(完整)高中数学必修二解析几何测试题

合集下载

苏教版高中数学必修2配套练习参考答案解析几何全部

苏教版高中数学必修2配套练习参考答案解析几何全部

解析几何部分(共:1—17课时及每章评价)参考答案:第1课时 直线的斜率(1)1.D 2.C 3.D 4.4- 5.1k ≤ 6.可以是(2,4),不惟一. 7.由题意,()132212a -=++,∴2a =-.8.当1m =时,直线l 与x 轴垂直,此时直线斜率不存在; 当1m ≠时,直线斜率34111k m m-==--. 9.在直线斜率为0,OC 边所在直线斜率不存在,BC 边所在直线斜率为43-.10.由AB AC k k ≠,可得1112383k --≠---, ∴1k ≠.第2课时 直线的斜率(2)1.C 2.B 3.D 4.60o. 5.6 6. (0,2)7. 045α≤<o o 或135180α<<o o.8.倾斜角为45o时斜率为1,倾斜角为135o时斜率为1-.9.直线l 上任一点(,)M m n 经平移后得(3,1)N m n -+在l 上,由两点的斜率公式得(1)1(3)3l n n k m m +-==---.10.直线2l 的倾斜角为180(6015)135α=--=oooo, ∴2tan135tan 451k ==-=-oo.第3课时 直线的方程(1)1.C 2.D 3.A 4.D 5.(1)4y =-;(2)23y x =-- 6.1y +6y x =-+7.由直线1l 的方程2y =+可得1l 的倾斜角为60o ,∴直线l 的倾斜角为30o,斜率为tan 303=o,所以,直线l 的方程为12)y x -=-,即1y x =-+.8. 1:1:(2)-9.由直线1l的方程20x y -+=可求得1l 的斜率为1, ∴倾斜角为145α=o,由图可得2l 的倾斜角2115αα=+o∴直线2l 的斜率为tan 60=o, ∴直线2l 的方程为2)y x -=-0y -=.10.设直线方程为34y x b =+, 令0x =,得y b =;令0y =,得43x b =-, 由题意,14||||623b b ⨯-⨯=,29b =,∴3b =±, 所以,直线l 的方程为334y x =±.第4课时 直线的方程(2)1.D 2.D 3.B 4. 2y x =或1y x =+ 5.3 6. 10x y +-=或32120x y -+=7.设矩形的第四个顶点为C ,由图可得(8,5)C , ∴对角线OC 所在直线方程为005080y x --=--,即580x y -=,AB 所在直线方程为185x y+=,即58400x y +-=. 8.当截距都为0时,直线经过原点,直线斜率为43-,方程为43y x =-;当截距都不为0时,设直线方程为1x ya a +=, 将点(3,4)-代入直线方程得341a a-+=,解得1a =-, 所以,直线方程为430x y +=或10x y ++=.9.当0t =时,20Q =;当50t =时,0Q =,故直线方程是15020t Q +=.图略. 10.直线AB 的方程为3x =,直线AC 的方程为123x y+=,直线x a =与,AB AC 的交点分别为(,3)a 、63(,)2a a -,又∵92ABC S ∆=,∴1639(3)224a a -⋅⋅-=,∴a =(舍负).第5课时 直线的方程(3)1.B 2.D 3.B 4.D 5. 350x y -+= 6.24- 7.当2a =时,直线方程为2x =不过第二象限,满足题意;当20a -≠即2a ≠时,直线方程可化为1(4)2y x a a =+--, 由题意得2010240a a a -≠⎧⎪⎪>⎨-⎪-≤⎪⎩,解得24a <≤,综上可得,实数a 的取值范围是24a ≤≤. 8.(1)由题意得:22(23)(21)m m m m ---=+-, 即2340m m --=,解得43m =或1-(舍) (2)由题意得:22(23)(21)260m m m m m ----+--+=,即23100m m +-=,解得2m =-或53. 9.方法1:取1m =,得直线方程为4y =-, 取12m =,得直线方程为9x =, 显然,两直线交点坐标为(9,4)P -,将P 点坐标分别代入原方程得(1)9(21)(4)5m m m -⨯+-⨯-=-恒成立,所以,不论m 取什么实数,直线(1)m x -+(21)5m y m -=-总经过点(9,4)P -.方法2:原方程可整理得(21)(5)0x y m x y +--+-=,当21050x y x y +-=⎧⎨+-=⎩成立,即94x y =⎧⎨=-⎩时,原方程对任意实数m 都成立,∴不论m 取什么实数,直线过定点(9,4)-.10.方程0x y k +-=可变形为23)9k =-, 当90k -=即9k =时,方程表示一条直线90x y +-=; 当90k -<即9k >时,方程不能表示直线;当90k ->即9k <3= ∵方程仅表示一条直线,∴30+>且30-<,即0k <.综上可得,实数k 的取值范围为9k =或0k <.第6课 两直线的交点1.D 2.D 3.B 4.B 5.-3 6.6或-6 7.10,-12,-2 8.32190x y -+=9.4m =,或1m =-,或1m =.(提示:如果三条直线不能围成三角形,则有两种情形,一是其中有平行的直线,二是三条直线交于一点.) 10.(1)表示的图形是经过两直线210x y -+=和2390x y ++=的交点(3,1)--的直线(不包括直线2390x y ++=).(2)30x y -=或40x y ++=.(提示:可设所求直线方程为21(239)0x y x y λ-++++=,即(21)(32)910x y λλλ++-++=.若截距为0,则910λ+=,即19λ=-,此时直线方程为30x y -=;若截距不为0,则21132λλ+-=--,即3λ=,此时直线方程为40x y ++=.) 11.直线l 的方程为60x y += 12.22b -≤≤(数形结合)第7课 两直线的平行与垂直(1) 1.D 2.B 3.C 4.平行, 不平行5.平行或重合 6.-2 , 0或10 7.四边形ABCD 是平行四边形. 8.32A C =≠-且9.2,2m n == 10.20x y += 11. 3440x y +-=12.860860x y x y -+=--=或(提示:Q 所求直线与已知直线l :8610x y -+=平行,∴设所求直线的方程为860x y λ-+=,与两坐标轴的交点为λ(-,0)8,λ(0,)6.又该直线与两坐标轴围成的三角形面积为8,∴1||||8286λλ⋅-⋅=,λ∴=±,故所求直线方程为860x y -+=或860x y --= 第8课 两直线的平行与垂直(2)1. B2. C3. C4. C5. B6. 垂直,不垂直7. 32y x =+8. 2,-2,09. 20x y -= 10. 310x y ++=和330x y -+= 11. 1a =-或92a =-12.270x y +-=,10x y -+=,250x y +-=(提示:由于点A 的坐标不满足所给的两条高所在的直线方程,所以所给的两条高线方程是过顶点B ,C 的,于是2AB k =-,1AC k =,即可求出边AB ,AC 所在的直线方程分别为270x y +-=,10x y -+=.再由直线AB 及过点B 的高,即可求出点B 的坐标(3,1),由直线AC 及过点C 的高,即可求出点C 的坐标(1,2).于是边BC 所在的直线方程为250x y +-=.)第9课 平面上两点间的距离1.C 2.C 3.C 4.A5.B 6.22y y =-=-或 7.47240x y +-= 8.23120x y +-=912|x x - 10.13410x x y =++=或 11.5150x y --=12.(1) (2,0)P -;(2) (13,0)P ,此时||PM PN -. 13.54x =(提示:y =数形结合,设(1,1),(2,3),(,0)A B P x ,则y PA PB =+)第10课时 点到直线的距离(1)1.()A 2.()C 3.()D 4.()A 5.()C 6.()A 7.58.2a =或4639.设所求直线方程为340x y m -+=,=解得:14m =或12m =-(舍),所以,所求的直线方程为:34140x y -+=.10.由题意第一、三象限角平分线的方程为y x =,设00(,)P x y ,则00x y =,即00(,)P x x .= 解得:01x =或09x =-,所以点P 的坐标为:(1,1)或(9,9)--.11.由题意:当直线l 在两坐标轴上的截距为0时, 设l 的方程为y kx =(截距为0且斜率不存在时不符合题意)=k = 122-±,所以直线l 的方程为:122y x -±=. 当直线l 在两坐标轴上的截距不为0时,设l 的方程为1x ya a+=,即0x y a +-=,=a =13或1a =, 所以直线l 的方程为:130x y +-=或10x y +-=.综上所述:直线l 的方程为:122y x -±=或130x y +-=或10x y +-=. 12.设(,1)M t t -,则M 到两平行线段的距离相等,∴43t =,即41(,)33M ∵直线l 过(1,1)P -,41(,)33M 两点,所以,l 的方程为2750x y +-=.第11课时 点到直线的距离(2)1.()B 2.()C 3.()A 4.18 5.(1,2)或(2,1)- 6.34210x y +-=7.3208.4310x y +-=9.设l :320x y C -+=则1d =2d =1221d d =,所以|1|2|13|1C C +=+,解得:25C =-或9-, 所以l 的方程为:32250x y --=或3290x y --=.10.证明:设(,)P a b ,则221a b -=P 到直线1l ,2l的距离分别为1d =,2d = ∴2212||122a b d d -==g. 11.设(,)M x y 为A ∠的平分线AD 上任意一点,由已知可求得,AC AB 边所在直线方程分别为5120x y -+=,5120x y --=,由角平分线的性质得:=∴512512x y x y -+=--或512(512)x y x y -+=---, 即6y x =-+或y x =,由图知:AC AD AB k k k <<,∴155AD k <<,∴6y x =-+不合题意,舍去,所以,A ∠的平分线AD 所在直线方程y x =. 12.设CD 所在直线方程为30x y m ++=,=,解得7m =或5m =-(舍).所以CD 所在直线方程为370x y ++=.因为AB BC ⊥所以设BC 所在直线方程为30x y n -+=,=,解得9n =或3n =-.经检验BC 所在直线方程为390x y -+=,AD 所在直线方程为330x y --=.综上所述,其它三边所在直线方程为370x y ++=,390x y -+=,330x y --=.第12课时 圆的方程(1)1.()B 2.()C 3.()B 4.()C 5.()C 6.()B 7.(1)0a =;(2)||b r =;(3)310a b +-=. 8.22(6)36x y -+=9.C e 的圆心为(3,2)C -,C 'e 的圆心与(3,2)C -关于10x y -+=对称, ∴设C 'e 的圆心为(,)C a b '则3210222113a b b a +-⎧-+=⎪⎪⎨+⎪=-⎪-⎩g ,解得:34a b =-⎧⎨=⎩,C 'e 的标准方程为:22(3)(4)36x y ++-=.10.由题意可设C e 的圆心为(,)C a b 半径为r ,则||2a =当2a =时,C e :222(2)()x y b r -+-= 因为C e 与直线20x y +-=相切于点(1,1)P , ∴222(12)(1)b r -+-= ①且1(1)112b--=--g ② 联立方程组,解得:2b =,r =所以C e 的方程为:22(2)(2)2x y -+-=同理,当2a =-时,C e 的方程为:22(2)(2)18x y +++=综上所述:C e 的方程为:22(2)(2)2x y -+-=或22(2)(2)18x y +++=11.由题意设C e 的方程为222()()x a y b r -+-=,由C e 经过点(2,1)-,得:222(2)(1)a b r -+--=①由C e 与直线10x y --=r =② 由圆心在直线2y x =-上,得:2b a =-③联立方程组,解得:918a b r ⎧=⎪=-⎨⎪=⎩,或12a b r ⎧=⎪=-⎨⎪=⎩所以,C e 的方程为:22(9)(18)338x y -++=或22(1)(2)2x y -++=.12.设⊙C 的方程为:222()()x a y b r -+-=,∵⊙C 与x 轴相切,所以22r b =①,又∵圆心(,)C a b 到直线0x y -=的距离为:d =∴222r +=,即 22()142a b r -+=②,又圆心在直线30x y -=上,所以30a b -=③联立方程组,解得133a b r =⎧⎪=⎨⎪=⎩或133a b r =-⎧⎪=-⎨⎪=⎩所以C e 的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.第13课时 圆的方程(2)1.()C 2.()D 3.()B 4.12k <-5.2 6.2π7.5,5 8.2或23-9.圆方程为220x y Dx Ey F ++++=,将(0,0),(1,1)两点坐标代入方程分别得0F = ①20D E F +++= ②又∵圆心(,)22D E--在直线30x y --=上,∴60E D --= ③解由①②③组成的方程组得4,2,0D E F =-==,∴所求圆方程为22420x y x y +-+=,圆心(2,1)-10.证明:将034222=+--+y x y x 化为22(1)(2)2x y -+-= 则点与圆心之间的距离的平方为222(41)(2)17125m m m m -+-=-+ 又∵圆的半径的平方为2,∴2171252m m -+-217123m m =-+ 令2()17123f x m m =-+0∆<,即2()17123f x m m =-+恒大于0,即点与圆心之间的距离恒大于圆的半径,所以无论实数m 如何变化,点(4,)m m 都在圆034222=+--+y x y x 之外.11.设所求圆的方程为: 022=++++F Ey Dx y x令0y =,得20x Dx F ++=.由韦达定理,得12x x D +=-,12x x F =由12||x x -=6=,∴2436D F -=. 将(1,2)A ,(3,4)B 分别代入022=++++F Ey Dx y x ,得25D E F ++=-,3425D E F ++=-.联立方程组,解得12D =,22E =-,27F =或8D =-,2E =-,7F =所以所求的圆的方程为221222270x y x y ++-+=或228270x y x y +--+=12.证明:由题意22210250x y ax ay a ++---=,∴2225()()102524a a x a y a ++-=++ 令25()10254a f a a =++,则0∆<, ∴()0f a >即22(25)(210)0x y a x y +-+--=,表示圆心为(,)2a a -若22(25)(210)0x y a x y +-+--=对任意a 成立,则222502100x y x y ⎧+-=⎨--=⎩,解得34x y =⎧⎨=-⎩或5x y =⎧⎨=⎩,即圆恒过定点(3,4)-,(5,0).第14课时 直线与圆的位置关系1.C 2.C 3.D 4.B 5.34250x y +-= 6.40x y +±=7 8. 247200x y --=和2x =;7 9.22(3)(1)9x y -+-=或22(3)(1)9x y +++=. 10.16m =-.11. 4330x y ++=或3430x y +-=.第15课时 圆与圆的位置关系 ⒈B ⒉B 3.D 4.A5.20x y -+= 6.260x y -+= ,6 7.(1,1) 8.22(3)(1)5x y -+-= 9.224(1)(2)5x y ++-=10.(1)240x y -+=; (2)22(2)(1)5x y ++-=; (3)22(3)(3)10x y ++-=. 11. 3r =±.第16课时 空间直角坐标系1.B ⒉C 3.C 4.D5.(2,0,0)、(0,3,0)- 6.(0,4,2)7.442110x y z ++-=8.略 9.略10.提示(1)只要写出的三点的纵坐标和竖坐标分别相等即可;(2)只要写出的三点的竖坐标相等即可.11.111212121x x y y z z x x y y z z ---==---21(x x ≠且21y y ≠且21)z z ≠.第17课时 空间两点间的距离1.D 2.D 3.A 4.A 5.(0,2,0) 6.222(1)(2)(4)9x y z -+++-=7.7 8.(1,0,0)P ± 9.[提示]建立空间直角坐标系,由中点坐标公式求出,P Q 两点坐标,用两点间距离公式即可求得线段PQ2.10.(1)(1,2,1)[提示]设重心G 的坐标为(,,)x y z ,则222GA GB GC ++2233x y =+22236126643(1)3(2)z x y z x y +---+=-+-23(1)46z +-+.当1,2,1x y z ===时,点G 到,,A B C 三点的距离的平方和最小,所以重心的坐标为(1,2,1).(2)1,8,9x y z ===.第二章《解析几何初步》评价与检测参考答案:1.C 2.D 3.B 4.B 526.0d ≤≤ 7.4个 8.60 9.67250x y +-= 10.2750x y +-= 11.22(2)(2)25x y -++= 12.(1,0)A -,C (5,6)- 13.B14.C 15.A 16.D 17.11(,)102- 18.4a =±19.20,x y y x ++==,y x = 20.10 21.解:设与51270x y ++=平行的边所在直线方程为5120x y m ++=(7)m ≠,则=解得19m =-, ∴直线方程为512190x y +-=,又可设与51270x y ++=垂直的边所在直线方程为1250x y n -+=()n R ∈,则=解得100n=或74,∴另两边所在直线方程为1251000x y-+=,125740x y-+=22.解:设()2,1B-,()4,2C,()2,3D第四个顶点的坐标为(),A m n.则有BC所在直线的斜率为32BCk=;CD所在直线的斜率为12CDk=-;BD所在直线的斜率不存在.①若BD∥AC,BC∥AD,则AC所在直线的斜率不存在.4m∴=.又BC ADk k=,即33242n-=-,6n∴=.∴平行四边形第四个顶点的坐标为()4,6.②若BD∥AC,CD∥BA,则AC所在直线的斜率不存在.4m∴=.又CD BAk k=,即()11242n---=-,2n∴=-.∴平行四边形第四个顶点的坐标为()4,2-.③若CD∥BA,BC∥AD,则,CD BABC ADk kk k=⎧⎨=⎩()11223322nmmnnm--⎧-=⎪=⎧⎪-⇒⇒⎨⎨=-⎩⎪=⎪-⎩∴平行四边形第四个顶点的坐标为()0,0.综上所述,平行四边形第四个顶点的坐标可为()4,6或()4,2-或()0,0.23.解:设1122(,),(,)P x y Q x y,由2223060x yx y x y c+-=⎧⎨++-+=⎩消去x得2520120y y c-++=,∴由韦达定理知:12124125y y c y y +=⎧⎪⎨+=⎪⎩Q OP OQ ⊥,12121y y x x ∴⋅=-, 即12120x x y y +=,又12121212(32)(32)96()4x x y y y y y y =--=-++∴121296()50y y y y -++=, 也就是12964505c +-⨯+⨯=解之,得3c =. 从而所求圆的方程为22630x y x y ++-+=24.解:设1122(,),(,)P x y Q x y ,则1|OP x ==,2|OQ x ==.,P Q Q 为直线与圆的交点,∴ 12,x x 是方程22(1)(86)210x m m x ++-+=的两根, ∴12221,1x x m=+ ∴ 2221(1)211OP OQ m m ⋅=+=+。

天津市必修二第二章《解析几何初步》测试题(包含答案解析)

天津市必修二第二章《解析几何初步》测试题(包含答案解析)

一、选择题1.两圆22440x y x y ++-=和22280x y x ++-=相交于两点,M N ,则线段MN 的长为 A .4BCD2.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( ) A.2B.4C .7D .93.圆22(2)5x y ++=关于直线10x y -+=对称的圆的方程为( ) A .22(1)(1)5x y +++= B .()2225x y +-= C .22(1)(1)5x y -+-=D .22(2)5x y -+=4.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D .若D 到直线BC的距离等于a ) ABC .2D5.已知实数x ,y 满足()2221x y +-=,则的最大值为( )A .12BC .1D6.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3D .47.若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为( ) A .2:1B .4:1C .8:1D .8:38.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA '是铅垂面,下宽3m AA '=,上宽4m BD =,深3m ,平面BDEC 是水平面,末端宽5m CE =,无深,长6m (直线CE 到BD 的距离),则该羡除的体积为( )A .324mB .330mC .336mD .342m9.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE △,BCF △,CDG ,ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE △,BCF △,CDG ,ADH ,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )A .163πB .253πC .643πD .1003π10.如图,正三棱柱111ABC A B C -的高为4,底面边长为43D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .23C .43D .1211.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A .263+B .463+C .4263-D .2263-12.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM 平面ADE ;②D E BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④二、填空题13.已知圆C 1:22(2)(3)1x y -+-=,圆C 2:22(3)(4)9x y -+-=,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则PM PN +的最小值_____.14.经过直线20x y -=与圆224240x y x y +-+-=的交点,且过点()1,0的圆的方程为______.15.已知圆22C 9x y +=:,过定点(2,2)P 的动直线l 与圆C 交于,M N 两点, 则PM PN ⋅=______________.16.若直线()220,0ax by a b +-=>始终平分圆22420x y x y +--=的周长,则12a b+的最小值为______. 17.若圆1C :220x y ax by c 与圆2C :224x y +=关于直线21y x =-对称,则c =______.18.已知A 是直角坐标平面内一定点,点(0,0)O ,若圆22()(–12)3x y -+=上任意一点M 到定点A 与点(0,0)O 的距离之比是一个定值λ,则这个定值λ的大小是________. 19.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =+m n α,其中m ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.20.正方体1111ABCD A BC D -棱长为点1,点E 在边BC 上,且满足2BE EC =,动点P 在正方体表面上运动,满足1PE BD ⊥,则动点P 的轨迹的周长为__________. 21.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.22.一件刚出土的珍贵文物要在博物馆大厅中央展出,需要设计一个各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形(如图所示),高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体费用最少为_________元.23.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.24.将底面直径为8,高为23的圆锥体石块打磨成一个圆柱,则该圆柱侧面积的最大值为______.三、解答题25.如图所示,四棱锥P ABCD -的底面ABCD 是平行四边形,90DBA ∠=︒,2BA BD ==,10,,PA PD E F ==分别是棱,AD PC 的中点.(1)证明://EF 平面PAB ;(2)若二面角P AD B --为60︒,求点B 到平面PAD 的距离.26.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,∠ADP =90°,PD =AD ,∠PDC =60°,E 为PD 中点.(1)求证:PB //平面ACE : (2)求四棱锥E ABCD -的体积.27.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为23的正三角形,43PB =﹐60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.28.如图,在三棱锥P ABC -中,⊥PA AB ,PA BC ⊥,AB BC ⊥,2PA AB BC ===,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:平面BDE ⊥平面PAC ;(2)当//PA 面BDE 时,求三棱锥E BCD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出圆心和半径以及公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦的长. 【详解】∵两圆为x 2+y 2+4x ﹣4y=0①,x 2+y 2+2x ﹣8=0,② ①﹣②可得:x ﹣2y+4=0.∴两圆的公共弦所在直线的方程是x ﹣2y+4=0,∵x 2+y 2+4x ﹣4y=0的圆心坐标为(﹣2,2),半径为2 ∴圆心到公共弦的距离为2224425512--+=+ ∴公共弦长=()222122225555⎛⎫-= ⎪⎝⎭故答案为:C 【点睛】本题主要考查圆与圆的位置关系,考查两圆的公共弦长的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.2.D解析:D 【分析】求出P 点到两圆心的距离,圆1C :22(1)(1)1x y -++=的圆心(11)E -,,圆2C :22(4)(5)9x y -+-=的圆心(45)F ,,由()PF R PE r +--为最大值.再求得E 关于x 轴的对应点E ',PF PE -=PF PE '-FE '≤,由此可得最大值.【详解】圆1C :22(1)(1)1x y -++=的圆心(11)E -,,半径为r =1, 圆2C :22(4)(5)9x y -+-=的圆心(45)F ,,半径是R =3, 要使||||PN PM -最大,需||PN 最大,且||PM 最小,||PN 最大值为3PF +,||PM 的最小值为1PE -,故||||PN PM -最大值是(3)(1)4PF PE PF PE +--=-+,(45)F ,关于x 轴的对称点(45)F '-,,5PF PE PF PE EF -=-≤='=',故4PF PE -+的最大值为549+=, 故选:D . 【点睛】结论点睛:设P 是圆C 外一点,圆C 半径为r ,则P 到圆上点的距离的最大值为PC r +,最小值为PC r -,直线PC 与圆的两个交点为最大值点和最小值点. 3.A解析:A 【分析】求出已知圆的圆心关于直线10x y -+=对称的点,即得对称圆的方程. 【详解】圆22:(2)5C x y ++=的圆心坐标为(2,0)C -设点(2,0)C -关于直线10x y -+=对称的点(,)C m n ', 则01221022n m m n -⎧=-⎪⎪+⎨-⎪-+=⎪⎩,解得1m =-,1n =-.∴对称的圆的方程为22(1)(1)5x y +++=.故选:A 【点睛】本题主要考查对称圆的方程的求法,意在考查学生对这些知识的理解掌握水平.4.A解析:A 【分析】依题意求得,,A B C 的坐标,求得直线,BD CD 的方程,联立,BD CD 的方程求得D 点坐标,根据D 到直线BC的距离等于a . 【详解】依题意可知()22,0,,,,b b A a B c C c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,所以()()22,AB CD a c a b k k a c a b -==--,()()22,ACBD a c a b k k a c a b -=-=-,所以直线BD :()()22a c ab y xc a b--=-①,直线CD :()()22a c ab y xc a b-+=--②, ①-②并化简得()42D b x c a c a =+-.由于D 到直线BC的距离等于a a c =+,直线BC 方程为x c =,所以()42D b x c a a c a =+=--,化简得22,a b a b ==,所以双曲线为等轴双曲线,离心率为故选:A 【点睛】本小题主要考查直线和直线交点坐标的求法,考查直线方程点斜式,考查两条直线垂直斜率的关系,考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于中档题.5.B解析:B 【分析】设(),P x y 为圆()2221x y +-=上的任意一点,构造直线0l y +=,过点p 作PM l ⊥p0y +=的距离和到原点的距离的比,即sin PMPOM OP==∠,然后利用数形结合法求得POM ∠的范围求解. 【详解】 如图所示:设(),P x y 为圆()2221x y +-=上的任意一点,则点P 30x y +=的距离为3x y PM +=点P 到原点的距离为22OP x y =+223sin 2x y PMPOM OPx y +==∠+, 设圆()2221x y +-=与直线y kx =相切 211k =+,解得3k =±所以POM ∠的最小值为0,最大值为60, 所以30sin POM ≤∠≤即223302x y x y +≤≤+223x y x y ++3 故选:B 【点睛】本题主要考查点到直线的距离,直线与圆的位置关系以及三角函数的性质的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.6.B解析:B 【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论. 【详解】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3, 设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时22||(31)(2)22CP =-+-=根据弦长公式得最小值为229||2982CP -=-=. 故选:B. 【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.7.A解析:A 【分析】根据三角形相似得出圆锥的底面半径和高的关系,根据体积公式和基本不等式得出答案. 【详解】设圆锥的高为h ,底面半径为r ,则当球面与圆锥的侧面以及底面都相切时,轴截面如图,由~AOE ACF 可得:22(1)11h r --=,即22r h h =-, ∴圆锥的体积22148[(2)4]33(2)323h V r h h h h ππππ===-++--.当且仅当22h -=,即4h =时取等号.∴该圆锥体积的最小值为83π. 内切球体积为43π. 该圆锥体积与其内切球体积比2:1. 故选:A .【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.C解析:C 【分析】在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算. 【详解】如图,在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',则三棱柱ABC A B C '''-是斜三棱柱,该羡除的体积V V=三棱柱ABC A B C '''-V+四棱锥A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故选:C .【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.9.D解析:D 【分析】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62xIE =-,求出x 的值,再利用勾股定理求R ,代入球的表面积公式,即可得答案. 【详解】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62x IE =-, 因为该四棱锥的侧面积是底面积的2倍, 所以246222x x x ⎛⎫⨯⨯-= ⎪⎝⎭,解得4x =. 设该四棱锥的外接球的球心为Q ,半径为R ,如图,则QP QC R ==,22OC =16423OP =-= 所以()(2222322RR =+,解得3R =, 所以外接球的表面积为2100433S ππ==(2cm ).故选:D . 【点睛】关键点点睛:本题考查平面图形的折叠,四棱锥外接球的半径,解题关键在于平面图形折叠成立体图形后,要明确变化的量和没有变的量,以及线线的位置,线面的位置关系,对于几何体的外接球的问题,关键在于确定外接球的球心的位置.10.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解. 【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=, 故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S-=-=⋅⋅=故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.11.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =,2241625DE DF AD AE ==+=+=2222EF BE BF =+ 在DFE △中,22210cos 21022522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=, DEF 的外接圆的半径为5522sin 310DF r DEF ===∠则球心到DEF 2223R r -,以FDE 为底面的三棱锥G -DEF 的高h 的最大值为1R OO +263. 故选:A. 【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.12.A解析:A 【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确.【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示; 对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF ,∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以D E BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确; 对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面ABCD ,所以MC BD ⊥,又AC MC C ,所以BD ⊥平面ACM ,所以BD ⊥AM ,同理得ED ⊥AM ,ED BD D =,所以AM ⊥平面BDE ,∴④正确.故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.二、填空题13.【分析】求出圆关于轴对称圆的圆心坐标以及半径然后求解圆与圆的圆心距减去两个圆的半径和即可得到的最小值【详解】如图所示圆关于轴对称圆的圆心坐标以及半径圆的圆心坐标为半径为所以的最小值为圆与圆的圆心距减 解析:524【分析】求出圆1C 关于x 轴对称圆的圆心坐标A ,以及半径,然后求解圆A 与圆2C 的圆心距减去两个圆的半径和,即可得到PM PN +的最小值. 【详解】如图所示,圆1C 关于x 轴对称圆的圆心坐标3(2,)A -,以及半径1, 圆2C 的圆心坐标为(3,4),半径为3,所以PM PN +的最小值为圆A 与圆2C 的圆心距减去两个圆的半径和, 22(32)(43)(13)524-+++=.【点睛】本题主要考查了圆的对称圆的方程的求法,以及两圆的位置关系的应用,其中解答中把PM PN +的最小值转化为圆A 与圆2C 的圆心距减去两个圆的半径和是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.14.【分析】根据题意设出过直线和圆的交点的圆系方程代入已知点坐标可求出的值即可确定所求圆的方程【详解】设过已知直线和圆的交点的圆系方程为:∵所求圆过点∴解得所以圆的方程为化简得故答案为:【点睛】本题主要 解析:2231240x y x y ++--=【分析】根据题意设出过直线和圆的交点的圆系方程,代入已知点坐标,可求出λ的值,即可确定所求圆的方程. 【详解】设过已知直线和圆的交点的圆系方程为:()2242420x y x y x y λ+-+-+-=∵所求圆过点()1,0 ∴70λ-+= 解得7λ=所以圆的方程为()22424720x y x y x y +-+-+-=,化简得2231240x y x y ++--=.故答案为:2231240x y x y ++--=. 【点睛】本题主要考查求解圆的方程,设出过已知直线和圆的交点的圆系方程是解本题的关键.15.【分析】可分为直线斜率存在和不存在两种情况具体讨论当直线斜率存在时联立直线和圆结合韦达定理即可求解【详解】当直线斜率不存在时直线方程为:将代入得可设点则;当直线斜率存在时设直线方程为:联立则综上所述 解析:1-【分析】可分为直线斜率存在和不存在两种情况具体讨论,当直线斜率存在时,联立直线和圆,结合韦达定理即可求解 【详解】当直线斜率不存在时,直线方程为:2x =,将2x =代入22 9x y +=得y =点()(2,5,2,M N ,则()()5221PM PN ⋅=⨯=-;当直线斜率存在时,设直线方程为:()22y k x =-+,()()1122,,,M x y N x y联立()()()()2222221444190 229k x k k x y k y x x k ⎧⎪⇒++-+--=⎨=+=-+⎪⎩ ()212221224414191k k x x k k x x k ⎧-+=⎪+⎪⇒⎨--⎪⋅=⎪+⎩,则()()11222,2,2,2PM x y PM x y =--=--, ()()()()()()()21212122222122PM PN x x y y k x x ⋅=--+--=+--()()()()()2222212122224194411241241111k k k k k x x x x k k k k ⎡⎤---+=+-++=+-⋅+⋅=-⎢⎥+++⎢⎥⎣⎦综上所述,1PM PN ⋅=- 故答案为:1- 【点睛】本题考查由直线与圆的位置关系求解向量数量积的定值问题,解题过程中易遗漏斜率不存在的情况,考查了数形结合思想,数学运算的核心素养,属于中档题16.【分析】若直线始终平分圆的周长即直线过圆心再利用均值定理求解即可【详解】由题整理圆的方程为标准方程可得因为直线始终平分圆的周长所以圆心在直线上则即所以当且仅当即时等号成立所以的最小值为故答案为:【点 解析:3+【分析】若直线()220,0ax by a b +-=>始终平分圆的周长,即直线过圆心,再利用均值定理求解即可 【详解】由题,整理圆的方程为标准方程,可得()()22215x y -+-=, 因为直线()220,0ax by a b +-=>始终平分圆的周长, 所以圆心()2,1在直线上,则2220a b +-=,即1ab +=, 所以()121221233b a a b a b a b a b ⎛⎫+=++=+++≥+=+ ⎪⎝⎭当且仅当2b a a b=,即1,2a b ==,等号成立, 所以12a b+的最小值为3+ 故答案为:3+【点睛】本题考查圆的对称性的应用,考查利用“1”的代换处理最值问题17.【分析】两圆关于直线对称即圆心关于直线对称则两圆的圆心的连线与直线垂直且中点在直线上圆的半径也为即可求出参数的值【详解】解:因为圆:即圆心半径由题意得与关于直线对称则解得圆的半径解得故答案为:【点睛 解析:165-【分析】两圆关于直线对称即圆心关于直线对称,则两圆的圆心的连线与直线21y x =-垂直且中点在直线21y x =-上,圆1C 的半径也为2,即可求出参数,,a b c 的值. 【详解】 解:因为圆1C :220xyax by c ,即22224224ab a b cxy , 圆心111,22C a b ⎛⎫-- ⎪⎝⎭,半径2r =由题意,得111,22C a b ⎛⎫-- ⎪⎝⎭与()20,0C 关于直线21y x =-对称,则112,122112221,22b a ba ⎧-⎪=-⎪⎪-⎨⎪--⎪⎪=⨯-⎩解得85=-a ,45b =,圆1C 的半径2r ==,解得165c =-. 故答案为:165- 【点睛】本题考查圆关于直线对称求参数的值,属于中档题.18.【分析】设按距离之比为定值求出点的轨迹方程它就是方程比较后可得【详解】设则整理得:易知方程化为已知圆的一般式方程为所以解得故答案为:【点睛】本题考查平面轨迹方程解题时由点到两点距离之比为常数求出的轨解析:5【分析】设(,)A m n ,(,)M x y ,按距离之比为定值求出M 点的轨迹方程,它就是方程22()(–12)3x y -+=,比较后可得λ.【详解】设(,)A m n ,(,)M x y,则MA MOλ==,整理得:222222(1)(1)220x y mx ny m n λλ-+---++=,易知210λ-≠,方程化为2222222220111m n m n x y x y λλλ++--+=---, 已知圆22()(–12)3x y -+=的一般式方程为222420x y x y +--+=,所以2222222124121mn m n λλλ⎧=⎪-⎪⎪=⎨-⎪⎪+=⎪-⎩,解得25455m n λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.【点睛】本题考查平面轨迹方程,解题时由M 点到,A O 两点距离之比为常数λ,求出M 的轨迹方程,它就是已知圆,比较系数可得结论.19.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径. 【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH ,所以(21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==+a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R , 则2222(2)||||||6=+++=R m n m n 6 6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.20.【分析】根据题意得平面在上取使得连接证得平面平面将空间中的动点轨迹的周长问题转化为求三角形边周长问题又代入计算即可【详解】解:如图正方体中连接:易得平面在上取使得连接易得根据线面平行判定定理证得平面2 【分析】根据题意得1BD ⊥平面1ABC ,在1,BB AB 上取,F G 使得12,2BF FB AG GB ==连接,,GE EF GF 证得平面1//AB C 平面EFG ,将空间中的动点P 轨迹的周长问题转化为求三角形EFG 边周长问题,又2GE EF GF ===,代入计算即可. 【详解】解:如图正方体中连接11,,AC B C B A :易得1BD ⊥平面1ABC ,在1,BB AB 上取,F G 使得12,2BF FB AG GB ==连接,,GE EF GF ,易得1//,//GE AC EF BC根据线面平行判定定理证得平面1//AB C 平面EFG所以1BD ⊥平面EFG所以线段,,GE EF GF 就是点P 的运动轨迹, 因为1223GE EF GF ==== 所以动点P 的运动轨迹周长为232GE EF GF ++==2【点睛】关键点点睛:本题考查线面垂直,面面平行的概念,解题的关键是借助图形将空间问题转化为平面问题.本题中根据1BD ⊥平面1ABC 及平面1//ABC 平面EFG 得到线段,,GE EF GF 就是点P 的运动轨迹,代值计算即可.21.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值 解析:474733⎡-+⎢⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果.【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N ,可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 1117827477tan tan()1637117O HN O HO NHO ---∠=∠-∠====+, 11171827477tan tan()7117O HM O HO OHM ++++∠=∠+∠====-, 所以tan θ的取值范围是4747-+⎣⎦, 故答案为:4747-+⎣⎦. 【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下:(1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值;(3)结合图形求得相应角的正切值;(4)利用和差角正切公式求得结果.22.4000【分析】根据题意先求出正四棱柱的底面边长和高由体积公式求出正四棱柱的体积减去文物的体积可得罩内空气的体积进而求出所需的费用【详解】由题意可知文物底部是直径为09m 的圆形文物底部与玻璃罩底边至 解析:4000【分析】根据题意,先求出正四棱柱的底面边长和高,由体积公式求出正四棱柱的体积减去文物的体积可得罩内空气的体积,进而求出所需的费用.【详解】由题意可知,文物底部是直径为0.9 m 的圆形,文物底部与玻璃罩底边至少间隔0.3 m , 所以由正方形与圆的位置关系可知:底面正方形的边长为0.9+2×0.3=1.5m ,由文物高1.8m ,文物顶部与玻璃置上底面至少间隔0.2m ,所以正四棱柱的高为1.8+0.2=2m .,则正四棱柱的体积为V =1.52×2=4.5m 3因为文物体积为0.5m 3,所以置内空气的体积为4.5-0.5 = 4 m 3,气体每立方米1000元,所以共需费用为4×1000=4000(元)【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式: 求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型.23.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面 解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A --的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ;由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥;又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH ,所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥,所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛:求解本题的关键在于确定二面角M BC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角MBC A --的4倍,进而可求得结果. 24.【分析】欲使圆柱侧面积最大需使圆柱内接于圆锥设圆柱的高为h 底面半径为r 用r 表示h 从而求出圆柱侧面积的最大值【详解】欲使圆柱侧面积最大需使圆柱内接于圆锥;设圆柱的高为h 底面半径为r 则解得;所以;当时取 解析:43π【分析】欲使圆柱侧面积最大,需使圆柱内接于圆锥,设圆柱的高为h ,底面半径为r ,用r 表示h ,从而求出圆柱侧面积的最大值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥;设圆柱的高为h ,底面半径为r , 23423h r -=,解得3232h =; 所以()232223342S rh r r r r πππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧; 当2r 时,S 圆柱侧取得最大值为43π故答案为:43π.【点睛】 本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.三、解答题25.(1)证明见解析;(2)62【分析】(1)取PB 中点M ,连接,MF AM ,证出四边形AMFE 为平行四边形,利用线面平行的判定定理即可证明.(2)连接,PE BE ,可得PEB ∠为二面角P AD B --的平面角,求出PE =用余弦定理可得PB ,再利用面面垂直的判定定理证明平面PBE ⊥平面PDA ,点B 作BO PE ⊥交PE 于点O ,在PEB △中即可求解.【详解】解:(1)证明:取PB 中点M ,连接,MF AM ,由F 为PC 中点,则//MF BC 且12MF BC =. 由已知有//,BC AD BC AD =,又由于E 为AD 中点,从而//,MF AE MF AE =,故四边形AMFE 为平行四边形,所以//EF AM .又AM ⊂平面PAB ,而EF ⊂/平面PAB ,则//EF 平面PAB .(2)证明:连接,PE BE .由,PA PD BA BD ==,而E 为AD 中点,所以,PE AD BE AD ⊥⊥,所以PEB ∠为二面角P AD B --的平面角,60PEB ∴∠=︒.又2,90,BA BD DBA AD ==∠=︒∴=∴在PAD △中,由PA PD AD ===,可解得PE =在Rt ABD △中,由AD E =为AD 的中点,可得12BE AD == ∴在PEB △中,2222cos PB PE EB PE EB PEB =+-⋅∠,2182262PB ∴=+-⨯=,222,PB PB EB PE PB EB ∴=∴+=∴⊥.又,,,PE AD BE AD PE BE E AD ⊥⊥⋂=∴⊥平面PBE ,AD ⊂平面PAD ,∴平面PBE ⊥平面PDA .过点B 作BO PE ⊥交PE 于点,O OB ∴⊥平面PDA .∴在PEB △中,OB PE PB EB ⋅=⋅,从而PB EB OB PE ⋅===∴点B 到平面PAD。

必修二解析几何测试题

必修二解析几何测试题

第二章《解析几何初步》检测试题一、选择题( 本大题共12 小题,每小题 5 分,共60 分)1.过点( 1,0)且与直线x-2y-2=0 平行的直线方程是()A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=02.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为A.4 和 3B.-4 和 3C.- 4 和-3D.4和-3 13,则 m,n 的值分别为()3.x轴上任一点到定点(0,2)、(1,1)距离之和最小值是()A. 2 B.2 2 C .10 D. 5 14.下列命题中为真命题的是()A.平行直线的倾斜角相等 B .平行直线的斜率相等C.互相垂直的两直线的倾斜角互补 D .互相垂直的两直线的斜率互为相反5.已知点A(1, 2) 、B (3,1) ,则线段AB 的垂直平分线l 的方程是()A.4x 2y 5 B .4x 2y 5 C .x 2y 5 D . x 2y 56.过直线3x y 1 0 与x 2y7 0的交点,且与第一条直线垂直的直线l 方程是()A. x 3y 7 0 B .x 3y 13 0 C . 2x y 7 0 D .3x y 5 07.直线x-y+1=0 与圆(x+1)2+y2=1 的位置关系是()A 相切B 直线过圆心C .直线不过圆心但与圆相交D .相离8.经过点P(2, 3) 作圆2 2(x1) y 25的弦 AB ,使点 P 为弦 AB 的中点,则弦AB所在直线方程为()A.x y 5 0 B. x y 5 0C.x y 5 0 D. x y 5 02 y 29.直线 x 2被圆(x a)4所截得的弦长等于 2 3 ,则a的值为()A、-1 或-3 B 、2或 2 C 、1 或 3 D 、 310.由直线y=x+1 上的一点向圆x2+y2-6x+8=0 引切线, 则切线长的最小值为( ) A.1 B .2 2 C .7 D .311.已知 2 y2 x y2 y x2O : x 4 6 0和O2 :x 6 0交于 A, B 两点,则AB 的垂直平分线的方程1是()A. x y 3 0 B. 2x y 5 0 C. 3x y 9 0 D. 4x 3y 7 04.空间直角坐标系中, 点 A( 3, 4,0) 和点 B (2, 1,6) 的距离是( ) A.243 B .221 C .9 D.86二填空题:(本大题共 4 小题,每小题 5 分,共20 分. )13.直线y 2x 关于x轴对称的直线方程为.14.已知点M ( a,b) 在直线 3x 4y 15 上,则2 b2a 的最小值为15.经过A( 2, 1) 和直线x y 1相切,且圆心在直线y 2x 上的圆的方程为______________________ __________ .11.过圆 x2+y2 -x+y-2=0 和 x2+y2=5 的交点,且圆心在直线3x+4y-1=0 上的圆的方程.三、解答题(本大题共 6 小题,共70 分,解答应写出文字说明,证明过程或演算步骤)12.求经过点 A (1,2) 且到原点的距离等于 1 的直线方程 .13.已知一曲线是与两个定点O(0,0) 、 A(3,0) 距离的比为12的点的轨迹,则求此曲线的方程.14.求垂直于直线3x 4y7 0 ,且与两坐标轴构成周长为10 的三角形的直线方程5.自点 A(-3 ,3) 发出的光线L 射到 x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y2-4x-4y+7=0 相切,求光线 L 所在直线的方程.6.已知圆C:2 2x 1 y9内有一点P(2,2),过点P 作直线 l 交圆 C于 A、B两点.(Ⅰ)当l 经过圆心C时,求直线l 的方程;(Ⅱ)当弦AB被点 P 平分时,写出直线l 的方程;(Ⅲ)当直线l 的倾斜角为45o 时,求弦AB的长.7.已知方程x2+y2-2x-4y+m=0.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y-4=0 相交于M、N两点,且OM⊥ON(O为坐标原点),求 m;(3)在(2)的条件下,求以MN为直径的圆的方程.。

中国人民大学附属中学必修二第二章《解析几何初步》测试题(含答案解析)

中国人民大学附属中学必修二第二章《解析几何初步》测试题(含答案解析)

一、选择题1.设两条直线的方程分别为0x y a ++=,0x y b ++=,已知,a b 是方程20x x c ++=的两个实根,且108c ≤≤,则这两条直线之间的距离的最大值和最小值分别为( ) A3, B13, C.122, D.23, 2.已知点(,0)A m -,(,0)B m ,R m ∈,若圆22:(3)(3)2C x y -+-=上存在点P ,满足PA PB ⊥,则m 最大值是( )A.B.C.D.3.已知圆()()2295x a y a -+=>上存在点M ,使2OM MQ =(O 为原点)成立,()2,0Q ,则实数a 的取值范围是( )A .7a >B .57a <<C .1373a ≤≤ D .57a <≤4.已知直线:20()l kx y k R +-=∈是圆22:6260C x y x y +-++=的一条对称轴,若点(2,)A k ,B 为圆C 上任意的一点,则线段AB 长度的最小值为( ) A2B .2CD25.已知M 、N 分别是圆()()22:161C x y ++-=和圆()()22:261D x y -+-=上的两个动点,点P 在直线:l y x =上,则PM PN +的最小值是( ) A.2B .10C2D .126.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是( ) A .4B .10C .5D7.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( ) ABC.15D.158.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,ABCS =品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π9.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,22⎛⎤⎥ ⎝⎦C .3,23D .(]2,410.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE △,BCF △,CDG ,ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE △,BCF △,CDG ,ADH ,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )A .163πB .253πC .643πD .1003π11.已知平面图形PABCD ,ABCD 为矩形,4AB =,是以P 为顶点的等腰直角三角形,如图所示,将PAD △沿着AD 翻折至P AD '△,当四棱锥P ABCD '-体积的最大值为163,此时四棱锥P ABCD '-外接球的表面积为( )A .12πB .16πC .24πD .32π12.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B 3C .102D .2二、填空题13.已知直线1:210l x my ++=与2:310l x y --=平行,则m 的值为__________. 14.已知直线l :230ax y a --+=与圆C :()()22124x y -+-=相交于P ,Q 两点,则PQ 的最小值为______.15.经点()2,3P -,作圆2220x y +=的弦AB ,使得P 平分AB ,则弦AB 所在直线方程是______.16.若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,双曲线C 的离心率为______.17.若直线30ax by +-=与圆22410x y x ++-=相切于点()1,2P -,则a b +=________.18.将一张坐标纸折叠一次,使点(10,0)与点(6,8)-重合,则与点(4,2)-重合的点是______.19.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.20.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.21.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.22.如图,在正方体1111ABCD A B C D -中,E ,F ,G 分别是棱11A B ,1BB ,11B C 的中点,则下列结论中:①FG BD ⊥; ②1B D ⊥面EFG ;③面//EFG 面11ACC A ; ④//EF 面11CDD C . 正确结论的序号是________.23.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角的大小为_________.24.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =,则侧棱PA 与底面ABC 所成的角的大小是___________.三、解答题25.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ; (2)设1AP =,3AD =,四棱锥P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .26.如图,在长方体1111ABCD A B C D -中,12AB BC AA ==,1O 是底面1111D C B A 的中心.(Ⅰ)求证:1//O B 平面1ACD ;(Ⅱ)求二面角1D AC D --的平面角的余弦值. 27.如图,在三棱锥A BCD -中,2,22,23,BCBD AB CD AC AB BD =====⊥(1)证明:平面ABC ⊥平面ABD .(2)在侧面ACD 内求作一点H ,使得BH ⊥平面ACD ,写出作法(无需证明),并求线段AH 的长.28.如图,四边形ABCD 为矩形,且4=AD ,22AB =,PA ⊥平面ABCD ,2PA =,E 为BC 的中点.(1)求证:PC DE ⊥;(2)若M 为PC 的中点,求三棱锥M PAB -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由韦达定理求出1,a b ab c +=-=,然后求出2||()4a b a b ab -=+-两平行线间的距离范围. 【详解】由已知得两条直线的距离是d =, 因为,a b 是方程20x x c ++=的两个根,所以1,a b ab c +=-=,则||a b -=, 因为108c ≤≤,所以12222,即1222d . 故选:C 【点睛】本题考查平行线间的距离公式,韦达定理和不等式,属于基础题.2.C解析:C 【分析】首先设点(),P x y ,利用0AP BP ⋅=,转化为m =m 的最大值. 【详解】由圆的方程可知,圆的圆心()3,3C ,设(),P x y 则(),AP x m y =+,(),BP x m y =-,()()20AP BP x m x m y ⋅=+-+=,即222m x y m =+⇒=m 的最大值就是圆上的点到原点的距离的最大值,即圆心到原点的距离加半径,即OC r +== 故选:C 【点睛】结论点睛:与圆的几何性质有关的最值,具体结论如下:(1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r -;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -;3.D解析:D 【分析】根据2OM MQ =可得M 的轨迹方程.由点M 在圆()()2295x a y a -+=>上,可得M的轨迹方程与圆()()2295x a y a -+=>有公共点,即可由其位置关系求解. 【详解】 由题意,设(),M x y则由2OM MQ =,()2,0Q =化简变形可得2281639x y ⎛⎫-+= ⎪⎝⎭ 所以M 的轨迹为以8,03⎛⎫ ⎪⎝⎭为圆心,以43为半径的圆 由题意可知M 为2281639x y ⎛⎫-+= ⎪⎝⎭与()()2295x a y a -+=>的公共点即两个圆有公共点,由圆与圆的位置关系可知48433333a -≤-≤+ 解得1373a ≤≤ 又因为5a >所以57a <≤ 故选:D 【点睛】本题考查了点的轨迹方程求法,圆与圆位置关系式的应用,属于中档题.4.D解析:D 【分析】由直线l 是圆C 的一条对称轴,求得1k =,得到点(2,1)A ,再结合圆的性质,即可求解. 【详解】由题意,圆22:6260C x y x y +-++=,可得圆心(3,1)C -,半径为2r因为直线:20l kx y +-=是圆22:6260C x y x y +-++=的一条对称轴, 则(3,1)C -在直线l 上,即3120k --=,解得1k =,所以(2,1)A ,则AC ==所以线段AB 长度的最小值为min ||||2AB AC r =-=.2. 【点睛】本题主要考查了直线与圆的位置关系及其应用,其中解答中熟练应用直线与圆的位置关系求得k 的值,转化为点与圆的位置关系,结合圆的性质求解是解得关键,着重考查转化思想,以及计算能力.5.C解析:C 【分析】计算圆心()1,6-关于直线:l y x =的对称点为()16,1C -,计算1C D =. 【详解】圆()()22:161C x y ++-=的圆心为()1,6-,圆()()22:261D x y -+-=的圆心为()2,6,()1,6-关于直线:l y x =的对称点为()16,1C -,1C D ==故PM PN +的最小值是1122C D r r --=. 故选:C. 【点睛】本题考查了点关于直线对称,与圆相关的距离的最值,意在考查学生的计算能力和应用能力,转化能力.6.C解析:C 【分析】由题意结合直线位置关系的判断可得两直线互相垂直,由直线过定点可得定点A 与定点B ,进而可得22210PA PB AB +==,再利用基本不等式,即可得解.【详解】由题意直线0x my +=过定点(0,0)A ,直线30mx y m --+=可变为(1)30m x y --+=,所以该直线过定点()1,3B , 所以2221310AB =+=,又()110m m ⨯+⨯-=,所以直线0x my +=与直线30mx y m --+=互相垂直, 所以22210PA PB AB +==,所以22102PA PB PA PB =+≥⋅即5PA PB ⋅≤,当且仅当=PA PB , 所以PA PB ⋅的最大值为5. 故选:C. 【点睛】本题考查了直线位置关系的判断及直线过定点的应用,考查了基本不等式的应用,合理转化条件是解题关键,属于中档题.7.D解析:D【分析】延长DA 至G ,使AG CE =,可证11//A G C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC A C , 又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =, 又正方体中1111//,AC AC AC AC =, 所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//A G C E ,所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角). 设正方体棱长为2,在正方体中易得15AG =,10GF =,22222112(21)3A F AA AF =+=++=,1AGF △中,2221111125cos 215253AG A F GF GA F AG A F +-∠===⋅⨯⨯. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.8.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABABQMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM =,再根据12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,由对称性得到AB BC AC ==,然后根据22222213QA QB QC AB BC CA ++=++,93ABCS =,求得6,23AB AQ ==,在AOQ△中,由222AO OQ AQ =+求解半径即可.【详解】 如图所示:作QM AB ⊥与M ,连接PM , 因为PQ ⊥平面ABC ,所以PQ AB ⊥,又QM PQ Q ⋂=, 所以AB ⊥平面PQM , 所以AB PM ⊥,所以112122QAB PABAB QM S S AB PM ⨯⨯==⨯⨯△△, 2PM QM =,因为12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△, 由对称性得AB BC AC ==,又因为22222213QA QB QC AB BC CA ++=++,93ABCS =所以21sin 60932ABCSAB =⨯⨯=解得6,23AB AQ ==,所以3,23,3QM PM PQ ===,设外接球的半径为r ,在AOQ △中,222AO OQ AQ =+,即()()222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..9.A解析:A 【分析】取BC 中点E ,连接DE ,AE ,若CB AD ⊥,则可证明出BC ⊥平面ADE ,则可得BC AE ⊥. 根据题目中各边长的关系可得出AE ,AD 关于x 的表达式,然后在ADE 中,利用三边关系求解即可. 【详解】由题意得BC x =,则21x AD CD BD +===,如图所示,取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则1122DE AC ==, 翻折后,在图2中,若CB AD ⊥,则有:∵BC DE ⊥,BC AD ⊥,AD DE D ⋂=,且,AD DE 平面ADE ,∴BC ⊥平面ADE ,∴BC AE ⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC ==∴AE =AD =,在ADE 中,由三边关系得:①122+>②122<+③0x >;由①②③可得0x <<.故选:A. 【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.10.D解析:D 【分析】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62xIE =-,求出x 的值,再利用勾股定理求R ,代入球的表面积公式,即可得答案. 【详解】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62x IE =-, 因为该四棱锥的侧面积是底面积的2倍, 所以246222x x x ⎛⎫⨯⨯-= ⎪⎝⎭,解得4x =. 设该四棱锥的外接球的球心为Q ,半径为R ,如图,则QP QC R ==,22OC =16423OP =-= 所以()(22232R R =+,解得3R =所以外接球的表面积为2100433S ππ==(2cm ).故选:D . 【点睛】关键点点睛:本题考查平面图形的折叠,四棱锥外接球的半径,解题关键在于平面图形折叠成立体图形后,要明确变化的量和没有变的量,以及线线的位置,线面的位置关系,对于几何体的外接球的问题,关键在于确定外接球的球心的位置.11.C解析:C 【分析】分析出当平面P AD '⊥平面ABCD 时,四棱锥P ABCD '-的体积取最大值,求出AD 、P A '的长,然后将四棱锥P ABCD '-补成长方体P AMD QBNC '-,计算出该长方体的体对角线长,即为外接球的直径,进而可求得外接球的表面积. 【详解】取AD 的中点E ,连接P E ',由于P AD '△是以P '为顶点的等腰直角三角形,则P E AD '⊥,设AD x =,则1122P E AD x '==, 设二面角P AD B '--的平面角为θ,则四棱锥P ABCD '-的高为1sin 2h x θ=, 当90θ=时,max 12h x =,矩形ABCD 的面积为4S AB AD x =⋅=,2111216433233P ABCD V Sh x x x '-=≤⨯⨯==,解得22x =.将四棱锥P ABCD '-补成长方体P AMD QBNC '-, 所以,四棱锥P ABCD '-的外接球直径为22222226R P N P A P D P Q AD AB ''''==++=+=,则6R =,因此,四棱锥P ABCD '-的外接球的表面积为2424R ππ=. 故选:C.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.12.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD ,∴2BD ==所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴1,22BM AM ==.同理,在直角三角形CBD 中,1,22DN CN ==. ∴MN =BD -BM -DN =112122--=,∴2CM ===在直角三角形AMC 中,2AC === 故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.二、填空题13.【分析】解方程即得解【详解】由题得当时两直线不重合故答案为:【点睛】结论点睛:直线和直线平行则且两直线不重合解析:23-【分析】解方程230m ⨯⨯=(-1)-即得解. 【详解】由题得2230,3m m ⨯⨯=∴=-(-1)-. 当23m =-时,两直线不重合.故答案为:23-. 【点睛】结论点睛:直线1111:0l a x b y c ++=和直线2222:0l a x b y c ++=平行,则12210a b a b -=且两直线不重合.14.【分析】首先求出直线所过定点的坐标当时取得最小再根据弦长公式计算可得;【详解】解:因为所以令所以故直线恒过定点又因为故点在圆内当时取得最小因为所以故答案为:【点睛】本题考查直线和圆的位置关系弦长公式解析:【分析】首先求出直线所过定点M 的坐标,当PQ MC ⊥时,PQ 取得最小,再根据弦长公式计算可得; 【详解】解:因为230ax y a --+=,所以()()230x a y -+-=,令2030x y -=⎧⎨-=⎩,所以23x y =⎧⎨=⎩,故直线恒过定点()2,3M ,又因为()()22213224-+-=<,故点()2,3M 在圆内,当PQ MC ⊥时,PQ 取得最小,因为MC ==所以minPQ ===故答案为:【点睛】本题考查直线和圆的位置关系,弦长公式、两点间的距离公式的应用,关键是掌握直线与圆的位置关系以及应用,属于中档题.15.【分析】由题意知圆的圆心从而可求出由从而可求出弦所在直线的斜率是由直线的点斜式可写出弦所在直线方程【详解】解:设圆的圆心为则由是的中点知因为所以点在圆内且所以弦所在直线的斜率是则弦所在的直线方程是整解析:23130x y --=. 【分析】由题意知圆2220x y +=的圆心()0,0O ,从而可求出32OP k =-,由AB OP ⊥,从而可求出弦AB 所在直线的斜率是123AB OP k k =-=,由直线的点斜式,可写出弦AB 所在直线方程.解:设圆2220x y +=的圆心为O ,则()0,0O .由P 是AB 的中点,知AB OP ⊥.因为()22231320+-=<,所以点P 在圆O 内,且303202OP k --==--. 所以弦AB 所在直线的斜率是123AB OP k k =-=,则弦AB 所在的直线方程是23(2)3y x +=-, 整理可得,23130x y --=. 故答案为:23130x y --=. 【点睛】本题考查了直线的点斜式方程,考查了两直线垂直的应用.本题的关键是分析出AB OP ⊥,进而求出弦所在直线的斜率.16.2【分析】求得双曲线的一条渐近线方程求得圆心和半径运用点到直线的距离公式和弦长公式可得ab 的关系即可得到所求离心率公式【详解】双曲线C :的一条渐近线方程设为圆的圆心为半径可得圆心到渐近线的距离为则化解析:2 【分析】求得双曲线的一条渐近线方程,求得圆心和半径,运用点到直线的距离公式和弦长公式,可得a ,b 的关系,即可得到所求离心率公式. 【详解】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程设为0bx ay -=,圆22(2)4x y -+=的圆心为(2,0),半径2r ,可得圆心到渐近线的距离为d =则2=,化为22223a b c a ==-, 即224a c =,1ce a=>,解得2e =. 故答案为:2. 【点睛】本题考查圆与圆锥曲线的综合,解题关键是点到直线距离公式及弦长公式建立a ,b 的等量关系,即可求解a 、c 关系,属于中等题.17.3【分析】根据题意先由圆的方程求出圆心为根据直线和圆相切的性质列出方程组求出即得解【详解】根据题意的圆心为:若直线与圆相切于则有故答案为:3【点睛】本题考查了直线和圆的位置关系考查了学生转化与划归数【分析】根据题意,先由圆的方程求出圆心为()2,0-,根据直线和圆相切的性质列出方程组,求出,a b ,即得解.【详解】根据题意22410x y x ++-=的圆心为:()2,0-,若直线30ax by +-=与圆22410x y x ++-=相切于()1,2P -,则有2301,2302()1(2)(1)a b a b a b a b -+-=⎧⎪∴==∴+=-⎨⨯-=-⎪---⎩故答案为:3 【点睛】本题考查了直线和圆的位置关系,考查了学生转化与划归,数学运算的能力,属于中档题.18.【分析】先求得点的垂直平分线的方程然后根据点关于直线对称点的求法求得的对称点由此得出结论【详解】已知点点可得中点则∴线段AB 的垂直平分线为:化为设点关于直线的对称点为则解得∴与点重合的点是故答案为: 解析:()4,2-【分析】先求得点()()10,0,6,8-的垂直平分线的方程,然后根据点关于直线对称点的求法,求得()4,2-的对称点,由此得出结论.【详解】已知点(10,0)A ,点(6,8)B -,可得中点(2,4)M . 则816102AB k ==---.∴线段AB 的垂直平分线为:42(2)y x -=-, 化为20x y -=.设点()4,2-关于直线20x y -=的对称点为(,)P a b ,则2214422022baa b -⎧⨯=-⎪⎪--⎨-++⎪⨯-=⎪⎩,解得42a b =⎧⎨=-⎩. ∴与点()4,2-重合的点是()4,2-. 故答案为:()4,2-. 【点睛】本小题主要考查线段垂直平分线方程的求法,考查点关于直线对称点的坐标的求法,属于19.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的 解析:163π【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积. 【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=, 所以,球O 的半径为232x =,则球O 的表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解.20.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为解析:224π 【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO,求出OM ,PM ,PO ,如图,分别可求得大球1O 与小球2O 半径分别为22和24,进而可得小球的体积. 【详解】解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==,∴2R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴22R r ==,故小球2O 的体积342324V r ππ==.故答案为:224π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.21.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.【详解】如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=, 设1BC =,则22AB BC ==,在矩形ABCD 中,3AC =,12633DM ⨯==, 6D M DM '==, 则222222666612cos 2232DD DM D M DM D M π⎛⎫⎛⎫⎛⎫'''=+-⋅=+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2DD '=,因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.22.②④【分析】由是正三角形可判断①;判断出平面平面平面可判断②;假设面面则可以推出可判断③;由平面平面平面可判断④【详解】连接分别是的中点对于①因方是正三角形所以与不垂直;对于②连接因为且所以平面平面解析:②④. 【分析】由1//FG BC ,1BDC 是正三角形,可判断①;判断出1DB ⊥平面11A C B ,平面11//AC B 平面EFG ,可判断②;假设面//EFG 面11ACC A ,则可以推出1//AA EF 可判断③;由平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,可判断④. 【详解】连接11A C ,1A B ,1BC ,BD ,1B D ,E ,F ,G 分别是1A B ,1BB ,11B C 的中点. 对于①,因方1//FG BC ,1BDC 是正三角形,所以FG 与BD 不垂直; 对于②,连接11D B ,因为1111111AC B D ,AC BB ⊥⊥,且1111B D BB B ⋂=,所以11A C ⊥平面11BDD B ,1DB ⊂平面11BDD B ,所以111AC DB ⊥,同理11BC DB ⊥,且1111A C BC C ,所以1DB ⊥平面11A C B ,因为1//A B EF ,11//AC EG ,且111A B AC A ⋂=,EF EG E =,所以平面11//AC B 平面EFG ,所以1B D ⊥平面EFG .正确;对于③,如果面//EFG 面11ACC A ,由平面EFG 平面11ABB A EF =,平面11CC A A平面111BB A A A A =,则1//AA EF ,显然不正确;对于④,因为平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,所以//EF 平面11CDD C ,正确故选:②④. 【点睛】方法点睛:本题主要考查了正方体中垂直与平行关系,考查了线线垂直、线面垂直的判定、线面平行的判断、面面平行的判断与性质,对于证明线线关系、线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明, 属于中档题.23.40°【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图根据面面平行的性质定理和线面垂直的定义判定有关截线的关系根据点处的纬度计算出晷针与点处的水平面所成角【详解】画出截面图如下图所示其中是赤解析:40° 【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角. 【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故答案为:40°.【点睛】本小题主要考查中国古代数学文化,解题的关键是将稳文中的数据建立平面图形,属于中档题.24.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平解析:o 60. 【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可. 【详解】如图,作BC 的中点D ,连结AD 、PD 因为侧面PBC 和底面ABC 都是边长为2的正三角形 而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC 所以平面PAD ⊥平面ABC ,所以PAD ∠即为侧棱PA 与底面ABC 所成的角 由侧面PBC 和底面ABC 都是边长为2的正三角形得3AD PD ==3PA =所以PAD ∆为等边三角形,则=PAD ∠o 60 即侧棱PA 与底面ABC 所成的角为o 60 故答案为:o 60 【点睛】本题主要考查空间直线与平面所成角的计算,较简单.三、解答题25.(1)证明见解析;(2)证明见解析. 【分析】( 1)设BD 与AC 的交点为O ,连接EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;( 2)通过体积得到底面为正方形,再由线面垂直得到面面垂直即可. 【详解】(1)连接BD 交AC 于点O ,连结EO , 因为ABCD 为矩形,所以O 为BD 的中点, 又E 为PD 的中点,所以//EO PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)因为113P ABCD V AB AD AP -=⨯⨯⨯=, 所以3AB =ABCD 为正方形,所以BD AC ⊥,因为PA ABCD ⊥,所以BD PA ⊥,且AC PA A ⋂=,所以BD ⊥平面PAC , 又BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .【点睛】本题主要考查了立体几何及其运算,要证明线面平行先证明线线平行,要证明面面垂直,先证明线面垂直,考查了学生的基础知识、空间想象力. 26.(Ⅰ)证明见解析;(Ⅱ)63. 【分析】(Ⅰ)连接BD 交AC 于点O ,连接1D O ,连接11B D ,可证11//O B D O ,即可得证; (Ⅱ)依题意可得1D OD ∠是二面角1D AC D --的平面角,再根据锐角三角函数计算可得; 【详解】(Ⅰ)证明:连接BD 交AC 于点O ,连接1D O ,连接11B D , 由长方体的性质知11BO O D =,且11//BO O D , 故四边形11BO D O 是平行四边形, 所以11//O B D O .又因为1D O ⊂平面1ACD ,1O B ⊄平面1ACD , 所以1//O B 平面1ACD .(Ⅱ)解:设122AB BC AA ===,由长方体底面ABCD 是正方形,得DO AC ⊥. 因为11D A D C =,O 是AC 的中点,所以1D O AC ⊥, 所以1D OD ∠是二面角1D AC D --的平面角.。

最新北师大版高中数学必修二第二章《解析几何初步》测试题(含答案解析)(1)

最新北师大版高中数学必修二第二章《解析几何初步》测试题(含答案解析)(1)

一、选择题1.已知直线1l :10ax y -+=,2l :10x ay ++=,a R ∈,以下结论不正确的是( )A .不论a 为何值时,1l 与2l 都互相垂直B .当a 变化时,1l 与2l 分别经过定点()0,1A 和()1,0B -C .不论a 为何值时,1l 与2l 都关于直线0x y +=对称D .如果1l 与2l 交于点M ,则MO 的最大值是22.如图,棱长为2的正四面体ABCD 的三个顶点,,A B C 分别在空间直角坐标系的坐标轴,,Ox Oy Oz 上,则定点D 的坐标为( )A .()1,1,1B .2,2,2C .3,3,3D .()2,2,23.已知点P 是直线:3420l x y +-=上的一个动点,过点P 作圆()()222:23C x y r +++=的两条切线PM ,PN ,其中M ,N 为切点,若MPN ∠的最大值为120°,则r 的值为( ) A 3B .3C .4D .64.已知直线10kx y k ---=和以()3,1M -,()3,2N 为端点的线段相交,则实数k 的取值范围为( ) A .32k ≤B .12k ≥-C .1322k -≤≤ D .12k ≤-或32k ≥ 5.若直线440(0,0)ax by a b --=>>被圆224240x y x y +-+-=截得的弦长为6,则4b aab+的最小值为( ) A .32 B .322+C .5D .76.直线3y x m =+与圆221x y += 在第一象限内有两个不同的交点,则m 的取值范围是( ) A .3,2)B .3,3)C .323⎝⎭D .23⎛ ⎝⎭7.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( ) ①在α内存在无数多条直线与直线AB 平行;②在α内存在无数多条直线与直线AB 垂直; ③在α内存在无数多条直线与直线AB 异面; ④一定存在过AB 且与α垂直的平面β. A .1个B .2个C .3个D .4个8.如图,四棱柱ABCD A B C D ''''-中,底面ABCD 为正方形,侧棱AA '⊥底面ABCD ,32AB =,6AA '=,以D 为圆心,DC '为半径在侧面BCC B ''上画弧,当半径的端点完整地划过C E '时,半径扫过的轨迹形成的曲面面积为( )A .964π B .934π C .962π D .93π 9.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .2610.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π11.在正方体1111ABCD A B C D -,中,M ,N ,P ,Q 分别为1A B ,1B D ,1A D ,1CD 的中点,则异面直线MN 与PQ 所成角的大小是( )A .6π B .4π C .3πD .2π12.已知二面角l αβ--为60,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,45ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14B .24C .34D .12二、填空题13.已知圆2260x y x +-=,过点1,2的直线被圆所截得的弦的长度最小值为______. 14.在极坐标系中,过点22,4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程是__________.15.若圆222(3)(5)r x y -++=上有且只有两个点到直线432x y -=的距离为1,则半径r 的取值范围是______.16.经过两直线11370x y +-=和12190x y +-=的交点,且与()3,2A -,()1,6B -等距离的直线的方程是______.17.若直线()():1210l m x m y m -+--=与曲线()2:422C y x =--有公共点,则直线l 的斜率的最小值是_________.18.若直线1y kx =+与圆2240x y kx my +++-=交于M 、N 两点,且M 、N 两点关于直线0x y +=对称,则20182019k m -=______.19.已知直三棱柱111ABC A B C -,90CAB ∠=︒,1222AA AB AC ===,则直线1A B 与侧面11B C CB 所成角的正弦值是______.20.点A 、B 、C 、D 在同一个球的球面上,3AB BC AC ===,若四面体ABCD 体积的最大值为32,则这个球的表面积为______. 21.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.22.在正三棱锥S ABC -中,23AB =,4SA =,E 、F 分别为AC 、SB 的中点,过点A 的平面α//平面SBC ,α平面=ABC l ,则异面直线l 和EF 所成角的余弦值为_________.23.如下图所示,三棱锥P ABC -外接球的半径为1,且PA 过球心,PAB △围绕棱PA 旋转60︒后恰好与PAC △重合.若3PB =,则三棱锥P ABC -的体积为_____________.24.如图在长方形ABCD 中,AB 6=BC 2=E 为线段DC 上一动点,现将△AED 沿AE 折起.使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C .则K 所形成轨迹的长度为_____.三、解答题25.如图所示,在四棱锥P ABCD -中,//AD BC ,3AD =,4BC =,M 为线段AD 上点,且满足2AM MD =,N 为PC 的中点.(Ⅰ)证明://MN 平面PAB ;(Ⅱ)设三棱锥N BCM -的体积为1V ,四棱锥P ABCD -的体积为2V,求12V V . 26.正四棱台两底面边长分别为3和9,若侧棱所在直线与上、下底面正方形中心的连线所成的角为45,求棱台的侧面积.27.如图1,在梯形ABCD 中,//BC AD ,4=AD ,1BC =,45ADC ∠=︒,梯形的高为1,M 为AD 的中点,以BM 为折痕将ABM 折起,使点A 到达点N 的位置,且平面NBM ⊥平面BCDM ,连接NC ,ND ,如图2.(1)证明:平面NMC ⊥平面NCD ;(2)求图2中平面NBM 与平面NCD 所成锐二面角的余弦值.28.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用直线垂直,系数满足()110a a ⨯+-⨯=即可判断A ;根据直线过定点与系数无关即可判断B ; 在1l 上任取点(),1x ax +,关于直线0x y +=对称的点的坐标为()1,ax x ---,代入2:10l x ay ++=,左边可得不恒为0,从而可判断C ;将两直线联立求出交点,在利用两点间的距离公式即可求解. 【详解】对于A ,()110a a ⨯+-⨯=恒成立,1l 与2l 都互相垂直恒成立,故A 正确;对于B ,直线1:10l ax y -+=, 当a 变化时,0x =,1y =恒成立, 所以1l 恒过定点(0,1)A ;2:10l x ay ++=,当a 变化时,1x =-,0y =恒成立, 所以2l 恒过定点(1,0)B -,故B 正确. 对于C ,在1l 上任取点(),1x ax +,关于直线0x y +=对称的点的坐标为()1,ax x ---, 代入2:10l x ay ++=, 得20ax =,不满足不论a 为何值时,20ax =成立, 故C 不正确;对于D ,联立1010ax y x ay -+=⎧⎨++=⎩,解得221111a x a a y a --⎧=⎪⎪+⎨-+⎪=⎪+⎩,即2211,11a a M a a ---+⎛⎫⎪++⎝⎭,所以MO ==≤, 所以MOD 正确. 故选:C. 【点睛】本题考查了直线垂直时系数之间的关系、直线过定点问题、直线关于直线对称问题、两直线的交点、两点间的距离公式,考查了考生的计算求解能力,综合性比较强,属于中档题.2.A解析:A 【解析】的正四面体ABCD 可以放到正方体中,已知D 点、O 点的连线是正方体的体对角线,故D 点坐标为()1,1,1,选A.3.B【分析】由切线得四边形PMCN 的性质,要使得MPN ∠最大,则PC 最小,PC 的最小值即为圆心C 到直线的距离,再由已知角的大小可求得r . 【详解】由题意,PM PN CM CN r ===,sin MC rCPM PC PC∠==,2MPN MPC ∠=∠,所以MPN ∠最大时,PC 最小. 由题意知min 223(2)4(3)2434PC ⨯-+⨯--==+,又120MPN ∠=︒,所以sin 604r=︒,23r =. 故选:B . 【点睛】关键点点睛:本题考查直线与圆相切问题,过圆外一点P 作圆的两条切线,PM PN (,M N 是两切点),C 是圆心,则PC 是四边形PMCN 的对称轴,90PMC PNC ∠=∠=︒,P 点对圆的张角MPN ∠取得最大值时,PC 最小. 4.D解析:D 【分析】直线10kx y k ---=过定点()1,1P -,分别求出PM k 和PN k ,结合图形,可求出答案. 【详解】由题意,直线10kx y k ---=可化为()110k x y ---=,令1x =,得1y =-,即该直线过定点()1,1P -,111312PM k +==---,213312PN k +==-,所以当12k ≤-或32k ≥时,直线10kx y k ---=和以()3,1M -,()3,2N 为端点的线段故选:D. 【点睛】本题考查了直线系方程的应用,以及过两点的直线的斜率的求法,考查了数形结合的解题思想方法,是中档题.5.B解析:B 【分析】由题意结合直线与圆的位置关系可得直线经过圆心即12ab +=,再由基本不等式即可得解. 【详解】由题得圆的方程可以化为22(2)(1)9x y -++=,所以圆心为(2,1)-,半径为3r =, 因为直线440(0,0)ax by a b --=>>被圆224240x y x y +-+-=截得的弦长为6, 所以直线经过圆心,所以2440a b +-=,即12ab +=,所以441433322b a a b a b ab a b a b +⎛⎫⎛⎫=++=++≥+=+ ⎪⎪⎝⎭⎝⎭当且仅当41a b =-=时取等号,所以4b aab +的最小值为3+ 故选:B. 【点睛】本题考查了直线与圆位置关系、基本不等式求最值的应用,考查了运算求解能力与转化化归思想,属于中档题.6.D解析:D 【分析】求出直线过(0,1)时m 的值,以及直线与圆相切时m 的值,即可确定出满足题意m 的范围. 【详解】 解:如图所示:当直线过(0,1)时,将(0,1)代入直线方程得:1m =;当直线与圆相切时,圆心到切线的距离d r =1=,解得:m =或m =(舍去),则直线与圆在第一象限内有两个不同的交点时,m的范围为2313m<<.故选:D.【点睛】本题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合法是解本题的关键,属于中档题.7.C解析:C【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断.【详解】对于A,若直线AB与平面α相交,则在α内不存在直线与直线AB平行,错误;对于B,若直线AB与平面α相交且不垂直,设AB Mα=,过平面α外直线AB上一点P作PCα⊥,垂足为C,则在平面α内过点C一定可以作一条直线CD,使得CD CM⊥,所以CD AB⊥,而在平面α内,与直线CD平行的直线有无数条,所以在α内存在无数多条直线与直线AB垂直,若直线AB与平面α垂直,显然在α内存在无数多条直线与直线AB垂直,当直线AB与平面α平行时,显然可知在α内存在无数多条直线与直线AB垂直,正确;对于C,若直线AB与平面α相交,设AB Mα=,根据异面直线的判定定理,在平面α内,不过点M的直线与直线AB异面,所以在α内存在无数多条直线与直线AB异面,当直线AB与平面α平行时,显然可知在α内存在无数多条直线与直线AB异面,正确;对于D,若直线AB与平面α相交且不垂直,设AB Mα=,过平面α外直线AB上一点P作PCα⊥,垂足为C,所以平面ABC与平面α垂直,若直线AB与平面α垂直,则过直线AB的所有平面都与平面α垂直,当直线AB与平面α平行时,在直线AB上取一点P作PCα⊥,垂足为C,所以平面ABC与平面α垂直,正确.故真命题的个数是3个.故选:C.【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.8.A解析:A【分析】先确定曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,利用圆锥的侧面积S rl π=即可得出结论. 【详解】由题意 6,32CE CC AA BC AB ''=====,所以22361832BE CE CB =-=-=,所以45BCE ∠=, 45ECC '∠=, 所以曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,所以圆锥的侧面积 636186S rl CC DC ππππ'==⨯⨯=⨯⨯=, 所以曲面面积为1961868ππ⨯=. 故选:A. 【点睛】方法点睛:本题考查曲面面积,考查圆锥的侧面积,确定曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18是关键,考查系数的空间想象力. 9.A解析:A 【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M =, 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥, 则222211111(2)3M B A A M B =+=+=,故选:A. 【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.10.B解析:B 【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可. 【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R = 所以外接球的表面积为2412S R ππ== 故选:B 【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.11.B解析:B 【分析】由M 也是1A B 的中点,P 也是1AD 中点,得平行线,从而找到异面直线MN 与PQ 所成角,在三角形中可得其大小. 【详解】如图,连接1AD ,1AB ,显然M 也是1A B 的中点,P 也是1AD 中点, 又N 是1B D 中点,Q 是1CD 中点,所以//MN AD ,//PQ AC , 所以CAD ∠是异面直线MN 与PQ 所成角(或补角),大小为4π. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.12.B解析:B 【分析】作出图形,设2CD =,AD l ⊥,2AB =,然后以CA 、CD 为邻边作平行四边形ACDE ,可知BAD ∠为二面角l αβ--的平面角,异面直线AB 与CD 所成角为BAE∠或其补角,计算出ABE △三边边长,利用余弦定理计算出cos BAE ∠,即可得解. 【详解】 如下图所示:设2CD =,AD l ⊥,2AB =CA 、CD 为邻边作平行四边形ACDE ,在平面β内,AD l ⊥,2CD =,45ACD ∠=,则sin 2AD CD ACD =∠=cos 452AC CD ==,AB l ⊥,AD l ⊥,AB α⊂,AD β⊂,所以,BAD ∠为二面角l αβ--的平面角,即60BAD ∠=,2AB AD ==,ABD ∴为等边三角形,则2BD =,四边形ACDE 为平行四边形,//DE AC ∴,即//DE l ,AD l ⊥,AB l ⊥,DE AB ⊥∴,DE AD ⊥, AB AD A =,DE ∴⊥平面ABD ,BD ⊂平面ABD ,DE BD ∴⊥,则222BE BD DE =+=,在平行四边形ACDE 中,//AE CD 且2AE CD ==, 所以,异面直线AB 与CD 所成角为BAE ∠或其补角, 在ABE △中,2AB =2AE BE ==,由余弦定理可得2222cos 24AB AE BE BAE AB AE +-∠==⋅. 因此,异面直线AB 与CD 所成角的余弦值为24. 故选:B. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.2【分析】由相交弦长和圆的半径及圆心到过的直线的距离之间的勾股关系求出弦长的最小值即圆心到直线的距离的最大时而当直线与垂直时最大求出的最大值进而求出弦长的最小值【详解】由圆的方程可得圆心坐标半径;设解析:2 【分析】由相交弦长||AB 和圆的半径r 及圆心C 到过(1,2)D 的直线的距离d 之间的勾股关系,求出弦长的最小值,即圆心到直线的距离的最大时,而当直线与CD 垂直时d 最大,求出d 的最大值,进而求出弦长的最小值. 【详解】由圆的方程可得圆心坐标(3,0)C ,半径3r =;设圆心到直线的距离为d ,则过(1,2)D 的直线与圆的相交弦长||AB = 当d 最大时弦长||AB 最小,当直线与CD 所在的直线垂直时d 最大,这时||d CD ==所以最小的弦长||2AB =, 故答案为:2 【点睛】关键点睛:解答本题的关键是通过分析得到当直线与CD 所在的直线垂直时d 最大,弦长||AB 最小. 与圆有关的弦长问题的最值一般利用数形结合分析解答.14.【解析】试题分析:点的直角坐标为将圆的方程化为直角坐标方程为化为标准式得圆心坐标为半径长为而点在圆上圆心与点之间连线平行于轴故所求的切线方程为其极坐标方程为考点:1极坐标与直角坐标之间的转化;2圆的解析:cos 2ρθ=. 【解析】试题分析:点4π⎛⎫⎪⎝⎭的直角坐标为()2,2,将圆4sin ρθ=的方程化为直角坐标方程为224x y y +=,化为标准式得()2224x y +-=,圆心坐标为()0,2,半径长为2,而点()2,2在圆()2224x y +-=上,圆心与点4π⎛⎫⎪⎝⎭之间连线平行于x 轴,故所求的切线方程为2x =,其极坐标方程为cos 2ρθ=.考点:1.极坐标与直角坐标之间的转化;2.圆的切线方程15.【详解】∵圆心P(3−5)到直线4x−3y=2的距离等于由|5−r|<1解得:4<r<6则半径r 的范围为(46)故答案为:(46)当时满足题意考点:1直线和圆的位置关系;2点到直线的距离 解析:46r <<【详解】∵圆心P (3,−5)到直线4x −3y =2的距离等于,由|5−r |<1,解得:4<r <6, 则半径r 的范围为(4,6). 故答案为:(4,6),当46r <<时满足题意.考点:1、直线和圆的位置关系;2、点到直线的距离.16.或【分析】直接求两直线的交点与等距离的直线一条过AB 的中点一条平行AB 【详解】两直线和的交点为的中点为因为所求直线过且与等距离故所求直线过的中点或与直线平行当直线过的中点时直线方程为即当直线与直线平解析:790x y +-=或210x y ++= 【分析】直接求两直线的交点,与(3,2),(1,6)A B --等距离的直线,一条过AB 的中点,一条平行AB . 【详解】两直线11370x y +-=和12190x y +-=的交点为(2,5)-,(3,2),(1,6)A B --的中点为(1,2),因为所求直线过(2,5)-且与()3,2A -,()1,6B -等距离, 故所求直线过AB 的中点或与直线AB 平行,当直线过AB 的中点时,2(5)712k --==--, 直线方程为27(1)y x -=--,即790x y +-=,当直线与直线AB 平行时,26823(1)4k ---===---,直线方程为52(2)y x +=--,即210x y ++=. 故答案为:790x y +-=或210x y ++= 【点睛】本题主要考查了直线交点,直线的平行,直线的斜率,直线方程,属于中档题.17.【分析】将直线的方程化为可求出直线所过的定点坐标作出曲线的图象利用数形结合思想可得出当直线与曲线有公共点时直线的斜率的最小值【详解】将直线的方程化为由得则直线过定点将曲线的方程变形为曲线为圆的上半圆解析:15【分析】将直线l 的方程化为()()210m x y x y +--+=,可求出直线l 所过的定点坐标,作出曲线C 的图象,利用数形结合思想可得出当直线l 与曲线C 有公共点时,直线l 的斜率的最小值. 【详解】将直线l 的方程化为()()210m x y x y +--+=,由2100x y x y +-=⎧⎨+=⎩,得11x y =-⎧⎨=⎩. 则直线l 过定点()1,1P -,将曲线C 的方程变形为()()()222242x y y -+-=≥,曲线C 为圆()()22224x y -+-=的上半圆,如下图所示:由图象可知,当直线l 过点A 时,直线l 的斜率取最小值211415PA k -==+. 故答案为:15. 【点睛】本题考查利用直线与圆的位置关系求直线斜率的最值,考查数形结合思想的应用,属于中等题.18.2【分析】由圆的方程得出圆心坐标根据圆的对称性可知直线通过圆心得出再由直线与直线相互垂直得出代入求解即可【详解】方程一定表示圆则圆心坐标为根据圆的对称性可知直线通过圆心则MN 两点关于直线对称直线与直解析:2 【分析】由圆的方程得出圆心坐标,根据圆的对称性可知直线0x y +=通过圆心,得出k m =-,再由直线1y kx =+与直线0x y +=相互垂直,得出1k =,代入20182019k m -求解即可. 【详解】22160k m ++>∴方程2240x y kx my +++-=一定表示圆则圆心坐标为,22k m ⎛⎫-- ⎪⎝⎭ 根据圆的对称性可知,直线0x y +=通过圆心 则022k mk m --=⇒=- M 、N 两点关于直线0x y +=对称∴直线1y kx =+与直线0x y +=相互垂直(1)11k k ∴⨯-=-⇒=20182019201820191(1)112k m ∴-=--=+=故答案为:2 【点睛】本题主要考查了圆的对称性的应用以及由直线与圆的位置关系确定参数的范围,属于中档题.19.【分析】取中点连接证明平面可得为直线与侧面所成的角进而可得答案【详解】取中点连接直三棱柱中平面平面又又面平面在平面上的射影为故为直线与侧面所成的角中中中故答案为:【点睛】方法点睛:求直线与平面所成的解析:10【分析】取11B C 中点D ,连接1,A D BD ,证明1A D ⊥平面11B C CB ,可得1A BD ∠为直线1A B 与侧面11B C CB 所成的角,进而可得答案. 【详解】取11B C 中点D ,连接1,A D BD ,直三棱柱中,1BB ⊥平面111A B C ,1A D ⊂平面111A B C ,11BB A D ∴⊥,又11111A B A C ==,111A D B C ∴⊥, 又1111B C BB B =,111,B C BB ⊂面11BB C C ,1A D ∴⊥平面11B C CB ,1A B ∴在平面11B C CB 上的射影为DB ,故1A BD ∠为直线1A B 与侧面11B C CB 所成的角,11Rt A B B 中,22211121125BB A B A B =+=+= 111Rt B A C 中,1112212122B C A D ===,1Rt A BD ∴中,1112102sin 5A D A BD AB ∠===10【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.20.【分析】先由题意得到的面积以及外接圆的半径记的外接圆圆心为为使四面体体积最大只需与面垂直由此求出设球心为半径为根据为直角三角形由勾股定理列出等式求出球的半径即可得出结果【详解】根据题意知是一个等边三 解析:254π【分析】先由题意,得到ABC 的面积,以及ABC 外接圆的半径,记ABC 的外接圆圆心为Q ,为使四面体ABCD 体积最大,只需DQ 与面ABC 垂直,由此求出2DQ =,设球心为O ,半径为R ,根据AQO 为直角三角形,由勾股定理列出等式,求出球的半径,即可得出结果. 【详解】根据题意知,ABC 是一个等边三角形,其面积为()2213333322S ⎛⎫=-= ⎪ ⎪⎝⎭,ABC 外接圆的半径为131260r ==,记ABC 的外接圆圆心为Q ,则1AQ r ==;由于底面积ABCS不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为133ABC S DQ ⋅=,2DQ ∴=, 设球心为O ,半径为R ,则在直角AQO 中,222OA AQ OQ =+,即2221(2)R R =+-,54R ∴=, 则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭.故答案为:254π. 【点睛】 思路点睛:求解几何体与球外接问题时,一般需要先确定底面外接圆的圆心位置,求出底面外接圆的半径,根据球的性质,结合题中条件确定球心位置,求出球的半径,进而即可求解.21.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 82π取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积.【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A ,所以四边形1ADCO 为平行四边形,所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==,所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.22.【分析】取中点连结根据题意得故所以为异面直线和所成角再根据几何关系求得在中故进而得答案【详解】取中点连结依题意:所以所以为异面直线和所成角在正三棱锥中是中点所以又因为平面平面所以平面所以因为分别是的 21取AB 、BC 中点D 、G ,连结DE 、DF 、GS 、GA ,根据题意得//l BC ,//DE BC ,故//l DE ,所以DEF ∠为异面直线l 和EF 所成角,再根据几何关系求得在Rt DEF ∆中,122DF SA ==,11322DE BC AB ===,227EF DE DF =+=,故321cos 77DE DEF EF ∠===,进而得答案. 【详解】取AB 、BC 中点D 、G ,连结DE 、DF 、GS 、GA ,依题意://l BC ,//DE BC ,所以//l DE ,所以DEF ∠为异面直线l 和EF 所成角.在正三棱锥S ABC -中,G 是BC 中点,所以SG BC ⊥,AG BC ⊥,又因为SG AG G ⋂=,SG ⊂平面SAG ,AG ⊂平面SAG ,所以BC ⊥平面SAG ,所以BC SA ⊥.因为F 、D 分别是SB 、AB 的中点,所以//DF SA .所以DE DF ⊥.Rt DEF ∆中,122DF SA ==,11322DE BC AB === 所以227EF DE DF +.所以321cos 7DE DEF EF ∠===.故异面直线l 和EF 所成角的余弦值为:217 故答案为:217 【点睛】 本题考查异面直线所成角的求解,考查空间思维能力与运算能力,是中档题. 23.【分析】作于可证得平面得得等边三角形利用是球的直径得然后计算出再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合∴作于连接则∴又过球心∴而∴同理由得平面∴故答案为:【点睛】易错点睛:本题考查 解析:38【分析】作BH PA ⊥于H ,可证得PA ⊥平面BCH ,得60BHC ∠=︒,得等边三角形BCH ,利用PA 是球的直径,得PB AB ⊥,然后计算出BH ,再应用棱锥体积公式计算体积.【详解】∵PAB △围绕棱PA 旋转60︒后恰好与PAC △重合,∴PAB PAC ≅△△,作BH PA ⊥于H ,连接CH ,则,CH PA CH BH ⊥=,60BHC ∠=︒,∴BC BH CH ==.又PA 过球心,∴PB AB ⊥,而2,3PA PB ==,∴1AB =,同理1AC =,313PB AB BH PA ⋅⨯===,223333344216BCH S BH ⎛⎫=⨯=⨯= ⎪ ⎪⎝⎭△, 由BH PA ⊥,CH PA ⊥,CHBH H =,得PA ⊥平面BCH , ∴11333233P ABC BCH V S PA -=⋅=⨯⨯=△. 故答案为:38.【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作BH PA ⊥于H ,利用旋转重合,得PA ⊥平面BCH ,这样只要计算出BCH 的面积,即可得体积,这样作图可以得出60BHC ∠=︒,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转60︒,即为60CAB ∠=︒.旋转60︒是旋转形成的二面角为60︒.应用作出二面角的平面角. 24.【分析】由题意分析可得可知K 所形成轨迹为一个圆弧求出圆心角再求弧长即可【详解】由题意D′K ⊥AE 所以K 的轨迹是以AD′为直径的一段圆弧D′K 设AD′的中点为O ∵长方形ABCD′中ABBC ∴∠D′AC 解析:23π 【分析】 由题意分析可得DK AE ⊥可知K 所形成轨迹为一个圆弧,求出圆心角再求弧长即可.【详解】由题意,D ′K ⊥AE ,所以K 的轨迹是以AD ′为直径的一段圆弧D ′K ,设AD ′的中点为O , ∵长方形ABCD ′中,AB 6=,BC 2=, ∴∠D ′AC =60°,∴∠D ′OK =120°23π=, ∴K 所形成轨迹的长度为222323ππ⨯=,2 【点睛】 本题主要考查了空间中的轨迹问题,主要是找到定量关系分析轨迹,属于中等题型.三、解答题25.(Ⅰ)证明见解析;(Ⅱ)1227V V =. 【分析】(Ⅰ)要证明线面平行,需证明线线平行,取BP 的中点T ,连接AT ,TN ,证明//MN AT ;(Ⅱ)利用锥体体积公式,分别求两个锥体底面积和高的比值,表示体积比值.【详解】(Ⅰ)如图,取BP 的中点T ,连接AT ,TN .因为N 为PC 的中点,所以TN //BC ,且122TN BC ==. 又因为223AM AD ==,且//AD BC , 所以TN //AM ,TN AM =,即四边形AMNT 为平行四边形,所以MN //AT ,因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB .(Ⅱ)设四棱锥P ABCD -的高为h ,AD 与BC 间的距离为d .则()21117343326ABCD V h S h d hd =⨯⨯=⨯+=梯形, 11114323223BCM h h hd V S d =⨯⨯=⨯⨯⨯=△ 因此1227V V =. 【点睛】方法点睛:本题考查了线面平行的判断定理,意在考查转化与化归和计算求解能力,不管是证明面面平行,还是证明线面平行,都需要证明线线平行,证明线线平行的几种常见形式,1.利用三角形中位线得到线线平行;2.构造平行四边形;3.构造面面平行.26.723S =侧.【分析】过1C 作1C E AC ⊥于E , 过E 作EF BC ⊥于F ,得到1C F 为正四棱台的斜高, 可得答案.【详解】如图,设1O 、O 分别为上、下底面的中心,则1O O ⊥平面ABCD ,过1C 作1C E AC ⊥于E ,所以11//C E O O ,所以1C E ⊥平面ABCD ,1C E BC ⊥,过E 作EF BC ⊥于F ,连接1C F ,且1C EEF E =,所以BC ⊥平面1EFC ,1C F BC ⊥,则1C F 为正四棱台的斜高,由题意知145C CO ∠=,()11293322CE CO EO CO C O =-=-=⨯-=, 又2sin 453232EF CE =⋅=⨯=, ∴高()22231132333C F C E EF =+=+=, ∴()1393347232S =⨯+⨯⨯=侧.【点睛】本题考查了正四棱台侧面积的求法,关键点是作出正四棱台的斜高,考查了学生的空间想象力和计算能力.27.(1)证明见解析;(2)33. 【分析】(1)用分析法:要证平面NMC ⊥平面NCD ,只需证明CD ⊥平面NMC ,只需CM CD ⊥和NM CD ⊥;(2)由(1)的证明,以M 为原点,MB ,MD ,MN 所在的直线分别为x ,y ,z 轴建立空间直角坐标系M xgz -,用向量法计算.【详解】解:(1)如图,梯形ABCD 中,过点C 作CH DM ⊥于点H ,连接CM ,。

(常考题)北师大版高中数学必修二第二章《解析几何初步》测试题(含答案解析)(4)

(常考题)北师大版高中数学必修二第二章《解析几何初步》测试题(含答案解析)(4)

一、选择题1.已知直线10ax by ++=与直线4350x y ++=平行,且10ax by ++=在y 轴上的截距为13,则+a b 的值为( ) A .7-B .1-C .1D .72.已知圆22:(3)(4)4C x x -+-=和两点(,0)A m -,(,0)(0)B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的取值范围是( ) A .[5,9]B .[4,8]C .[3,7]D .[2,6]3.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( )A .2B .4C .7D .94.已知12,F F 是椭圆()222210x y a b a b+=>>的两焦点,P 是椭圆上任意一点,过一焦点引12F PF ∠的外角平分线的垂线,垂足为Q ,则动点Q 的轨迹为( ▲ ) A .圆B .椭圆C .双曲线D .抛物线5.直线l 经过()2,1A ,()23,B t ,(t ≤点,则直线l 倾斜角的取值范围是( ) A .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭B .0,C .0,4⎡⎤⎢⎥⎣⎦πD .30,,424πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦6.在平面直角坐标系xoy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =+上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是( ) A .43-B .54-C .35D .53-7.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( ) ①在α内存在无数多条直线与直线AB 平行; ②在α内存在无数多条直线与直线AB 垂直; ③在α内存在无数多条直线与直线AB 异面; ④一定存在过AB 且与α垂直的平面β. A .1个B .2个C .3个D .4个8.大摆锤是一种大型游乐设备(如图),游客坐在圆形的座舱中,面向外,通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险,座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.假设小明坐在点A 处,“大摆锤”启动后,主轴OB 在平面α内绕点O 左右摆动,平面α与水平地面垂直,OB 摆动的过程中,点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,B β∈.设4OB AB =,在“大摆锤”启动后,下列结论错误的是( )A .点A 在某个定球面上运动;B .β与水平地面所成锐角记为θ,直线OB 与水平地面所成角记为δ,则θδ+为定值;C .可能在某个时刻,AB //α;D .直线OA 与平面α所成角的正弦值的最大值为1717. 9.在三棱锥P ABC -中,PA ⊥平面ABC ,120224BAC AP AB AC ∠====,,则三棱锥P ABC -的外接球的表面积是( ) A .18πB .36πC .40πD .72π10.已知正三棱柱111ABC A B C -,的体积为163,底面积为43,则三棱柱111ABC A B C -的外接球表面积为( )A .1123π B .563π C .2243π D .28π11.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π12.在长方体1111ABCD A BC D -中,2AB =,1AD =,12AA =,点E 为11C D的中点,则二面角11B A B E --的余弦值为( ) A .3-B .3-C .3 D .3 二、填空题13.已知直线1:220l x by ++=与直线2:210l x y -+=平行,则直线1l ,2l 之间的距离为__________.14.已知直线():0l x ay a R +=∈是圆22:4210C x y x y +--+=的一条对称轴,过点()1,P a -的直线m 与圆C 交于,A B 两点,且AB 4=,则直线m 的斜率为____.15.已知点(1,0),(3,0)M N .若直线:0l x y m +-=上存在一点P 使得0PM PN ⋅=成立,则m 的取值范围是_____________.16.在平面直角坐标xOy 系中,设将椭圆()2222110y x a a a +=>-绕它的左焦点旋转一周所覆盖的区域为D ,P 为区域D 内的任一点,射线()02x y x =≥-上的点为Q ,若PQ 的最小值为a ,则实数a 的取值为_____.17.函数2291041y x x x =++-+的最小值为_________.18.已知A 是直角坐标平面内一定点,点(0,0)O ,若圆22()(–12)3x y -+=上任意一点M 到定点A 与点(0,0)O 的距离之比是一个定值λ,则这个定值λ的大小是________. 19.在边长为3的菱形ABCD 中,对角线3AC =,将三角形ABC 沿AC 折起,使得二面角B AC D --的大小为2π,则三棱锥B ACD -外接球的体积是_________________.20.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中AC B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.21.如图,在三棱台111ABC A B C -中,11190,4,22ACB AC BC A B CC ∠=︒====11AA B B ⊥平面ABC ,则该三棱台外接球的表面积为___________.22.二面角a αβ--的大小为135A AE a E α︒∈⊥,,,为垂足,,B BF a F β∈⊥,为垂足,2,31AE BF EF P ===,,是棱上动点,则AP PB +的最小值为_______. 23.已知扇形的面积为56π,圆心角为6π,则由该扇形围成的圆锥的外接球的表面积为_________.24.如图,已知正四面体P ABC -的棱长为2,动点M 在四面体侧面PAC 上运动,并且总保持MB PA ⊥,则动点M 的轨迹的长度为__________.三、解答题25.如图,在正四棱柱1111ABCD A BC D -中,11,2AB AA ==,点E 为1CC 中点,点F 为1BD 中点.(1)求异面直线1BD 与1CC 的距离;(2)求直线1BD 与平面BDE 所成角的正弦值; (3)求点F 到平面BDE 的距离.26.如图1,在梯形ABCD 中,//BC AD ,4=AD ,1BC =,45ADC ∠=︒,梯形的高为1,M 为AD 的中点,以BM 为折痕将ABM 折起,使点A 到达点N 的位置,且平面NBM ⊥平面BCDM ,连接NC ,ND ,如图2.(1)证明:平面NMC ⊥平面NCD ;(2)求图2中平面NBM 与平面NCD 所成锐二面角的余弦值. 27.如图,AB 是O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于A ,B 的一动点.(1)证明:BC ⊥面PAC ;(2)若PA =AC =1,AB =2,求直线PB 与平面PAC 所成角的正切值.28.在四棱台1111ABCD A BC D -中,1AA ⊥平面ABCD ,//AB CD ,90ACD ∠=︒,26BC ==,1CD =,1AM CC ⊥,垂足为M .(1)证明:平面ABM ⊥平面11CDD C ; (2)若二面角B AM D --正弦值为217,求直线AC 与平面11CDD C 所成角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【详解】分析:根据两条直线平行,得到,a b 的等量关系,根据直线在y 轴上的截距,可得b 所满足的等量关系式,联立方程组求得结果.详解:因为直线10ax by ++=与直线4350x y ++=平行, 所以43b a =,又直线10ax by ++=在y 轴上的截距为13, 所以1103b +=,解得3b =-,所以4a =-, 所以7a b +=-,故选A.点睛:该题考查的是有关直线的问题,在解题的过程中,涉及到的知识点有两条直线平行时系数所满足的条件,以及直线在y 轴上的截距的求法,根据题中的条件,列出相应的等量关系式,求得结果.2.C解析:C 【分析】设点P 的坐标为(),x y ,可得出点P 的轨迹方程为222x y m +=,进而可知圆222x y m +=与圆C 有公共点,可得出关于正数m 的不等式,由此可求得正数m 的取值范围. 【详解】设点P 的坐标为(),x y ,90APB ∠=,且坐标原点O 为AB 的中点,所以,12OP AB m ==,则点P 的轨迹方程为222x y m +=, 由题意可知,圆222x y m +=与圆C 有公共点,且圆心()3,4C ,半径为2 则22m OC m -≤≤+,即252m m -≤≤+,0m >,解得3m 7≤≤.因此,实数m 的取值范围是[]3,7. 故选:C. 【点睛】本题主要考查利用圆与圆的位置关系求参数的取值范围,解题的关键在于由90APB ∠=求得点P 的轨迹方程222x y m +=,进而将问题转化为圆222x y m +=与圆C 有公共点问题,考查化归与转化思想的应用,属于中等题.3.D解析:D 【分析】求出P 点到两圆心的距离,圆1C :22(1)(1)1x y -++=的圆心(11)E -,,圆2C :22(4)(5)9x y -+-=的圆心(45)F ,,由()PF R PE r +--为最大值.再求得E 关于x 轴的对应点E ',PF PE -=PF PE '-FE '≤,由此可得最大值.【详解】圆1C :22(1)(1)1x y -++=的圆心(11)E -,,半径为r =1, 圆2C :22(4)(5)9x y -+-=的圆心(45)F ,,半径是R =3, 要使||||PN PM -最大,需||PN 最大,且||PM 最小,||PN 最大值为3PF +,||PM 的最小值为1PE -,故||||PN PM -最大值是(3)(1)4PF PE PF PE +--=-+,(45)F ,关于x 轴的对称点(45)F '-,,5PF PE PF PE EF -=-≤='=',故4PF PE -+的最大值为549+=, 故选:D . 【点睛】结论点睛:设P 是圆C 外一点,圆C 半径为r ,则P 到圆上点的距离的最大值为PC r +,最小值为PC r -,直线PC 与圆的两个交点为最大值点和最小值点.4.A解析:A 【详解】不妨设过焦点1F 引12F PF ∠的外角平分线的垂线,垂足为Q ,延长F 1Q 交F 2P 与M 点,连OQ ,则21211()=22OQ F M F P PF a ==+,所以动点Q 的轨迹为圆,选A. 5.A解析:A 【分析】求出斜率的取值范围,然后可得倾斜角的范围. 【详解】由已知直线的斜率为221132t k t -==--,∵t ≤≤11k -≤≤,记直线l 的倾斜角为θ,[)0,θπ∈,即1tan 1θ-≤≤,所以3[0,][,)44ππθπ∈. 故选:A . 【点睛】本题考查直线的倾斜角和斜率的关系,直线的倾斜角的范围是[0,]π,斜率为正时,倾斜角为锐角,斜率为负时,倾斜角为钝角,因此一般要分类讨论.6.A解析:A 【分析】化圆C 的方程为22(4)1x y -+=,求出圆心与半径,由题意,只需22(4)4x y -+=与直线2y kx =+有公共点即可. 【详解】 解:圆C 的方程为228150x y x +-+=,整理得:22(4)1x y -+=,即圆C 是以(4,0)为圆心,1为半径的圆;又直线2y kx =+上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆22:(4)4C x y '-+=与直线2y kx =+有公共点即可.设圆心(4,0)C 到直线2y kx =+的距离为d , 则2d =,即234k k -,403k ∴-. k ∴的最小值是43-. 故选:A .【点睛】本题考查直线与圆的位置关系,将条件转化为“22(4)4x y -+=与直线2y kx =+有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.7.C解析:C 【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断. 【详解】对于A ,若直线AB 与平面α相交,则在α内不存在直线与直线AB 平行,错误; 对于B ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,则在平面α内过点C 一定可以作一条直线CD ,使得CD CM ⊥,所以CD AB ⊥,而在平面α内,与直线CD 平行的直线有无数条,所以在α内存在无数多条直线与直线AB 垂直,若直线AB 与平面α垂直,显然在α内存在无数多条直线与直线AB 垂直,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 垂直,正确;对于C ,若直线AB 与平面α相交,设AB M α=,根据异面直线的判定定理,在平面α内,不过点M 的直线与直线AB 异面,所以在α内存在无数多条直线与直线AB 异面,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 异面,正确; 对于D ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,若直线AB 与平面α垂直,则过直线AB 的所有平面都与平面α垂直,当直线AB 与平面α平行时,在直线AB 上取一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,正确. 故真命题的个数是3个. 故选:C . 【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.8.C解析:C 【分析】利用已知条件确定OA 是定值,即得A 选项正确;作模型的简图,即得B 正确;依题意点B 在平面α内,不可能AB //α,得C 错误;设AB a ,结合题意知ABα⊥时,直线OA与平面α所成角最大,计算此时正弦值,即得D 正确.【详解】因为点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,所OA =又因为OB ,AB 为定值,所以OA 也是定值,所以点A 在某个定球面上运动,故A 正确;作出简图如下,OB l ⊥,所以2πδθ+=,故B 正确;因为B α∈,所以不可能有AB //α,故C 不正确; 设ABa ,则4OB a =,2217OA AB OB a =+=,当AB α⊥时,直线OA 与平面α所成角最大,此时直线OA 与平面α所成角的正弦值为1717a=,故D 正确. 故选:C. 【点睛】本题解题关键在于认真读题、通过直观想象,以实际问题为背景构建立体几何关系,再运用立体几何知识突破难点.9.D解析:D 【分析】先找出ABC 的外接圆的半径,然后取ABC 的外接圆的圆心N ,过N 作平面ABC 的垂线NG ,作PA 的中垂线,交NG 于O ,则O 是外接球球心, OA 为外接球半径,求解半径并求表面积即可. 【详解】如图所示,1204BAC AB AC ∠===,,取BC 中点M ,连接AM 并延长到N 使AM =MN ,则四边形ABNC 是两个等边三角形组成的菱形,AN =BN =CN ,点N 是ABC 的外接圆圆心,过N 作平面ABC 的垂线NG ,则球心一定在垂线NG 上,因为PA ⊥平面ABC ,则PA //NG ,PA 与NG 共面,在面内作PA 的中垂线,交NG 于O ,则O 是外接球球心,半径R =OA ,Rt AON 中,122ON AP ==4AN =,故()224232R =+2441872S R πππ==⨯=.【点睛】求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.本题就是采用这个方法.本题使用了定义法.10.A解析:A 【分析】由面积和体积可得三棱柱的底面边长和高,根据特征可知外接球的球心为上下底面中心连线的中点,再由勾股定理可得半径及球的表面积. 【详解】 依题意,1163443AA ==,而213sin 4324ABCS AB AC A AB =⨯⨯==, 解得4AB =,记ABC 的中心为О,111A B C △的中心为О1,则114O A O A ==, 取1OO 的中点D ,因为AO CO =,90AOD COD ∠=∠=,由勾股定理得AD CD =,同理可得111AD BD A D B D C D ====,所以正三棱柱的外接球的球心为即D ,AD 为外接球的半径, 由正弦定理得432sin 603AB AO ==, 故2221628433A O D D O A =+=+=, 故三棱柱111ABC A B C -的外接球表面积2281124433S R πππ==⨯=, 故选:A .本题考查了正三棱柱外接球的表面积的求法,关键点是确定球心的位置和球的半径的长度,考查了学生的空间想象力和计算能力.11.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.12.C解析:C 【分析】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,可证EGF ∠为二面角11B A B E --的平面角,通过计算可得结果.【详解】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,因为,E F 分别为1111,C D A B 的中点,所以11//EF A D ,在长方体1111ABCD A BC D -中,因为11A D ⊥平面11ABB A ,所以EF ⊥平面11ABB A , 因为1A B ⊂平面11ABB A ,所以1EF A B ⊥,因为1FG A B ⊥,且FGEF F =,所以1A B ⊥平面EFG ,因为EG ⊂平面EFG ,所以1A B EG ⊥,所以EGF ∠为二面角11B A B E --的平面角, 因为12AB AA ==,所以14FA G π∠=,因为11A F =,所以12222FG A F ==, 在直角三角形EFG 中,221612EG EF FG =+=+=, 所以cos FGEGF EG ∠==2326=. 所以二面角11B A B E --3. 故选:C 【点睛】关键点点睛:根据二面角的定义作出其中一个平面角是解题关键.二、填空题13.【分析】利用直线平行与斜率之间的关系点到直线的距离公式即可得出【详解】解:因为直线与直线平行所以解得当时则故答案为:【点睛】熟练运用直线平行与斜率之间的关系点到直线的距离公式是解题关键 5 【分析】利用直线平行与斜率之间的关系、点到直线的距离公式即可得出. 【详解】解:因为直线1:220l x by ++=与直线2:210l x y -+=平行, 所以22(1)b =⨯-,解得1b =-,当1b =-时,1:220l x y -+=,2:210l x y -+=,则d ==【点睛】熟练运用直线平行与斜率之间的关系、点到直线的距离公式,是解题关键.14.1【分析】由直线是圆的一条对称轴得到直线过圆心求得得到再根据得到点的直线必过圆心利用斜率公式即可求解【详解】由题意圆的圆心坐标半径为因为直线是圆的一条对称轴则直线过圆心即解得此时点又由直线与圆交于两解析:1 【分析】由直线l 是圆C 的一条对称轴,得到直线l 过圆心,求得2a =-,得到(1,2)P --,再根据4AB =,得到点P 的直线必过圆心(2,1)C ,利用斜率公式,即可求解.【详解】由题意,圆22:4210C x y x y +--+=的圆心坐标(2,1)C ,半径为2r,因为直线():0l x ay a R +=∈是圆22:4210C x y x y +--+=的一条对称轴, 则直线l 过圆心(2,1)C ,即210a +⨯=,解得2a =-,此时点(1,2)P --, 又由直线m 与圆C 交于,A B 两点,且4AB =,可得过点P 的直线必过圆心(2,1)C , 所以直线m 的斜率为1(2)12(1)k --==--.故答案为:1. 【点睛】本题主要考查了直线与圆的位置关系,其中解答中熟记直线与圆的位置关系,合理转化是解答的关键,着重考查了推理与运算能力.15.【分析】根据可确定点轨迹为以为圆心为半径的圆利用直线与圆有交点可知由此构造不等式求得结果【详解】点轨迹是以为圆心为半径的圆上存在点与以为圆心为半径的圆有交点圆心到直线距离解得:即的取值范围为:故答案解析:[2【分析】根据PM PN ⊥可确定P 点轨迹为以()2,0为圆心,1为半径的圆,利用直线l 与圆有交点可知d r ≤,由此构造不等式求得结果. 【详解】0PM PN ⋅=,PM PN ∴⊥,P ∴点轨迹是以()2,0为圆心,1为半径的圆.:0l x y m +-=上存在点P ,l ∴与以()2,0为圆心,1为半径的圆有交点,∴圆心()2,0到直线l 距离1d =≤,解得:22m ≤≤即m 的取值范围为:2⎡⎣.故答案为:2⎡+⎣.【点睛】本题考查根据直线与圆的位置关系求解参数范围的问题;关键是能够根据平面向量数量积得到垂直关系,进而确定动点轨迹,从而将问题转化为直线与圆位置关系的求解问题.16.【分析】先确定轨迹再根据射线上点与圆的位置关系求最值即得结果【详解】所以为以为圆心为半径的圆及其内部设射线的端点为所以的最小值为故答案为:【点睛】本题考查动点轨迹以及点与圆位置关系考查数形结合思想以【分析】先确定D 轨迹,再根据射线上点与圆的位置关系求最值,即得结果. 【详解】2222222(1)1,111,y x c a a c a a =+∴=--=∴=-, 所以D 为以(1,0)F -为圆心,1a +为半径的圆及其内部, 设射线()02x y x =≥-的端点为(2,2)A ,所以PQ 的最小值为||(1),12,AF a a a a -+===【点睛】本题考查动点轨迹以及点与圆位置关系,考查数形结合思想以及基本分析求解能力,属中档题.17.【分析】将变形为设则即轴上的一动点到的距离之和作点关于轴的对称点即可求出距离和的最小值;【详解】解:设则即轴上的一动点到的距离之和作点关于轴的对称点连接则即为距离和的最小值故答案为:【点睛】本题考查【分析】将y y =,设()0,3A ,()5,4B ,(),0C x ,则y AC BC ==+即x 轴上的一动点C 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,即可求出距离和的最小值; 【详解】解:()22222291041354y x x x x x =++-+=++-+,设()0,3A ,()5,4B ,(),0C x ,则()2222354y x x AC BC =++-+=+,即x 轴上的一动点(),0C x 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,连接1BA ,则1BA 即为距离和的最小值,()22153474BA =+--=min 74y ∴=故答案为:74【点睛】本题考查平面直角坐标系上两点间的距离公式的应用,将军饮马问题,属于中档题.18.【分析】设按距离之比为定值求出点的轨迹方程它就是方程比较后可得【详解】设则整理得:易知方程化为已知圆的一般式方程为所以解得故答案为:【点睛】本题考查平面轨迹方程解题时由点到两点距离之比为常数求出的轨 15【分析】设(,)A m n ,(,)M x y ,按距离之比为定值求出M 点的轨迹方程,它就是方程22()(–12)3x y -+=,比较后可得λ.【详解】设(,)A m n ,(,)M x y,则MA MOλ==,整理得:222222(1)(1)220x y mx ny m n λλ-+---++=,易知210λ-≠,方程化为2222222220111m n m n x y x y λλλ++--+=---,已知圆22()(–12)3x y -+=的一般式方程为222420x y x y +--+=,所以2222222124121mn m n λλλ⎧=⎪-⎪⎪=⎨-⎪⎪+=⎪-⎩,解得25455m n λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.【点睛】本题考查平面轨迹方程,解题时由M 点到,A O 两点距离之比为常数λ,求出M 的轨迹方程,它就是已知圆,比较系数可得结论.19.;【分析】分析菱形的特点结合其翻折的程度判断其外接球球心的位置放到相应三角形中利用勾股定理求得半径利用球的体积公式求得外接球的体积【详解】根据题意画出图形根据长为的菱形中对角线所以和都是正三角形又因; 【分析】分析菱形的特点,结合其翻折的程度,判断其外接球球心的位置,放到相应三角形中,利用勾股定理求得半径,利用球的体积公式求得外接球的体积. 【详解】根据题意,画出图形,3ABCD 中,对角线3AC = 所以ABC 和DBC △都是正三角形, 又因为二面角B AC D --的大小为2π, 所以分别从两个正三角形的中心做面的垂线,交于O , 则O 是棱锥B ACD -外接球的球心,且11,2GD OG GE ===, 所以球的半径225R GD OG =+=, 所以其体积为3344555(3326V R ππ==⋅=, 故答案为:556π. 【点睛】思路点睛:该题考查的是有关几何体外接球的问题,解题思路如下: (1)根据题中所给的条件,判断菱形的特征,得到两个三角形的形状;(2)根据直二面角,得到两面垂直,近一倍可以确定其外接球的球心所在的位置; (3)利用勾股定理求得半径; (4)利用球的体积公式求得结果;(5)要熟知常见几何体的外接球的半径的求解方法.20.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可.【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯=故答案为:82【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.21.【分析】取与中点根据平面平面可知平面球心必在直线上设球心为D 则可求得球心恰好为点O 从而求得外接球的半径代入球的表面积公式计算【详解】在三棱台中可得都是等腰三角形四边形为等腰梯形即如图取与中点连接则可 解析:32π【分析】取AB 与11A B 中点,O O ',根据平面11AA B B ⊥平面ABC ,可知'⊥O O 平面ABC ,球心必在直线O O '上,设球心为D ,则()22221O D O O OC O D O C ''''-+=+,可求得球心恰好为点O ,从而求得外接球的半径R ,代入球的表面积公式计算. 【详解】在三棱台111ABC A B C -中,11190,4,22ACB AC BC A B CC ∠=︒====111,A A C C B B 都是等腰三角形,11112AC B C ==,四边形11A ABB 为等腰梯形即11AA BB =,如图,取AB 与11A B 中点,O O ',连接1,,CO OO C O '',则可得122,2CO C O '=,O O AB '⊥,又平面11AA B B ⊥平面ABC ,两面交线为AB ,所以'⊥O O 平面ABC .因为OA OB OC ==,111O A O BO C '''==,面//ABC 面111A B C , 所以球心必在直线O O '上.所以在直角梯形1C O OC '中可求得6O O '=由题意可知,该三棱台外接球的外接球的球心必在直线O O '上,设球的半径为R ,球心为D ,则()22221O D O O OC O D O C ''''-+=+,得6O D '=O ,所以球的半径为2224(22)32ππ=.故答案为:32π【点睛】方法点睛:定义法:到各个顶点距离均相等的点为外接球的球心,借助面面垂直的性质,找到线面垂直,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系求解即可.22.【分析】首先将二面角展平根据两点距离线段最短求最小值【详解】如图将二面角沿棱展成平角连结根据两点之间线段最短可知就是的最小值以为邻边作矩形由可知三点共线则故答案为:【点睛】思路点睛:本题考查立体几何 解析:26【分析】首先将二面角展平,根据两点距离线段最短,求AP PB +最小值. 【详解】如图,将二面角沿棱a 展成平角,连结AB ,根据两点之间线段最短,可知AB 就是AP PB +的最小值,以,AE EF 为邻边,作矩形AEFC ,由,CF a BF a ⊥⊥可知,,C F B 三点共线, 则()222213226AB AC BC =+=++=26【点睛】思路点睛:本题考查立体几何中的折线段和的最小值,一般都是沿交线展成平面,利用折线段中,两点间距离最短求解,本题与二面角的大小无关.23.【分析】由扇形的面积及圆心角可得扇形的半径再由扇形的弧长等于圆锥的底面周长可得底面半径再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径进而求出球的表面积【详解】设扇形的长为l 半径为R 则解得 解析:36π【分析】由扇形的面积及圆心角可得扇形的半径,再由扇形的弧长等于圆锥的底面周长可得底面半径,再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径,进而求出球的表面积.【详解】设扇形的长为l ,半径为R ,则22111656222S lR R R παπ===⨯=,解得30R =,扇形弧长l 为锥底面周长2r π,∴底面的半径5r =,∴圆锥的高为225R r -=.设外接球的半径为1R ,∴()222115(5)R R =-+,解得13R =, ∴该外接球的表面积为21436R ππ=,故答案为:36π.【点睛】本题考查扇形的弧长与圆锥的底面周长的关系及外接球的半径和圆锥的高及底面半径的关系,和球的表面积公式的应用,属于中档题. 24.【分析】取PA 的中点E 连接EBEC 推出PA ⊥平面BCE 故点M 的轨迹为线段CE 解出即可【详解】取PA 的中点E 连接EBEC 因为几何体是正四面体P ﹣ABC 所以BE ⊥PAEC ⊥PAEB∩EC =E ∴PA ⊥平面解析:3【分析】取PA 的中点E ,连接EB ,EC ,推出PA ⊥平面BCE ,故点M 的轨迹为线段CE ,解出即可.【详解】取PA 的中点E ,连接EB ,EC ,因为几何体是正四面体P ﹣ABC ,所以BE ⊥PA ,EC ⊥PA ,EB ∩EC =E ,∴PA ⊥平面BCE ,且动点M 在正四面体侧面PAC 上运动,总保持MB PA ⊥,∴点M 的轨迹为线段CE ,正四面体P ﹣ABC 的棱长为2,在等边三角形PAC 中求得CE =3232⨯=. 故答案为:3【点睛】本题考查了正四面体的性质和线面垂直与线线垂直的判定,判断轨迹是解题的关键,属于中档题.三、解答题25.(12;(3 【分析】(1)取BD 中点G ,连接GC ,FG ,根据线面垂直的判定定理及性质,先证明EF 为1BD 与1CC 的公垂线,再由题中数据,计算出EF 的长,即可得出结果;(2)连接1ED ,由(1)得到EF ⊥平面1BDD ,设1D 到平面BDE 的距离为d ,根据等体积法,由11E DBD D DBE V V --=求出d ,记直线1BD 与平面BDE 所成角为θ,由1sin d BD θ=即可得出结果; (3)由(2)得到1D 到平面BDE 的距离d ,根据题中条件,得到F 到平面BDE 的距离为2d ,即可得出结果. 【详解】 (1)在正四棱柱1111ABCD A BC D -中,取BD 中点G ,连接GC ,FG ,∵F ,G 分别为1,BD BD 的中点,∴1//FG D D 且112FG D D =, 又1//CE D D ,112CE D D =,所以//FG CE 且FG CE =,则四边形EFGC 为平行四边形,又CE ⊥平面ABCD ,CG ⊂平面ABCD ,∴CE CG ⊥,∴四边形EFGC 为矩形,∴1EF CC ⊥,∵11//D D C C ,∴1EF DD ⊥,又CG BD ⊥,//EF CG ,BD ⊂平面1BDD ,1D D ⊂平面1BDD ,1BD D D D ⋂=, ∴EF ⊥平面1BDD ,又1BD ⊂平面1BDD ,∴1EF BD ⊥,∴EF 为1BD 与1CC 的公垂线,且1E CC ⊂,1F BD ⊂,∴异面直线1BD 与1CC 的距离为||2EF =. (2)在正四棱柱1111ABCD A BC D -中,连接1ED ,则11E DBD D DBE V V --=,由(1)知EF ⊥平面1BDD ,设1D 到平面BDE 的距离为d ,∵12AA =,1AB =,∴BD BE ED ===EF =1BD =∴1122DBD S ==212DBE S =⨯=从而1DBE DBD S d S EF ⨯=⨯,∴2223233d⨯==, 记直线1BD 与平面BDE 所成角为θ,则12323sin 6d BD θ===, ∴直线1BD 与平面BDE 所成角的正弦值为23.(3)由(2)知,1D 到平面BDE 的距离23d =,∵F 是1BD 的中点,且B ∈平面BDE ,∴F 到平面BDE 的距离为32d =. 【点睛】方法点睛:立体几何体中空间角的求法:(1)定义法:根据空间角(异面直线所成角、线面角、二面角)的定义,通过作辅助线,在几何体中作出空间角,再解对应三角形,即可得出结果;(2)空间向量的方法:建立适当的空间直角坐标系,求出直线的方向向量,平面的法向量,通过计算向量夹角(两直线的方法向量夹角、直线的方向向量与平面的法向量夹角、两平面的法向量夹角)的余弦值,来求空间角即可.26.(1)证明见解析;(23 【分析】(1)用分析法:要证平面NMC ⊥平面NCD ,只需证明CD ⊥平面NMC ,只需CM CD ⊥和NM CD ⊥;。

北师大版高中数学必修二第二章《解析几何初步》测试题(含答案解析)

北师大版高中数学必修二第二章《解析几何初步》测试题(含答案解析)

一、选择题1.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( )A .2B .4C .7D .92.已知点()()2,0,2,0M N -,若圆()2226900x y x r r +-+-=>上存在点P (不同于,M N ),使得PM PN ⊥,则实数r 的取值范围是( )A .()1,5B .[]1,5C .()1,3D .[]1,33.已知圆221:2410C x y x y ++-+=,圆222:(3)(1)1C x y -++=,则这两个圆的公切线条数为( ) A .1条B .2条C .3条D .4条4.直线1y kx =+与圆()()22214x y -+-=相交于P 、Q 两点.若PQ ≥k 的取值范围是( )A .3,04⎡⎤-⎢⎥⎣⎦B .[]1,1-C .⎡⎢⎣⎦D .⎡⎣5.在圆M :224410x y x y +---=中,过点N (1,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .B .C .24D .66.在平面直角坐标系xOy 中,过x 轴上的点P 分别向圆221(1)(4)7:C x y -++=和圆222:(2)(5)9C x y -+-=引切线,记切线长分别为12,d d .则12d d +的最小值为( )A .B .C .D .7.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π8.如图,在长方体1111ABCD A BC D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .269.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA '是铅垂面,下宽3m AA '=,上宽4m BD =,深3m ,平面BDEC 是水平面,末端宽5m CE =,无深,长6m (直线CE 到BD 的距离),则该羡除的体积为( )A .324mB .330mC .336mD .342m10.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .23C .43D .1211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43B .83C .3D .412.已知直线a 、b 都不在平面α内,则下列命题错误的是( ) A .若//a b ,//a α,则//b α B .若//a b ,a α⊥,则b α⊥ C .若a b ⊥,//a α,则b α⊥D .若a b ⊥,a α⊥,则//b α二、填空题13.已知点(),P x y 是直线()300kx y k +-=≠上一动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的最小面积是1,则k 的值为__________.14.经点()2,3P -,作圆2220x y +=的弦AB ,使得P 平分AB ,则弦AB 所在直线方程是______.15.经过两直线11370x y +-=和12190x y +-=的交点,且与()3,2A -,()1,6B -等距离的直线的方程是______.16.直线y x b =+与曲线21x y =-b 的取值范围是______.17.过点1,12⎛⎫-⎪⎝⎭的直线l 满足原点到它的距离最大,则直线l 的一般式方程为___________.18.若点P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=相切于点M ,则PM 的最小值为__________.19.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =,若点P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.20.如图,点E 是正方体1111ABCD A BC D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________. ①直线AD 与直线1C M 始终是异面直线 ②存在点M ,使得1B M AE ⊥ ③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC21.四棱锥V ABCD -中,底面ABCD 是正方形,各条棱长均为2.则异面直线VC 与AB 所成角的大小为______.22.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.23.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.24.已知A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离是球半径的13,且22AB =AC BC ⊥,则球O 的表面积是______.三、解答题25.如图,AB 是O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于A ,B 的一动点.(1)证明:BC ⊥面PAC ;(2)若PA =AC =1,AB =2,求直线PB 与平面PAC 所成角的正切值.26.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,底面ABC 是直角三角形,4PA AB BC ===,O 是棱AC 的中点,G 是AOB ∆的重心,D 是PA 的中点.(1)求证:BC ⊥平面PAB ; (2)求证:DG//平面PBC ;27.将棱长为2的正方体1111ABCD A BC D -沿平面11A BCD 截去一半(如图1所示)得到如图2所示的几何体,点E ,F 分别是BC ,DC 的中点.(Ⅰ)证明:EF ⊥平面1A AC ; (Ⅱ)求三棱锥1A D EF -的体积.28.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出P 点到两圆心的距离,圆1C :22(1)(1)1x y -++=的圆心(11)E -,,圆2C :22(4)(5)9x y -+-=的圆心(45)F ,,由()PF R PE r +--为最大值.再求得E 关于x 轴的对应点E ',PF PE -=PF PE '-FE '≤,由此可得最大值.【详解】圆1C :22(1)(1)1x y -++=的圆心(11)E -,,半径为r =1, 圆2C :22(4)(5)9x y -+-=的圆心(45)F ,,半径是R =3, 要使||||PN PM -最大,需||PN 最大,且||PM 最小,||PN 最大值为3PF +,||PM 的最小值为1PE -,故||||PN PM -最大值是(3)(1)4PF PE PF PE +--=-+,(45)F ,关于x 轴的对称点(45)F '-,,22(41)(51)5PF PE PF PE EF -=-≤=-+-+'=',故4PF PE -+的最大值为549+=, 故选:D . 【点睛】结论点睛:设P 是圆C 外一点,圆C 半径为r ,则P 到圆上点的距离的最大值为PC r +,最小值为PC r -,直线PC 与圆的两个交点为最大值点和最小值点.2.A解析:A 【分析】由题意可得两圆相交,而以MN 为直径的圆的方程为x 2+y 2=4,圆心距为3,由两圆相交的性质可得|r ﹣2|<3<|r+2|,由此求得r 的范围. 【详解】根据直径对的圆周角为90°,结合题意可得以MN 为直径的圆和圆 (x ﹣3)2+y 2=r 2有交点,显然两圆相切时不满足条件,故两圆相交.而以AB 为直径的圆的方程为x 2+y 2=4,两个圆的圆心距为3, 故|r ﹣2|<3<|r+2|,求得1<r <5, 故选A . 【点睛】本题主要考查直线和圆的位置关系,两圆相交的性质,体现了转化的数学思想,属于中档题.3.D解析:D 【分析】根据题意,分析两圆的圆心与半径,进而分析两圆的位置关系,据此分析可得答案. 【详解】根据题意,圆221:2410C x y x y ++-+=,即22+1+24x y -=()()其圆心为12-(,),半径12r =, 圆222:(3)(1)1C x y -++=,其圆心为31-(,),半径21r =,则有12125C C r r ==>+,两圆外离,有4条公切线;故选D . 【点睛】本题考查圆与圆的位置关系以及两圆的公切线,关键是分析两圆的位置关系,属于基础题.4.B解析:B 【分析】由PQ ≥()2,1到直线1y kx =+的距离d ≤,利用点到直线距离公式,列不等式可得结果.【详解】若PQ ≥则圆心()2,1到直线1y kx =+的距离d ≤=≤解得[]1,1k ∈-,故选B. 【点睛】本题主要考查点到直线的距离公式、直线与圆的位置关系,属于中档题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系(求弦长问题需要考虑点到直线距离、半径,弦长的一半之间的等量关系);二是直线方程与圆的方程联立,考虑运用韦达定理以及判别式来解答.5.A解析:A 【分析】先求得圆的圆心和半径,易知最长弦为直径,最短弦为过点()1,1与AC (直径)垂直的弦,再求得BD 的长,可得面积. 【详解】由224410x y x y +---=可得:22(2)(2)9x y -+-=, 故圆心为(2,2),半径为3r =,由N ()1,1为圆内点可知,过N (1,1)最长弦为直径,即AC =6 而最短弦为过()1,1与AC 垂直的弦, 圆心(2,2)到()1,1的距离:d ==所以BD== 所以四边形ABCD的面积:12S AC BD =⋅= 故选:A 【点睛】本题考查了直线与圆,圆的方程,圆的几何性质,面积的求法,属于中档题.6.D解析:D 【分析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解. 【详解】221(1)(4)7:C x y -++=,圆心()1,4-,半径1r =222:(2)(5)9C x y -+-=,圆心()2,5,半径33r =设点P ()0,0x , 则()()()()2222120010472059d d x x +=-++-+-+--()()220019216x x =-++-+()()()()222200103204x x =-+++-+-,即()0,0x 到()1,3-与()2,4两点距离之和的最小值, 当()0,0x 、()1,3-、()2,4三点共线时,12d d +的和最小, 即12d d +的和最小值为()()2212345052-+--==.故选:D 【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.7.A解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+,解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.8.A解析:A 【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12AC ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值, 因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M = 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥, 则222211111(2)3M B A A M B =+=+=故选:A. 【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.9.C解析:C 【分析】在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算. 【详解】如图,在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',则三棱柱ABC A B C '''-是斜三棱柱,该羡除的体积V V=三棱柱ABC A B C '''-V+四棱锥A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故选:C .【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.10.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解. 【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=, 故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S-=-=⋅⋅=故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.11.A解析:A 【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可. 【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC -,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A. 【点睛】方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.12.C解析:C 【分析】利用线面平行的性质和判定定理可判断A 选项的正误;由线面垂直的定义可判断B 选项的正误;根据已知条件判断b 与α的位置关系,可判断C 选项的正误;根据已知条件判断b 与α的位置关系,可判断D 选项的正误. 【详解】由于直线a 、b 都不在平面α内.在A 中,若//a α,过直线a 的平面β与α的交线m 与a 平行, 因为//a b ,可得//b m ,b α⊄,m α⊂,所以,//b α,A 选项正确;在B 中,若a α⊥,则a 垂直于平面α内所有直线,//a b ,则b 垂直于平面α内所有直线,故b α⊥,B 选项正确;在C 中,若a b ⊥,//a α,则b 与α相交或平行,C 选项错误; 在D 中,若a b ⊥,a α⊥,则//b α或b α⊂,b α⊄,//b α∴,D 选项正确.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.二、填空题13.【分析】先求圆的半径四边形的最小面积是1转化为三角形的面积是求出切线长再求的距离也就是圆心到直线的距离可解的值【详解】解:圆的圆心半径是由圆的性质知:四边形的最小面积是1是切线长)圆心到直线的距离就 解析:±1【分析】先求圆的半径,四边形PACB 的最小面积是1,转化为三角形PBC 的面积是12,求出切线长,再求PC 的距离也就是圆心到直线的距离,可解k 的值. 【详解】解:圆22:20C x y y +-=的圆心(0,1),半径是1r =,由圆的性质知:2PBC PACB S S ∆=四边形,四边形PACB 的最小面积是1, ()min 1122PBC rd S ∆==∴(d 是切线长) min 1d ∴=圆心到直线的距离就是PC 的最小值,2222111k+==+1k ∴=±故答案为:±1【点睛】本题考查直线和圆的方程的应用,点到直线的距离公式等知识,属于中档题.14.【分析】由题意知圆的圆心从而可求出由从而可求出弦所在直线的斜率是由直线的点斜式可写出弦所在直线方程【详解】解:设圆的圆心为则由是的中点知因为所以点在圆内且所以弦所在直线的斜率是则弦所在的直线方程是整解析:23130x y --=. 【分析】由题意知圆2220x y +=的圆心()0,0O ,从而可求出32OP k =-,由AB OP ⊥,从而可求出弦AB 所在直线的斜率是123AB OP k k =-=,由直线的点斜式,可写出弦AB 所在直线方程. 【详解】解:设圆2220x y +=的圆心为O ,则()0,0O .由P 是AB 的中点,知AB OP ⊥.因为()22231320+-=<,所以点P 在圆O 内,且303202OP k --==--. 所以弦AB 所在直线的斜率是123AB OP k k =-=,则弦AB 所在的直线方程是23(2)3y x +=-, 整理可得,23130x y --=. 故答案为:23130x y --=. 【点睛】本题考查了直线的点斜式方程,考查了两直线垂直的应用.本题的关键是分析出AB OP ⊥,进而求出弦所在直线的斜率.15.或【分析】直接求两直线的交点与等距离的直线一条过AB 的中点一条平行AB 【详解】两直线和的交点为的中点为因为所求直线过且与等距离故所求直线过的中点或与直线平行当直线过的中点时直线方程为即当直线与直线平解析:790x y +-=或210x y ++= 【分析】直接求两直线的交点,与(3,2),(1,6)A B --等距离的直线,一条过AB 的中点,一条平行AB . 【详解】两直线11370x y +-=和12190x y +-=的交点为(2,5)-,(3,2),(1,6)A B --的中点为(1,2),因为所求直线过(2,5)-且与()3,2A -,()1,6B -等距离, 故所求直线过AB 的中点或与直线AB 平行, 当直线过AB 的中点时,2(5)712k --==--, 直线方程为27(1)y x -=--,即790x y +-=, 当直线与直线AB 平行时,26823(1)4k ---===---,直线方程为52(2)y x +=--,即210x y ++=. 故答案为:790x y +-=或210x y ++= 【点睛】本题主要考查了直线交点,直线的平行,直线的斜率,直线方程,属于中档题.16.或【分析】把曲线方程整理后可知其图象为半圆进而画出图象来要使直线与曲线有且只有一个交点那么很容易从图上看出其三个极端情况分别是:直线在第四象限与曲线相切交曲线与和另一个点以及与曲线交于点分别求出则的解析:11b -<≤或2b =- 【分析】把曲线方程整理后可知其图象为半圆,进而画出图象来,要使直线与曲线有且只有一个交点,那么很容易从图上看出其三个极端情况,分别是:直线在第四象限与曲线相切,交曲线与()0,1-和另一个点,以及与曲线交于点()0,1,分别求出b ,则b 的范围可得. 【详解】解:由曲线21x y =-,可得()2210x y x +=≥,表示一个半圆.如下图可知,()0,1A ,()10B ,,()0,1C -, 当直线y x b =+经过点A 时,10b =+,求得1b =; 当直线y x b =+经过点B ,点C 时,01b =+,求得1b =-; 当直线y x b =+和半圆相切时,由圆心到直线的距离等于半径,可得12b =,求得2b =-或2b =(舍),故b 的取值范围为11b -<≤或2b =-.故答案为:11b -<≤或2b =-. 【点睛】本题主要考查了直线与圆相交的性质,点到直线的距离公式,体现了数形结合的思想方法,属于中档题.17.【分析】过作于连接可得直角三角形中从而得到当时原点到直线的距离最大利用垂直求出的斜率从而得到的方程【详解】设点过坐标系原点作于连接则为原点到直线的距离在直角三角形中为斜边所以有所以当时原点到直线的距 解析:2450x y --=【分析】过O 作OB l ⊥于B ,连接OA ,可得直角三角形AOB 中OB OA <,从而得到当OA l ⊥时,原点O 到直线l 的距离最大,利用垂直,求出l 的斜率,从而得到l 的方程. 【详解】 设点1,12A ⎛⎫-⎪⎝⎭,过坐标系原点O 作OB l ⊥于B ,连接OA , 则OB 为原点O 到直线l 的距离, 在直角三角形AOB 中,OA 为斜边, 所以有OB OA <,所以当OA l ⊥时,原点O 到直线l 的距离最大, 而1212OA k -==-,所以12l k =, 所以l 的直线方程为11122y x ⎛⎫+=- ⎪⎝⎭, 整理得:2450x y --=【点睛】本题考查根据点到直线的距离求斜率,点斜式写直线方程,属于简单题.18.【分析】求出圆心坐标圆的半径结合题意利用圆的到直线的距离半径满足勾股定理求出就是最小值【详解】解:因为的圆心半径为则圆心到直线的距离为:点在直线上过点的直线与曲线只有一个公共点则的最小值:故答案为: 解析:27【分析】求出圆心坐标,圆的半径,结合题意,利用圆的到直线的距离,半径,||PM 满足勾股定理,求出||PM 就是最小值. 【详解】解:因为()22:54C x y -+=的圆心(5,0),半径为2,则圆心到直线1:30l x y ++=的=P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=只有一个公共点M ,则||PM故答案为:【点睛】本题考查点到直线的距离公式,直线与圆的位置关系,勾股定理的应用,考查计算能力,转化思想的应用,属于基础题.19.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC AC 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积. 【详解】4,AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC AC 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则OP OA ==,32OD ===, 所以11135422OD DD OD AA OD =-=-=-=,12PD ===, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,其面积为224S ππ=⨯=. 故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上.20.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈, 所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确;对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确; 对于④:当12D M MB =时,442,,333M ⎛⎫ ⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由222222202420333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n ,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确;故答案为:②③④.【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可;(2)利用性质://,αββγαγ⊥⇒⊥(客观题常用);(3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.21.60°【分析】根据AB ∥CD 得到异面直线与所成角即为∠VCD 由△VCD 为等边三角形即可求解【详解】如图示因为是正方形所以AB ∥CD 所以异面直线与所成角即为∠VCD 又各条棱长均为2所以△VCD 为等边三解析:60°【分析】根据AB ∥CD ,得到异面直线VC 与AB 所成角即为∠VCD ,由△ VCD 为等边三角形,即可求解.【详解】如图示,因为ABCD 是正方形,所以AB ∥CD ,所以异面直线VC 与AB 所成角即为∠VCD.又各条棱长均为2,所以△ VCD 为等边三角形,所以∠VCD =60°,异面直线VC 与AB 所成角的大小为60°.故答案为:60°【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 22.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的 解析:163π 【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积.【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=, 所以,球O 的半径为232x =O 的表面积为2231643S ππ=⨯=⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解. 23.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值 解析:4747-+⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果.【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N ,可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 1117827477tan tan()1637117O HN O HO NHO ---∠=∠-∠====+, 11171827477tan tan()7117O HM O HO OHM ++++∠=∠+∠====-, 所以tan θ的取值范围是4747-+⎣⎦, 故答案为:4747-+⎣⎦. 【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下:(1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值;(3)结合图形求得相应角的正切值;(4)利用和差角正切公式求得结果.24.【分析】先在直角三角形中列关系求得再求球的表面积即可【详解】是直角三角形外接圆圆心为的中点因为三点都在球的表面上球心到平面的距离为是球半径的所以中即故解得所以球的表面积故答案为:【点睛】本题考查了球 解析:9π【分析】先在直角三角形中列关系,求得R ,再求球的表面积即可.【详解】 22AB =,AC BC ⊥,ABC ∆是直角三角形,外接圆圆心为AB 的中点M , 因为A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离为OM ,是球半径的13, 所以OMB ∆中()()222OA OM MA =+,即2221132R R AB ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ 故222112232R R ⎛⎫⎛⎫=+⨯ ⎪ ⎪⎝⎭⎝⎭,解得29=4R ,所以球O 的表面积29=4494S R πππ=⋅=. 故答案为:9π.【点睛】本题考查了球的表面积,属于中档题.三、解答题25.(1)证明见解析;(2)62. 【分析】(1)证明AC ⊥BC 和PA ⊥BC ,BC ⊥面PAC 即得证;(2)先证明∠BPC 为PB 与平面PAC 所成的角,再通过解三角形求出,BC PC 即得解.【详解】证明:(1) AB 为圆O 直径 ∴∠ACB =90°即AC ⊥BCPA ⊥面ABC ,∴PA ⊥BCAC PA =A∴BC ⊥面PAC.(2)BC ⊥面PAC , ∴∠BPC 为PB 与平面PAC 所成的角,在直角三角形ABC 中,22213BC =-=, 在直角三角形PAC 中,22112PC =+=,在直角三角形PBC 中,tan ∠BPC =3622=. 故直线PB 与平面PAC 所成角的正切值为6. 【点睛】 方法点睛:求线面角常用几何法求解,其步骤为:找→作→证(定义)→指→求(解三角形).26.(1)证明见解析;(2)证明见解析.【分析】(1)由线面垂直推出PA BC ⊥,由直角三角形推出AB BC ⊥,即可证明线面垂直;(2)连结OG 并延长交AB 于点E ,连结DO ,DE ,通过证明//DE 平面PBC 、//DO 平面PBC 证明平面DOE //平面PBC ,从而推出线面平行.【详解】(1)证明:PA ⊥平面ABC ,且BC ⊂平面ABC ,∴PA BC ⊥,底面ABC 是直角三角形且AB BC =,AB BC ∴⊥, 又PA ⊂平面PAB ,AB 平面PAB ,PA AB A =,∴BC ⊥平面PAB .(2)证明:连结OG 并延长交AB 于点E ,连结DO ,DE ,G 是AOB ∆的重心,∴ OE 为AB 边上的中线, ∴E 为AB 边上的中点,又有D 为PA 边上的中点, ∴//DE PB ,PB ⊂平面PBC ,//DE ∴平面PBC ,同理可得//DO 平面PBC ,又DE ⊂平面DOE ,DO ⊂平面DOE ,DE DO D ⋂=,∴平面DOE //平面PBC ,又有DG ⊂平面DOE , DG //∴平面PBC27.(Ⅰ)证明见解析;(Ⅱ)1.【分析】(Ⅰ)由BD AC ⊥和1A A BD ⊥,利用线面垂直的判定定理证得BD ⊥平面1A AC ,然后再由//BD EF 证明.(Ⅱ)由1D D ⊥平面ABCD ,则1D D 是三棱锥1D AEF -在平面AEF 上的高,然后利用等体积法11A D EF D AEF V V --=求解.【详解】(Ⅰ)如图所示:连接BD ,易知BD AC ⊥,因为1A A ⊥平面ABCD ,BD ⊂平面ABCD ,所以1A A BD ⊥,又1A AAC A =, 所以BD ⊥平面1A AC .在CBD 中,点E ,F 分别是BC ,DC 的中点,所以//BD EF .所以EF ⊥平面1A AC .(Ⅱ)∵1D D ⊥平面ABCD ,∴1D D 是三棱锥1D AEF -在平面AEF 上的高,且12D D =.∵点E ,F 分别是BC ,DC 的中点,∴1DF CF CE BE ====. ∴2111322222AEF S AD DF CF CE AB BE =-⋅⋅-⋅⋅-⋅⋅=△. ∴11111321332A D EF D AEF AEF V V S D D --==⋅⋅=⨯⨯=△. 【点睛】 方法点睛:(1)证明直线和平面垂直的常用方法:①线面垂直的定义;②判定定理;③垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);④面面平行的性质(a ⊥α,α∥β⇒a ⊥β);⑤面面垂直的性质.(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.28.(1)证明见解析;(223 【分析】。

数学必修二第二章解析几何初步试卷及答案

数学必修二第二章解析几何初步试卷及答案

数学必修二第二章解析几何初步一、选择题:1.x 轴上任一点到定点(0;2)、(1;1)距离之和最小值是(C )A .2B .22+C .10D .15+2.点(4;0)关于直线5x+4y+21=0对称的点是(B )A .(-6;8)B .(-6;-8)C .(-8;-6)D .(6;8)3.直线 032=+-y x l :关于x y -=;对称的直线方程是(C ) A .032=+-y x B .032=-+x y C .032=--y x D .032=--y x4.过点P (2;1);且倾斜角是直线l :01=--y x 的倾斜角的两倍的直线方程为(B )A .012=--y xB .2=xC .)2(21-=-x yD .012=--y x5.以点A (-5;4)为圆心;且与x 轴相切的圆的方程是(C )A .25)4()5(22=-++y xB .16)4()5(22=++-y xC .16)4()5(22=-++y xD .25)4()5(22=++-y x 6.一条直线过点P (-3;23-);且圆2522=+y x 的圆心到该直线的距离为3;则该直线的方程为(C )A .3-=xB .233-=-=y x 或C .015433=++-=y x x 或D .01543=++y x7.过点A (1;-1);B (-1;1);且圆心在直线02=-+y x 上的圆的方程是(B )A .4)1()3(22=++-y xB .4)1()1(22=-+-y x C .4)1()3(22=-++y x D .4)1()1(22=+++y x8.已知圆C :4)2()(22=-+-y a x (0 a );有直线l :03=+-y x ;当直线l 被圆C 截得弦长为32时;a 等于(A )A .12-B .2-2C .2D .12+)(0)11()3()12(R k k y k x k ∈==--+--;所经过的定点是(B )A .(5;2)B .(2;3)C .(-21;3) D .(5;9)10.若直线12++=k kx y 与直线221+-=x y 的交点位于第一象限;则实数k 的取值范围是(C )A .26-- kB .061k -C .061 k -D .21k 0155,02,0321=--=-+=-ky x l y x l y x l :::构成一个三角形;则k 的范围是(C ) A .R k ∈B .R k ∈且0,1≠±≠k kC .R k ∈且10,5-≠±≠k kD .R k ∈且1,15≠±≠k k12.若点(2;k )到直线06125=+-y x 的距离是4;则k 的值是(D ) A .1 B .-3C .1或35D .-3或31713.已知点P (y x ,)在直线l :01043=-+y x 上;O 为原点;则当OP最小时;点P 的坐标是(A )A .⎪⎭⎫ ⎝⎛58,56B .)4,2(C .⎪⎭⎫ ⎝⎛-45,5 D .⎪⎭⎫⎝⎛-53,51 14.若点(2;k )到直线06125=+-y x 的距离是4;则k 的值是(A )A .-3或317B .-3C .1或35D .1二、填空题15.已知点A (2;5)、B (4;-1);若在y 轴上存在一点P ;使||||PB PA +最小;则点P 的坐标为__(0;3)___.16.直线0632=-+y x 关于点(1;-1)对称的直线方程为 2x+3y+8=0__. 17.若直线l 经过点(-1;3);且斜率为-2;则直线l 的方程为_2x+y-1=0_. 18.已知一条直线经过点P(1;2);且斜率与直线y= 2x +3的斜率相同;则该直线的方程是_2x-y=0 .19.在x 轴上的截距是5;倾斜角为43π的直线方程为 y=-x+5 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章《解析几何初步》检测试题
一、选择题(本大题共12小题,每小题5分,共60分)
1.过点(1,0)且与直线x-2y-2=0平行的直线方程是 ( )
A.x-2y-1=0
B.x-2y+1=0
C.2x+y-2=0
D.x+2y-1=0
2.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为
31,则m ,n 的值分别为 ( ) A.4和3 B.-4和3 C.- 4和-3 D.4和-3
3.x 轴上任一点到定点(0,2)、(1,1)距离之和最小值是( )
A .2
B .22+
C .10
D .15+
4.下列命题中为真命题的是 ( )
A .平行直线的倾斜角相等
B .平行直线的斜率相等
C .互相垂直的两直线的倾斜角互补
D .互相垂直的两直线的斜率互为相反
5.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线l 的方程是 ( )
A .524=+y x
B .524=-y x
C .52=+y x
D .52=-y x
6.过直线013=-+y x 与072=-+y x 的交点,且与第一条直线垂直的直线l 方程是( )
A .073=+-y x
B .0133=+-y x
C .072=+-y x
D .053=--y x
7.直线x-y+1=0与圆(x+1)2+y 2
=1的位置关系是 ( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离
8.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为( )
A .50x y --=
B .50x y -+=
C .50x y ++=
D .50x y +-= 9.直线2x =被圆
422=+-y a x )(所截得的弦长等于32,则a 的值为 ( ) A 、-1或-3 B 、22-或 C 、1或3 D 、3
10.由直线y=x+1上的一点向圆x 2+y 2-6x+8=0引切线,则切线长的最小值为 ( )
A .1
B .22
C .7
D .3
11.已知1O :06422=+-+y x y x 和2O :0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是 ( )
A. 30x y ++= B. 250x y --= C. 390x y --= D. 4370x y -+=
12.空间直角坐标系中,点(3,4,0)A -和点(2,1,6)B -的距离是 ( )
A .
B .
C .9
D 二填空题:(本大题共4小题,每小题5分,共20分.)
13.直线x y 2=关于x 轴对称的直线方程为 .
14.已知点(,)M a b 在直线1543=+y x 上,则22b a +的最小值为
15.经过)1,2(-A 和直线1x y +=相切,且圆心在直线x y 2-=上的圆的方程为_____________ _________ __________ .
16.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程 .
三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.求经过点)2,1(A 且到原点的距离等于1的直线方程.
18.已知一曲线是与两个定点(0,0)O 、(3,0)A 距离的比为2
1的点的轨迹,则求此曲线的方程. 19.求垂直于直线0743=--y x ,且与两坐标轴构成周长为10的三角形的直线方程
20.自点A(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2
-4x-4y+7=0相切,求光线L 所在直线的方程. 21.已知圆C :()2219x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.
(Ⅰ)当l 经过圆心C 时,求直线l 的方程;
(Ⅱ)当弦AB 被点P 平分时,写出直线l 的方程;
(Ⅲ)当直线l 的倾斜角为45º时,求弦AB 的长.
22.已知方程x 2+y 2-2x-4y+m=0.
(1)若此方程表示圆,求m 的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M 、N 两点,且OM ⊥ON (O 为坐标原点),求m ;
(3)在(2)的条件下,求以MN 为直径的圆的方程.。

相关文档
最新文档