人教版九年级数学上册第二十二章二次函数知识点总结

合集下载

人教版九年级上册第22章二次函数图像与性质知识点题型总结

人教版九年级上册第22章二次函数图像与性质知识点题型总结

二次函数图像及性质【二次函数的定义】一般地,形如y = ax2+bx + c Wc为常数,“工0)的函数称为兀的二次函数,其中兀为自变量,为因变量,J b、c分别为二次函数的二次项、一次项和常数项系数.注意:和一元二次方程类似,二次项系数“工0,而b、c可以为零.二次函数的自变量的取值范朗是全体实数.【二次函数的图象】1.二次函数图象与系数的关系(1)“决左抛物线的开口方向当“>0时,抛物线开口向上;当“<0时,抛物线开口向下.反之亦然.同决过抛物线的开口大小:同越大,抛物线开口越小;同越小,抛物线开口越大.温馨提示:几条抛物线的解析式中,若问相等,则其形状相同,即若"相等,则开口及形状相同,若a互为相反数,则形状相同、开口相反.(2)〃和"共同决左抛物线对称轴的位置(抛物线的对称轴:S2a当b=o时,抛物线的对称轴为y轴;当方同号时,对称轴在轴的左侧;当〃异号时,对称轴在y轴的右侧・(3)“的大小决泄抛物线与y轴交点的位置(抛物线与y轴的交点坐标为(o,C)当c=o时,抛物线与y轴的交点为原点:当c>o时,交点在轴的正半轴:当c<0时,交点在y轴的负半轴.2•二次函数图象的画法五点绘图法:利用配方法将二次函数y = ax2 +bx + c化为顶点式y = a(x-h)2 +k,确泄其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点(0, c)、以及(0, c)关于对称轴对称的点(2力,c)、与x轴的交点(占,0) , (x2 , 0)(若与x 轴没有交点,则取两组关于对称轴对称的点)・画草图时应抓住以下几点:开口方向,对称轴,顶点,与X轴的交点,与y轴的交点.3•点的坐标设法(1)一次函数y = ax + h图像上的任意点可设为(“与+“)•其中再=0时.该点为直线与y轴交点.(2)二次函数y = ax2+bx + c(心0)图像上的任意一点可设为(石,妙?+站+可.再=0时,该点为抛物线与y轴交点,当x=-A时,该点为抛物线顶点.2a⑶ 点(召,yj关于(兀2,x2)的对称点为(2兀-若,2比-)・4•二次函数的图象信息(1)根据抛物线的开口方向判断a的正负性.(2)根据抛物线的对称轴判断-仝的大小.2a(3)根据抛物线与y轴的交点,判断。

人教版九年级数学上册第22章《 二次函数》

人教版九年级数学上册第22章《 二次函数》
总结
当二次项系数是待定字母时,求出字母的 值必须满足二次项系数不为0这一条件.
第二十二章 二次函数
1.若函数y=(m-1)x2+4x-5(m是常数)是二次函数,则 ( B) A.m≠-1 B.m≠1 C.m≠2 D.m≠-2
2.若y=(m-2)xm2-2是二次函数,则m的值是( B )
A.2
B.-2 C.2或-2 D.4
第二十二章 二次函数
1.根据实际问题列二次函数的解析式,一般要经历以下几 个步骤: (1)确定自变量与函数代表的实际意义; (2)找到自变量与因变量之间的等量关系,根据等量关 系列出方程或等式. (3)将方程或等式整理成二次函数的一般形式.
2.易错警示:一般情况下,二次函数中自变量的取值范 围是全体实数,但对实际问题的自变量的取值范围必 须使实际问题有意义.
两年后的产量 y=20(1+x)2,
即y=20x2+40x+20.
第二十二章 二次函数
二次函数的定义 一般地,形如y=ax2+bx+c(a,b,c是常 数,a≠0)的函数,叫做二次函数 (quadratic function).其中,x是自变量,a, b,c分别是函数解析式的二次项系数、一次 项系数和常数项.
数的二次项系数、一次项系数和常数项.
(1)y=7x-1;
(2)y=-5x2;
(3)y=3a3+2a2;
(4)y=x-2+x;
(5)y=3(x-2)(x-5);(6)y=x2+
1 x2
.
分析:判断一个函数是否是二次函数,要紧扣定义并将其 化简再判断.(1)是一次函数;(2)是二次函数,二 次项系数为-5,一次项系数和常数项为0;(3)中 自变量的最高次数是3,所以不是二次函数;(4)中 x-2不是整式,所以不是二次函数;把(5)整理得到 y=3x2-21x+30,是二次函数,二次项系数为3, 一次项系数为-21,常数项为30;(6)中,因为是 个分式,所以不是二次函数.

人教版初中数学九年级上册第二十二章22.1.4用待定系数法求二次函数解析式

人教版初中数学九年级上册第二十二章22.1.4用待定系数法求二次函数解析式
表达式. 一设、二代、三解、四还原
解:设这个二次函数的解析式为y=a(x+2)2+1, 把点(1,-8)代入上式得:a(1+2)2+1=-8, 解得 a=-1.
∴所求的二次函数的表达式是y=-(x+2)2+1.
用顶点式求二次函数解析式
知道抛物线的顶点坐标,求表达式的方法叫做顶点法.其步骤 : ①设函数表达式是y=a(x-h)2+k; ②先代入顶点坐标,得到关于a的一元一次方程; ③将另一点的坐标代入原方程求出a值; ④a用数值换掉,写出函数表达式.
∴所求的二次函数的表达式是y=(x+3)(x+1), 即y=x2+4x+3.
用交点法求二次函数解析式
知道抛物线与x轴的两个交点,求解析式的方法叫做交点法. 其步骤是: ①设函数表达式是y=a(x-x1)(x-x2); ②先把两交点的横坐标x1,x2代入到表达式中,得到关于a的一 元一次方程; ③将方程的解代入原方程求出a值; ④a用数值换掉,写出函数表达式.
用一般式求二次函数解析式
【例3】一个二次函数的图象经过(0,1),(2,4),(3,10)三点,
求这个二次函数的表达式. 一设、二代、三解、四还原
解:设这个二次函数的解析式是y=ax2+bx+c,由于这个函数经
过点(0,1),可得c=1.又由于其图象经过(2,4),(3,10)两点,
可得
4a+2b+1=4,
用顶点式求二次函数解析式
1.一个二次函数的图象经点(0,1),它的顶点坐标为(8,9),求
这个二次函数的表达式.
解:设函数表达式为:y=a(x-8)2+9.
把点(0,1)代入上式得:0=a(0-8)2+9.

人教版数学九年级上册第二十二章二次函数22.二次函数课件

人教版数学九年级上册第二十二章二次函数22.二次函数课件

y 1 (x 1)2 1 … -5.5 -3 -1.5 -1 -1.5 -3 -5.5 …
2
再描点画图.
解: 先列表
x
… -4 -3 -2 -1 0 1 2 …
y 1 (x 1)2 1 … -5.5 -3 -1.5 -1 -1.5 -3 -5.5 …
2
再描点、连线
直线x=-1
(1)抛物线 y 1 (x 1)2 1


y = ax2 + k
y = a(x - h )2
上下平移 y = ax2 左右平移
结论: 一般地,抛物线 y = a(x-h)2+k 与y = ax2形状相同,位置不同。
1如何平移:
y 3 (x 1)2 4
y 3 (x 1)2 2 4
y 3 (x 3)2 3 4
y 3 (x 5)2 2 4
2
的开口方向、对称轴、顶点?
抛物线 y 1 (x 1)2 1 的开口向下, 2
对称轴是直线x=-1,
顶点是(-1, -1).
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x -2 -3 -4 -5 -6 -7 -8 -9 -10 y 1 (x 1)2 1
2
1.完成下列表格:
平移方法:
y=ax2向左(右)平移y=a(x-h)2 向上(下)平y=a(x-h)2+k
|h|个单位
移|k|个单位
y=ax2 向上(下)平 y=ax2+k 向左(右)平 y=a(x-h)2+k
移|k|个单位
移|h|个单位
各种情势的二次函数的关系
左 y = a( x - h )2 + k 上

人教版九年级上册数学课件 第二十二章 二次函数 二次函数的图象和性质 二次函数y=ax2的图象和性质

人教版九年级上册数学课件 第二十二章 二次函数 二次函数的图象和性质 二次函数y=ax2的图象和性质
2
一般地,当a<0时,抛物线y=ax2的开口向下,对称轴是y轴,顶 点是原点,顶点是抛物线的最高点,a越小,抛物线的开口越小.
顶点都是原点(0,0), 顶点是抛物线的最 高点;
增减性相同: 当 x<0时,y随x增大 而增大;当x>0时, y随x增大而减小.
y O -3
3x
开口都向下; 对称轴都是y轴;
y = ax2(a<0)
(0,0) y轴
在x轴的下方(除顶点外) 向下
当x<0时,y随着x的增大而增大. 当x>0时,y随着x的增大而减小.
当x = 0时,最大值为0.
Thank you!
A.y1<y2<y3 C.y3<y2<y1
B.y1<y3<y2 D.y2<y1<y3
综合应用
3.已知y=(m+1)xm2+m是关于x的二次函数,且当x>0时,y随x 的增大而减小. (1)求m的值; (2)画出该函数的图象.
解:(1)∵y=(m+1)xm2+m是关于x的二次函数,∴m2+m=2且m +1≠0.则m=-2或m=1.又∵x>0时,y随x的增大而减小,∴m+ 1<0,m<-1,故m=-2 (2)画图略
单调性
当x<0 (在对称轴 的左侧)时,y随
着x的增大而减小.
y 9 6 3
-3 O 3 x
当x>0 (在对
称轴的右侧) 时,y随着x的
猎豹图书
增大而增大.
例1 在同一直角坐标系中,画出函数 y 1 x2 ,y =2x2的图象.
2
解:分别列表,再画出它们的图象,如图.
x ··· -4 -3 -2 -1 0 1 2 3 4 ···
函数 y=1 x2,y=2x2 的图象与函数y=x2 的图象相比,有什么共同点

人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文

人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文
你还记得如何画出一次函数的图像吗?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:

-2
-1
0
1
2


4
1
0
1
2

新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?

九年级数学二次函数知识点总结

九年级数学二次函数知识点总结

二次函数是中学数学中重要的一个章节,主要涉及到解析式、图像和性质等方面。

本文将对九年级数学中二次函数的知识点进行总结,包括定义、基本性质、图像及其变化规律、求解等方面,以及与实际生活中的应用。

一、定义:二次函数是指形如y=ax²+bx+c(a≠0)的函数,其中a、b、c都是实数,并且a的值决定了图像的开口方向。

二、基本性质:1.零点和轴对称:二次函数的零点是使得函数值等于0的x值,零点的个数取决于判别式的值。

二次函数关于y轴对称。

2.求导和凹凸性:二次函数的导数是一次函数,二次函数的凹凸性由二次项系数的符号决定。

当a>0时,函数的图像开口向上,二次函数是凹的;当a<0时,函数的图像开口向下,二次函数是凸的。

3.极值:二次函数的极值点是函数图像的最高点或者最低点,极值点的x坐标是二次函数的顶点。

当a>0时,函数的极值是最小值;当a<0时,函数的极值是最大值。

三、图像及其变化规律:1.开口方向:二次函数的开口方向由二次项系数a的符号决定。

当a>0时,图像开口向上;当a<0时,图像开口向下。

2.平移:二次函数的图像可以进行平移操作,平移后的函数图像仍然是一条二次曲线。

平移的规律是对原函数的输入x进行平移操作。

例如,y=(x-3)²平移到y=x²后,图像整体向右移动3个单位。

3.缩放:二次函数的图像也可以进行缩放操作,缩放后的函数图像仍然是一条二次曲线。

缩放的规律是对原函数的自变量x进行缩放操作。

例如,y=(2x)²相当于y=4x²,图像整体变窄。

四、求解:1. 二次函数的解析式:求解二次函数的关键是求出二次函数的零点,即令y=0,并解方程ax²+bx+c=0。

根据二次函数的解析式,可以根据判别式的值确定二次函数的零点个数,判别式D=b²-4ac。

-当D>0时,有两个不相等的实数根;-当D=0时,有两个相等的实数根;-当D<0时,没有实数根,但有两个共轭复数根。

人教版初中数学第二十二章二次函数知识点

人教版初中数学第二十二章二次函数知识点

第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数1.二次函数的概念:一般地,形如y ax 2bx c (a,b,c是常数,a0)的函数,叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数,而b,c 可以为零.二次函数的定义域是全体实数.a 02.二次函数 y ax 2 bx c 的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式, x 的最高次数是2.⑵ a ,b ,c是常数,a是二次项系数,b是一次项系数,c是常数项.22.1.2 二次函数y ax 2的图象和性质1. 二次函数基本形式:y ax 2的性质:a 的绝对值越大,抛物线的开口越小.a 的符号开口方向顶点坐标对称轴性质x0时,y随x的增大而增大;x 0时,y随x a0向上0 ,0y轴x0时,y有最小值 0.的增大而减小;x0时,y随x的增大而减小;x 0时,y随x a0向下0 ,0y轴x0时,y有最大值 0.的增大而增大;例 1.若抛物线y=ax2经过 P( 1,﹣ 2),则它也经过()A .( 2,1) B.(﹣ 1, 2) C.( 1, 2) D.(﹣ 1,﹣ 2)【答案】【解析】试题解析:∵抛物线y=ax 2经过点 P( 1, -2),∴x=-1 时的函数值也是 -2,即它也经过点( -1, -2).故选 D.考点:二次函数图象上点的坐标特征.例 2.若点 (2,-1) 在抛物线y ax2上,那么,当x=2 时, y=_________【答案】 -1【解析】试题分析:先把 (2, -1)直接代入yax2即可得到解析式,再把x=2 代入即可 .由题意得 4a 1 ,a 1,则 y1x 2,44当 x 2 时,y 14 1. 4考点:本题考查的是二次函数点评:解答本题的关键是掌握二次函数图象上的点适合这个二次函数的关系式.2. y ax 2 c 的性质:上加下减 .a 的符号开口方向顶点坐标对称轴性质x0时,y随x的增大而增大;x0 时,y随a0向上0 ,c y轴x 的增大而减小;x 0 时,y有最小值c.x0 时,y随x的增大而减小;x 0 时,y a0向下0 ,c y 轴x 0 时,y有最大值c.随 x 的增大而增大;例 1.若抛物线 y=ax 2+c 经过点 P ( l,- 2),则它也经过()A.P1(- 1,- 2 ) B .P2(- l, 2 )C. P3( l , 2)D. P4( 2, 1)【答案】 A【解析】试题分析:因为抛物线y=ax2 +c 经过点 P ( l ,- 2),且对称轴是y 轴,所以点 P ( l ,- 2)的对称点是(-1,-2),所以 P1(- 1,- 2)在抛物线上,故选: A.考点:抛物线的性质 .例 2.已知函数 y=ax+b 经过( 1, 3),( 0,﹣ 2),则 a﹣ b=()A.﹣ 1B.﹣ 3C. 3D. 7【答案】 D.【解析】试题分析:∵函数y=ax+b 经过( 1, 3),(0,﹣ 2),a b 3a5∴,解得b .b22∴ a﹣ b=5+2=7 .故选 D.考点: 1.直线上点的坐标与方程的关系;2.求代数式的值.例 3.两条直线 y1= ax+b 与 y2= bx+ a 在同一坐标系中的图象可能是下图中的()【答案】无正确答案【解析】分析:首先根据两个一次函数的图象,分别考虑a,b 的值,看看是否矛盾即可.解: A 、由 y1的图象可知, a< 0, b< 0;由 y2的图象可知, a>0,b<0 ,两结论矛盾,故错误;B、由 y1的图象可知, a>0, b> 0;由 y2的图象可知, a> 0, b<0 ,两结论相矛盾,故错误;C、由 y1的图象可知, a>0,b<0;由 y2的图象可知, a< 0, b< 0,两结论相矛盾,故错误;D、由 y1的图象可知, a>0, b> 0;由 y2的图象可知, a<0, b<0 ,两结论相矛盾,故错误.故无正确答案.点评:此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当 k> 0, b> 0,函数 y=kx+b 的图象经过第一、二、三象限;②当 k> 0, b< 0,函数 y=kx+b 的图象经过第一、三、四象限;③当 k< 0, b> 0 时,函数y=kx+b 的图象经过第一、二、四象限;④当 k< 0, b< 0 时,函数y=kx+b 的图象经过第二、三、四象限.22.1.3 二次函数y a x h2k 的图象和性质左加右减 .a 的符号开口方向顶点坐标对称轴性质h,0x h 时,y随x的增大而增大;x h 时,ya0向上X=hx h 时,y有最小值 0 .随 x 的增大而减小;a0h,0x h 时,y随x的增大而减小;x h 时,y向下X=hx h 时,y有最大值 0 .随 x 的增大而增大;2y a x hk 的性质:a 的符号开口方向顶点坐标对称轴性质h,k x h 时,y随x的增大而增大;x h 时,ya0向上X=hx h 时,y有最小值 k .随 x 的增大而减小;h,k x h 时,y随x的增大而减小;x h 时,ya0向下X=hx h 时,y有最大值 k .随 x 的增大而增大;例 1.将二次函数y=x2﹣ 2x﹣ 3化成 y= ( x﹣ h)2+k 形式,则 h+k 结果为()A.﹣ 5 B.5C. 3D.﹣3【答案】 D.【解析】试题分析: y=x 2-2x-3= ( x2-2x+1 ) -1-3= ( x-1)2-4.则h=1 ,k=-4 ,∴ h+k=-3 .故选 D.考点 : 二次函数的三种形式.例2.把二次函数 y=x2+6x+4 配方成 y=a( x-h)2+k 的形式,得 y=___ ,它的顶点坐标是 ___.【答案】( x+3)2-5,( -3, -5)【解析】试题分析: y= x2 +6x+4= ( x + 3)2-5 ,则顶点坐标为(-3,- 5).考点:二次函数的顶点式.3y 1 x23x4配方成y a x k2+h的形式,并写出它的图象的顶点坐标、对称轴.例.把二次函数2=(-)【答案】y=顶点坐标(3,-),对称轴方程x= 3【解析】试题分析: y= x2﹣ 3x+4=(x﹣3)2﹣,则顶点坐标( 3,﹣),对称轴方程 x=3 ,考点:二次函数的图像及性质1、二次函数图象的平移( 1)平移步骤:方法一:( 1)将抛物线解析式转化成顶点式2h ,k ;y a x hk ,确定其顶点坐标 (2)保持抛物线 y ax 2 的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:向上 (k>0)【或向下 ( k<0)】平移 |k|个单位y=ax2y=ax 2+k向右 (h>0) 【或左 ( h<0)】 向右 (h>0) 【或左 (h<0) 】 向右 (h>0) 【或左 ( h<0) 】平移 |k| 个单位平移 |k|个单位平移 |k| 个单位向上 (k>0) 【或下 (k<0)】平移 |k|个单位y=a (x-h)2向上 (k>0)【或下 (k<0)】平移 |k|个单位y=a( x-h)2+k( 2)平移规律在原有函数的基础上 “h 值正右移,负左移; k 值正上移,负下移”.概括成八个字 “左加右减,上加下减 ”.方法二:( 1) yax 2 bx c 沿 y 轴平移 :向上(下)平移m 个单位, yax 2 bxc 变成yax 2 bx cm (或 y ax 2 bx c m )2 y ax2 bxc沿轴平移:向左(右)平移m 个单位, y ax2bx c变成( )ya( x m)2b(x m) c (或ya( x m) 2 b( x m) c )例 1.将二次函数 y = x 2 的图象向下平移一个单位,则平移以后的二次函数的解析式为()A . y = x 2- 1B . y = x 2+ 1C . y =(x -1) 2D . y = (x + 1)2【答案】 A【解析】直接根据上加下减的原则进行解答即可,将二次函数y =x 2 的图象向下平移一个单位,则平移以后的二次函数的解析式为: y = x 2- 1.故选 A.例 2.将二次函数y=x 2 的图象向右平移 1 个单位,再向上平移2 个单位后,所得图象的函数表达式是2B . y=(x+1) 2+2A . y=(x – 1)+22D . y=(x+1) 2–2C . y=(x – 1)– 2【答案】 A .【解析】试题分析:原抛物线的顶点为( 0,0),向右平移 1 个单位,再向上平移 2 个单位,那么新抛物线的顶点为(1,2).可设新抛物线的解析式为y= ( x﹣ h)2+k ,代入得 y= ( x﹣ 1)2+2.故选 A.考点:二次函数图象与几何变换.例 3.将二次函数y x2的图象如何平移可得到y x 2 4 x 3 的图象()A .向右平移 2 个单位,向上平移一个单位B.向右平移 2 个单位,向下平移一个单位C.向左平移 2 个单位,向下平移一个单位D.向左平移 2 个单位,向上平移一个单位【答案】 C【解析】 y x24x 3 ( x 2) 21,根据二次函数的平移性质得:向左平移 2 个单位,向下平移一个单位.故选C.例 4.已知点 P(﹣ 1,m)在二次函数y=x 2﹣1 的图象上,则m 的值为;平移此二次函数的图象,使点P 与坐标原点重合,则平移后的函数图象所对应的解析式为.【答案】 0, y=x 2﹣ 2x.【解析】∵点 P(﹣ 1, m)在二次函数y=x2﹣1 的图象上,∴(﹣ 1)2﹣ 1=m,解得 m=0,平移方法为向右平移 1 个单位,平移后的抛物线的二次函数的顶点坐标为(1,﹣ 1),平移后的函数图象所对应的解析式为y=( x﹣ 1)2﹣1=x 2﹣ 2x,即y=x 2﹣ 2x.故答案为: 0, y=x 2﹣ 2x.2、二次函数y a x2k 与 y ax2bx c 的比较h从解析式上看,y a x h 2ax2bxc是两种不同的表达形式,后者通过配方可以得到前者,即k 与 y2b2b,k4ac b2y a x b4ac,其中 h.2a4a2a4a3、二次函数y ax2bx c 图象的画法五点绘图法:利用配方法将二次函数y ax2bx c 化为顶点式y a(x h)2k ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点0,c 、以及 0 ,c 关于对称轴对称的点2h,c、与x轴的交点x1,0 ,x2,0 (若与x轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.4、二次函数y ax2bx c 的性质b ,4ac 21. 当 a0 时,抛物线开口向上,对称轴为x b,顶点坐标为b.2a2a4a当 x b时, y 随x的增大而减小;当x b时, y 随x的增大而增大;当x b时, y 有最小值2a 2 a 2 a4ac b2.4a2b时, y 随x的增2. 当 a0 时,抛物线开口向下,对称轴为x b,顶点坐标为 b ,4ac b.当x2a2a4a2a大而增大;当x b时, y 随x的增大而减小;当xb时, y 有最大值4acb2.2a2a4a例 1.当 a < 0 时,方程 ax2+bx+c=0 无实数根,则二次函数y=ax2 +bx+c 的图像一定在()A 、 x 轴上方B、 x 轴下方C、 y 轴右侧D、 y 轴左侧【答案】 B【解析】试题分析:∵方程 ax2+bx+c=0 无实数根,∴ b2 +4ac<0,即函数图形与 x 轴没有交点又∵a < 0,∴二次函数 y=ax 2+bx+c 的图像一定在 x 轴下方故选 B.考点:二次函数的性质例 2.已知二次函数y=ax2+bx+c 的图象如图,则a、 b、 c 满足()A、 a< 0, b< 0,c> 0 C、 a< 0, b> 0, c> 0B、a< 0, b<0, c< 0 D 、a> 0, b<0, c> 0【答案】 A 【解析】试题分析:由于开口向下可以判断a< 0,由与 y 轴交于正半轴得到c> 0,又由于对称轴x=-b<0,可以得到b<2a0,所以可以找到结果.试题解析:根据二次函数图象的性质,∵开口向下,∴a< 0,∵与 y 轴交于正半轴,∴c> 0,又∵对称轴x=-b<0,2a∴b< 0,所以 A 正确.考点:二次函数图象与系数的关系.例 3.已知二次函数 y=ax2+bx+c 的图象如图,其对称轴 x= ﹣ 1,给出下列结果:①b2> 4ac;② abc> 0;③ 2a+b=0;④ a+b+c> 0;⑤ a﹣ b+c< 0,则正确的结论是()A. ①②③④B.②④⑤C.②③④D.①④⑤【答案】D【解析】试题分析:根据抛物线与x 轴有两个交点,可得△=b2﹣ 4ac> 0,即b2> 4ac,故①正确;根据抛物线对称轴为x= ﹣b< 0,与y 轴交于负半轴,因此可知ab> 0, c< 0, abc< 0,故②错误;根据抛物线对称轴为x= ﹣2ab=﹣ 1,∴ 2a﹣b=0 ,故③错误;2a当x=1 时, y> 0,即 a+b+c> 0,故④正确;当x= ﹣ 1 时,y<0,即 a﹣ b+c<0,故⑤正确;正确的是①④⑤.故选 D.考点:二次函数图象与系数的关系例 4.如果二次函数y= ax2+bx+c (a≠0)的图象如图所示,那么()A. a< 0, b> 0,c> 0 B. a> 0, b< 0, c> 0 C. a> 0, b> 0, c< 0 D. a> 0, b< 0,c< 0 【答案】 D【解析】试题分析:因为抛物线开口向上,所以a> 0,又对称轴在y 轴右侧,所以b>0,所以b<0,又因为抛物线与y 2a轴的交点在x 轴下方,所以c<0,所以 a> 0, b< 0, c< 0,故选: D.考点:抛物线的性质.例 5.已知抛物线y=ax2 +bx+c 与 x 轴的公共点是(﹣ 4,0),(2,0),则这条抛物线的对称轴是直线.【答案】 x=-1.【解析】试题分析:因为点(-4,0)和( 2, 0)的纵坐标都为0,所以可判定是一对对称点,把两点的横坐标代入公式x=x1x2求解即可.2试题解析:∵抛物线与x 轴的交点为(-4,0),( 2, 0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x=考点:抛物线与x 轴的交点.4221,即x=-1.5、二次函数解析式的表示方法1.一般式: y2bx c (a, b ,c为常数, a0 );ax2.顶点式: y a( x2k (a, h , k 为常数, a0 );h)3.两根式: y a( x x1)( x x2 ) ( a 0 , x1, x2是抛物线与x轴两交点的横坐标) .注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即b24ac 0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化 .6、二次函数的图象与各项系数之间的关系1.二次项系数 a二次函数y ax2bx c中,a作为二次项系数,显然a0 .⑴当 a 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大;⑵当 a 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.总结起来, a 决定了抛物线开口的大小和方向, a 的正负决定开口方向, a 的大小决定开口的大小.2.一次项系数 b在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.⑴在 a0 的前提下,当 b0 时,b0,即抛物线的对称轴在y 轴左侧;2a当 b0 时,b0,即抛物线的对称轴就是y 轴;2a当 b0 时,b0,即抛物线对称轴在 y 轴的右侧.2a⑵在 a0 的前提下,结论刚好与上述相反,即当 b0时,b0,即抛物线的对称轴在y 轴右侧;2a当 b0时,b0,即抛物线的对称轴就是y 轴;2a当 b0时,b0,即抛物线对称轴在 y 轴的左侧.2a总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴x b0 ,概括的说就是“左同右在 y 轴左边则ab 0,在 y 轴的右侧则ab2a异”总结:3.常数项 c⑴当 c0 时,抛物线与y 轴的交点在x轴上方,即抛物线与y 轴交点的纵坐标为正;⑵当 c0 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶当 c0 时,抛物线与y 轴的交点在x轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来, c 决定了抛物线与y 轴交点的位置.总之,只要 a ,b ,c 都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与 x 轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.7、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于 x 轴对称y2bx c 关于x轴对称后,得到的解析式是y2bx c ;ax axy a x h 2y a x h2 k 关于x轴对称后,得到的解析式是k ;2.关于 y 轴对称y ax2bx c 关于y轴对称后,得到的解析式是y ax2bx c ;y a x h 2y a x h2 k 关于y轴对称后,得到的解析式是k ;3.关于原点对称y ax2bx c 关于原点对称后,得到的解析式是y ax2bx c ;y a x h2y a x h2 k 关于原点对称后,得到的解析式是k ;4. 关于顶点对称(即:抛物线绕顶点旋转180 °)y ax2bx c 关于顶点对称后,得到的解析式是y ax2bx c b2;2ay a x h 2y a x h2 k 关于顶点对称后,得到的解析式是k .5. 关于点m,n 对称y a x 22k hk 关于点m,n 对称后,得到的解析式是 y a x h 2m2n根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.22.2 二次函数与一元二次方程1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程ax2bx c 0 是二次函数y ax2bx c 当函数值y 0 时的特殊情况.图象与 x 轴的交点个数:① 当b 24ac 0 时,图象与x 轴交于两点1,02,0( x1x2),其中的x1,x2是一元二次方程A x,B xax 2bx c 0 a 0 的两根.这两点间的距离 AB x2 x1b24ac .a②当0 时,图象与x 轴只有一个交点;③ 当0时,图象与 x 轴没有交点.1'当 a0 时,图象落在x 轴的上方,无论x 为任何实数,都有y0 ;2'当 a0 时,图象落在x 轴的下方,无论x 为任何实数,都有y0 .2. 抛物线 y2bx c 的图象与y轴一定相交,交点坐标为 (0 , c) ;ax3.二次函数常用解题方法总结:⑴求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数y2c 中a, b ,c的符号,或由二次函数中 a ,b, c 的符号判断图象ax bx的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2ax bx c(a 0) 本身就是所含字母x的二次函数;下面以a0 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:0抛物线与x 轴有二次三项式的值可正、一元二次方程有两个不相等实根两个交点可零、可负0抛物线与x 轴只二次三项式的值为非负一元二次方程有两个相等的实数根有一个交点0抛物线与x 轴无二次三项式的值恒为正一元二次方程无实数根 .交点例.已知函数 y3x2 6 x k (k 为常数)的图象经过点A(.,y1),B(1.1, y2),10 8C(2,y3),则有()A .y1<y2<y3B.y1>y2>y3C.y3>y1>y2D.y1>y3>y2【答案】 C【解析】试题分析:因为函数y3x26x k 的对称轴是 x b6 1 ,且抛物线开口向上,所以可以画出函数图2a6象的草图,观察图象可得:y3>y1>y2,故选:C.考点:二次函数的性质、二次函数图象上点的坐标特点.例 2.已知二次函数y=x 2+ 2mx + 2,当 x> 2 时, y 的值随 x 的增大而增大,则实数m 的取值范围是.【答案】 m≥-2.【解析】试题分析:根据二次函数的性质,利用二次函数的对称轴不大于 2 列式计算即可得解.试题解析:抛物线的对称轴为直线x=- 2m=-m ,2 1∵当 x> 2 时, y 的值随 x 值的增大而增大,∴-m≤2,解得 m≥-2.考点:二次函数的性质.例 3.函数y x2bx c 的图象经过点(1, 2),则 b-c 的值为.【答案】 1【解析】试题分析:把点(1, 2)代入y x2bx c ,得:1 b c 2 ,所以 b c 1 .考点:函数图象上的点.例4.已知抛物线 y=ax2+bx+3 的对称轴是直线 x=1 .( 1)求证: 2a+b=0;( 2)若关于 x 的方程 ax2+bx ﹣ 8=0 的一个根为 4,求方程的另一个根.【答案】( 1)见解析;( 2) x=- 2【解析】试题分析:直接利用对称轴公式代入求出即可;根据( 1)中所求,再将 x=4 代入方程求出 a, b 的值,进而解方程得出即可.试题解析:( 1)证明:∵对称轴是直线x=1= ﹣b,∴ b=-2a∴ 2a+b=0;2a(2)∵ ax2+bx﹣ 8=0 的一个根为 4,∴ 16a+4b﹣ 8=0 ,∵ b= ﹣ 2a,∴ 16a﹣ 8a﹣ 8=0 ,解得: a=1,则 b=﹣ 2,∴ a x2 +bx ﹣ 8=0 为:x2﹣ 2x ﹣ 8=0,则( x﹣ 4)( x+2 ) =0,解得:x1 =4,x2 =﹣ 2,故方程的另一个根为:﹣2.考点:二次函数的性质;二次函数图象与系数的关系;抛物线与x 轴的交点例 5.已知函数y x2bx1的图象经过点(3, 2).( 1)求这个函数的解析式;( 2)当x 0时,求使y 2 的x的取值范围.【答案】( 1)y x22x1;(2)x 3 .【解析】试题分析:( 1)把( 3, 2)代入函数解析式求出 b 的值,即可确定出解析式;( 2)利用二次函数的性质求出满足题意x 的范围即可.试题解析:( 1)∵函数y x2bx 1的图象经过点(3, 2),∴9 3b1 2 ,解得: b 2 ,则函数解析式为: y x22x1;( 2)当x 3时,y 2 ,根据二次函数性质当x 3时, y2,则当 x0时,使 y 2的x的取值范围是x 3.考点:待定系数法求二次函数解析式.22.3 实际问题与二次函数例 1.在同一坐标系内,一次函数y=ax+b 与二次函数y=ax 2+8x+b 的图象可能是()【答案】 C【解析】试题分析: A 、对于一次函数 a< 0,对于二次函数 a> 0,则不正确; B 、对于一次函数 b< 0,对于二次函数 b> 0,则不正确; C、正确; D、对于一次函数 b< 0,对于二次函数 b> 0,则不正确.考点:函数图象例 2.学生校服原来每套的售价是100 元,后经连续两次降价,现在的售价是81 元,则平均每次降价的百分数是()A.9%B.8.5%C. 9.5% D .10%【答案】D.【解析】试题分析:设平均每次降价的百分数是x,根据等量关系“校服原来每套的售价是100 元×( 1-下降率)2=每套校服现在的售价是81 元”,列出方程100( 1-x)2 = 81元,解得x 即可,故答案选 D .考点:一元二次方程的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二章 二次函数
一、二次函数的有关概念:
1、二次函数的定义:

一般地,形如2yaxbxc(abc,,是常数,0a)的函数,叫做二次函数。
2、二次函数解析式的表示方法

(1) 一般式:2yaxbxc(a,b,c为常数,0a);

(2) 顶点式:2()yaxhk(a,h,k为常数,0a);
(3)两根式:12()()yaxxxx(0a,1x,2x是抛物线与x轴两交点的横坐标).
二、二次函数2yaxbxc图象的画法
1.基本方法:描点法

注:五点绘图法。利用配方法将二次函数2yaxbxc化为顶点式
2
()yaxhk

,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左

右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点0c,、以及
0c,关于对称轴对称的点2hc,、与x轴的交点10x,,
2
0x,

(若与x轴没有

交点,则取两组关于对称轴对称的点).
2.画草图 抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的
交点.
三、二次函数的图像和性质

1.二次函数2yaxbxc的性质

(1). 当0a时,抛物线开口向上,对称轴为2bxa,顶点坐标为
2
424bacbaa

,

当2bxa时,y随x的增大而减小;当2bxa时,y随x的增大而增大;
当2bxa时,y有最小值244acba.
(2). 当0a时,抛物线开口向下,对称轴为2bxa,顶点坐标为
2
424bacbaa

,

当2bxa时,y随x的增大而增大;当2bxa时,y随x的增大而减小;
当2bxa时,y有最大值244acba.
2.二次函数 2yaxhk 的性质:

四、二次函数图象的平移
概括成八个字“左加右减,上加下减”.
五、二次函数与一元二次方程:

一元二次方程20axbxc是二次函数2yaxbxc当函数值0y时的特
殊情况.
图象与x轴的交点个数:

① 当240bac时,图象与x轴交于两点1200AxBx,,,12()xx,其

中的12xx,是一元二次方程200axbxca的两根.这两点间的距离
2
21
4bacABxxa



.

② 当0时,图象与x轴只有一个交点;
③ 当0时,图象与x轴没有交点.

a
的符号 开口方向 顶点坐标 对

称轴
性质

0a



hk,
X=h

xh
时,y随x的增大而增大;

xh时,y随x的增大而减小;xh
时,y有最小值k.

0a



hk,
X=h

xh
时,y随x的增大而减小;

xh时,y随x的增大而增大;xh
时,y有最大值k.
1'
当0a时,图象落在x轴的上方,无论x为任何实数,都有0y;

2'
当0a时,图象落在x轴的下方,无论x为任何实数,都有0y.

六、二次函数中的符号问题
1. 二次项系数a

a决定了抛物线开口大小和方向,a
的正负决定开口方向,a的大小决定开口的

大小.
2. 一次项系数b 在二次项系数a确定的前提下,b决定了抛物线的对称
轴.
⑴ 在0a的前提下,

当0b时,02ba,即抛物线的对称轴在y轴左侧;
当0b时,02ba,即抛物线的对称轴就是y轴;
当0b时,02ba,即抛物线对称轴在y轴的右侧.
⑵ 在0a的前提下,结论刚好与上述相反,即

当0b时,02ba,即抛物线的对称轴在y轴右侧;
当0b时,02ba,即抛物线的对称轴就是y轴;
当0b时,02ba,即抛物线对称轴在y轴的左侧.
总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.
总结:“左同右异”
3. 常数项c

⑴ 当0c时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标

为正;⑵ 当0c时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的
纵坐标为0;
⑶ 当0c时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标
为负.
总结起来,c决定了抛物线与y轴交点的位置.
七、二次函数解析式的确定:
根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求
二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一
般来说,有如下几种情况:
1. 已知抛物线上三点的坐标,一般选用一般式;
2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;
4. 已知抛物线上纵坐标相同的两点,常选用顶点式.

相关文档
最新文档