念,要 求掌握其定义、物理意义、表达式、单位) 第一章 基本概念 工质:热能与机械能之间转换的媒介物质。 热源:热容量很大、并且在吸收或放出有限热量时自身温度及其他的 热力学参数无明显变化的物体。 热力系统: 人为选取的研究对象(空间或工质)。 外界(环境):系统以外的所有物质。 闭口系统:与外界无物质交换的系统。 开口系统:与外界有物质交换的系统。 绝热系统:与外界无热量交换的系统。 孤立系统:与外界既无热量交换又无物质交换的系统。 平衡状态:在不受外界影响(重力场作用除外)的条件下,工质或系 统的状态参数不随时间而变化的状态。 热力状态:工质在某一瞬间所呈现的宏观物理状况。 状态参数:压力、温度、比体积、热力学能、焓、熵等。 基本状态参数:压力、温度、比体积
焓:h = u + pv
[ kJ/kg ]
H = U + pV
、 [ kJ ]
对流动工质,比焓代表能量(比热力学能+流动功) 对静止工质,比焓虽具有能量的单位但不代表能量。
比焓:h = u + pv
流动功:在数值上等于工质的压力与比体积的乘积。pv
技术功:
wt
1 2
c2
gz
ws
第三章 理想气体的性质和热力过程
导热热阻(圆筒壁): R
1 2 l
ln
d2 d1
傅里叶数:F0
=
a������ ������2
=
������ ������2⁄a
分子为从非稳态导热过程开始到τ时刻的时间,分母可理解为温度变
化波及到������2面积所需要的时间。所以,F0为两个时间之比,是非稳态
导热过程的无量纲时间。
临界点
未饱和湿空气
饱和湿空气
露点(温度):湿空气中水蒸气的分压为������������所对应的饱和温度。������������
绝对湿度:每 1m3 湿空气中所含的水蒸气的质量。
相对湿度
v pv s ps
表明湿空气与同温下饱和湿空气的偏离程度、反映所含水蒸气的饱和
程度 。
含湿量:在湿空气中,与单位质量干空气共存的水蒸气的质量。
特点:(1)不需要物体发生宏观运动(2)物质状态不同(3)微观粒
子的运动特点不同(4)温差
一维稳态导热:平壁两表面维持均匀恒定的温度,温度不随时间的变
化,热量只沿垂直于壁面的方向传递
热流量:
A tw1 tw2
W
热导率(导热系数):λ是材料的热导率(导热系数) 单位:W/(m•K)
局部表面传热系数:hx,������ = ∫A qxdA = ∫A hx(tw − tf)xdA
h
=
������ A
∫A
hxdA
对流换热影响因素:1,流动的起因;2,流动的状态;3,流动有无
相变;4,流体的物理性质;5,换热表面的几何因素
特征长度(定型尺寸):l
流动边界层:速度发生明显变化的流体薄层;
热量:热力系统与外界之间依靠温差传递的能量。
比熵:ds
=