安徽省宿州市中考数学试卷
2024年安徽省宿州市宿城第一初级中学中考模拟最后一卷数学试题

2024年安徽省宿州市宿城第一初级中学中考模拟最后一卷数学试题一、单选题1.如果a的相反数是2,那么a等于()A.2-B.2 C.12D.12-2.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为().A.7710⨯﹣B.80.710⨯﹣C.8710⨯﹣D.9710⨯﹣3.关于x的不等式3x-2≥2x+1的解集是()A.x≤3B.x<-3 C.x≥-3 D.x≥341在数轴上的对应点可能是()A.A点B.B点C.C点D.D点5.如图,菱形ABCD的的边长为6,60ABC∠=︒,对角线BD上有两个动点E、F(点E 在点F的左侧),若EF=2,则AE+CF的最小值为()A.B.C.6 D.86.如图是两个可以自由转动的转盘,其中一个转盘平均分为4份,另一个转盘平均分为3份,两个转盘分别标有数字;同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为5的概率是()A .12B .13C .14 D .157.如图,二次函数:2(0)y ax bx c a =++≠与一次函数:y =mx +n (m ≠0)的图象交于A ,B 两点,则一元二次方程2ax bx c mx n ++=+的解为( )A .121x x ==-B .11x =,22x =C .11x =-,22x =D .122x x == 8.化简21211x x ---的结果是( ) A .1x x - B .1x x + C .11x + D .1x x+ 9.如图,在平面直角坐标系中,Rt ABC V 的顶点A C 、的坐标分别为(0,5)、(5,0),90ACB ∠=︒,2AC BC =,函数(0,0)ky k x x=>>的图象经过点B ,则k 的值为( )A .754B .758C .252D .2510.如图,在平面直角坐标系中,点A 在一次函数y位于第一象限的图象上运动,点B 在x 轴正半轴上运动,在AB 右侧以它为边作矩形ABCD ,且AB =AD =1,则OD 的最大值是( )AB C D.二、填空题11.若分式12xx-+的值为0.则x=.12.函数y=x的取值范围是.13.计算:11|2sin452-⎛⎫+-=⎪⎭︒⎝.14.某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是.15.如图1,有一张矩形纸片ABCD,已知AB=10,AD=12,现将纸片进行如下操作:现将纸片沿折痕BF进行折叠,使点A落在BC边上的点E处,点F在AD上(如图2);然后将纸片沿折痕DH进行第二次折叠,使点C落在第一次的折痕BF上的点G处,点H在BC上(如图3),给出四个结论:①AF的长为10;②△BGH的周长为18;③BGGF=23;④GH的长为5,其中正确的结论有.(写出所有正确结论的番号)三、解答题16.先化简,再求值:2213222x xxx x-+⎛⎫÷--⎪++⎝⎭,请从-2,-1,0,1,中选择一个合适的值代入求值.17.在新冠疫情防控期间,某医疗器械商业集团新进了40台A型电子体温测量仪,60台B 型电子体温测量仪,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种测量仪每台的利润(元)如下表:设集团调配给甲连锁店x台A型测量仪,集团卖出这100台测量仪的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围:(2)为了促销,集团决定仅对甲连锁店的A型测量仪每台让利a元销售,其他的销售利润不变,并且让利后每台A型测量仪的利润仍然高于甲连锁店销售的每台B型测量仪的利润,问该集团应该如何设计调配方案,使总利润达到最大18.某中学的一个数学兴趣小组在本校学生中开展了主题为“雾霾知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“A.非常了解”、“B.比较了解”、“C.基本了解”、“D.不太了解”四个等级,将所得数据进行整理后,绘制成如下两幅不完整的统计图表,请你结合图表中的信息解答下列问题(1)表中m=,n=;(2)扇形统计图中,A部分所对应的扇形的圆心角是°,所抽取学生对丁雾霾了解程度的众数是;(3)若该校共有学生1500人,请根据调查结果估计这些学生中“比较了解”人数约为多少?19.如图,在平面直角坐标系中,将△ABC进行位似变换得到△A1B1C1.(1)△ABC与△A1B1C1的位似比是.(2)画出△ABC绕点O逆时针旋转180°得到的△A2B2C2.(3)若点P(a,b)为△ABC内一点,求点P在△A2B2C2内的对应点P2的坐标.20.(2017山东省威海市)图1是太阳能热水器装置的示意图,利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图2,AB BC ⊥,垂足为点B ,EA AB ⊥,垂足为点A ,CD AB ∥,10cm CD =,120cm DE =,FG DE ⊥,垂足为点G .(1)若3750θ∠=︒',则AB 的长约为cm ;(参考数据:sin3750061.︒'≈,cos3750079.︒'≈,tan3750078.︒'≈)(2)若30cm FG =,60θ∠=︒,求CF 的长.21.如图,AB 是⊙O 的直径,点C 为⊙O 上一点,CN 为⊙O 的切线,OM ⊥AB 于点O ,分别交AC 、CN 于D 、M 两点.(1)求证:MD =MC ;(2)若⊙O 的半径为5,ACMC 的长.22.为了缓解我市新型冠状肺炎护目镜需求,两江新区某护目镜生产厂家自正月初三起便要求全体员工提前返岗.在接到单位的返岗任务后,员工们都毫无怨言,快速回到了自己的工作岗位,用努力工作的行动践行着自己的社会责任感与社会担当.已知该厂拥有两条不同的护目镜加工生产线A、B.原计划A生产线每小时生产护目镜400个,B生产线每小时生产护目镜500个.(1)若生产线A、B共工作12小时,且生产护目镜总数量不少于5500个,则B生产线至少生产护目镜多少小时?(2)原计划A、B生产线每天均工作8小时,但现在为了尽快满足我市护目镜的需求,两条生产线每天均比原计划多工作了相同的小时数,但因为机器损耗及人员不足原因,A生产线每增加1小时,该生产线实际工作时每小时的产量均减少10个,B生产线每增加1小时,该生产线每小时的产量均减少15个,这样一天生产的护目镜将比原计划多3300个,求该厂实际每天生产护目镜的时间.23.如图1,矩形ABCD的对角线AC与BD相交于点O,将矩形沿对角线AC折叠,折叠后点B落在点E处,CE交AD于点F,连接DE.AC DE;(1)求证://(2)当AB与BC满足什么数量关系时,四边形AODE是菱形?请说明理由;(3)将图1中的矩形ABCD改为平行四边形ABCD,其它条件不变,如图2,若AB=∠ABC=30°,点E在直线AD上方,试探究:△AED是直角三角形时,BC的长度是多少.24.如图,已知二次函数213y x bx c =-++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(30)-,,对称轴是直线12x =. (1)求该二次函数的表达式;(2)如图,连接AC ,若点P 是该抛物线上一点,且12PAB ACO ∠=∠,求点P 的坐标;(3)如图,点P 是该抛物线上一点,点Q 为射线CB 上一点,且P 、Q 两点均在第四象限内,线段AQ 与BP 交于点M ,当PBQ AQB ∠∠=,且△ABM 与△PQM 的面积相等时,请问线段PQ 的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.。
2024年安徽省中考数学试题含答案解析

数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4、考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15− D. 15【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2. 据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 70.94410×B. 69.4410×C. 79.4410×D. 694.410× 【答案】B【解析】【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10na ×(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410=×,故选:B .3. 某几何体的三视图如图所示,则该几何体为( )A. B.C. D.【答案】D【解析】【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项. 故选:D .4. 下列计算正确的是( )A. 356a a a +=B. 632a a a ÷=C. ()22a a −=D. a =【答案】C【解析】【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据这些运算法则依次判断即可【详解】解:A 、3a 与5a 不是同类项,不能合并,选项错误,不符合题意;B 、633a a a ÷=,选项错误,不符合题意;C 、()22a a −=,选项正确,符合题意;D a =,当0a ≥a =,当0a <a =−,选项错误,不符合题意; 故选:C5. 若扇形AOB 的半径为6,120AOB ∠=°,则 AB 的长为( )A. 2πB. 3πC. 4πD. 6π【答案】C【解析】【分析】此题考查了弧长公式,根据弧长公式计算即可.【详解】解:由题意可得, AB 的长为12064180ππ×=, 故选:C .6. 已知反比例函数()0k y k x=≠与一次函数2y x =−的图象的一个交点的横坐标为3,则k 的值为( ) A. 3−B. 1−C. 1D. 3 【答案】A【解析】【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =−=−,代入反比例函数求解即可【详解】解:∵反比例函数()0k y k x=≠与一次函数2y x =−的图象的一个交点的横坐标为3, ∴231y =−=−, ∴13k −=,∴3k =−, 故选:A 7. 如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是( )A. B. C. 2− D. −【答案】B【解析】【分析】本题考查了等腰直角三角形的判定和性质,对顶角的性质,勾股定理,过点D 作DE CB ⊥的延长线于点E ,则90BED ∠=°,由90ACB ∠=°,2AC BC ==,可得AB =,45A ABC ∠=∠=°,进而得到CD =,45DBE ∠=°,即得BDE △为等腰直角三角形,得到DE BE =,设DE BE x ==,由勾股定理得()(2222x x ++,求出x 即可求解,正确作出辅助线是解题的关键.【详解】解:过点D 作DE CB ⊥的延长线于点E ,则90BED ∠=°,∵90ACB ∠=°,2AC BC ==,∴AB 45A ABC ∠=∠=°,∴CD =,45DBE ∠=°,∴BDE △为等腰直角三角形,∴DE BE =,设DEBE x ==,则2CE x =+, 在Rt CDE △中,222CE DE CD +=,∴()(2222x x ++,解得11x =−,21x −(舍去),∴1DE BE ==−,∴BD ==,故选:B .8. 已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A. 102a −<<B. 112b << C. 2241a b −<+<D. 1420a b −<+<【答案】C【解析】 【分析】题目主要考查不等式的性质,根据等量代换及不等式的性质依次判断即可得出结果,熟练掌握不等式的性质是解题关键【详解】解:∵10a b −+=,∴1a b =−,∵011a b <++<, ∴0111b b <−++<,∴102b <<,选项B 错误,不符合题意; ∵10a b −+=,∴1b a =+,∵011a b <++<,∴0111a a <+++<, ∴112a −<<−,选项A 错误,不符合题意; ∵112a −<<−,102b <<, ∴221a −<<−,042b <<, ∴2241a b −<+<,选项C 正确,符合题意;∵112a −<<−,102b <<, ∴442a −<<−,021b <<, ∴4421a b −<+<−,选项D 错误,不符合题意;故选:C 9. 在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是( )A. ABC AED ∠=∠B. BAF EAF ∠=∠C. BCF EDF ∠=∠D. ABD AEC ∠=∠ 【答案】D【解析】【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD =又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =, AFB AFE ∠=∠又∵点F 为CD 中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠, ∴90CFB AFB DFE AFE ∠+∠=∠+∠=°,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,的∴BF EF =, CFB DFE ∠=∠, ∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=°,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意; 故选:D .10. 如图,在Rt ABC △中,90ABC ∠=°,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为( )A. B.C. D.【答案】A【解析】【分析】本题主要考查了函数图象的识别,相似三角形的判定以及性质,勾股定了的应用,过点E 作EH AC ⊥与点H ,由勾股定理求出AC ,根据等面积法求出BD ,先证明ABC ADB ∽,由相似三角形的性质可得出AB AC AD AB =,即可求出AD ,再证明AED BFD ∽,由相似三角形的性质可得出2AED BFD S AD S BD = ,即可得出4AED BFD S S = ,根据()ABC AED BDC BDF DEBF S S S S S =−−− 四边形,代入可得出一次函数的解析式,最后根据自变量的大小求出对应的函数值.【详解】解:过点E 作EH AC ⊥与点H ,如下图:∵90ABC ∠=°,4AB =,2BC =,∴AC ,∵BD 是边AC 上的高. ∴1122AB BC AC BD ⋅=⋅,∴BD = ∵BAC CAB ∠=∠,90ABC ADB ∠=∠=°,∴ABC ADB ∽△△, ∴AB AC AD AB=,解得:AD =,∴DC AC AD =−==, ∵90BDF BDE BDE EDA ∠+∠=∠+∠=°,90CBD DBA DBA A ∠+∠=∠+∠=°,∴DBC A ∠=∠,BDF EDA ∠=∠,∴AED BFD ∽,∴224AED BFD S AD S BD == , ∴4AED BFD S S = ,∴()ABC AED BDC BDF DEBF S S S S S =−−− 四边形 1111sin 2224BFD AB BC AE AD A DC DB S ⋅−⋅∠−⋅+1311422422x =××−× 16355x =− ∵04x <<,∴当0x =时,165DEBF S =四边形 , 当4x =时,45DEBF S =四边形. 故选:A .二、填空题(本大题共4小题,每小题5分,满分20分)11. 若代数式14−x 有意义,则实数x 取值范围是_____. 【答案】4x ≠【解析】【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x −≠∴4x ≠.故答案:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件. 12.,祖冲之给出圆周率的一种分数形式的近似值为227.比较大______227(填“>”或“<”). 【答案】>【解析】【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案. 【详解】解:∵222484749 =,24901049==, 而4844904949<,∴22227 <,227>; 故答案为:>13. 不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是______.的为【答案】16【解析】【分析】本题考查了用树状图或列表法求概率,画出树状图即可求解,掌握树状图或列表法是解题的关键.【详解】解:画树状图如下:由树状图可得,共有12种等结果,其中恰为2个红球的结果有2种,∴恰为2个红球的概率为21126=, 故答案为:16. 14. 如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ′,C ′处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM ′∠=______(用含α式子表示); (2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D '处,然后还原.若点D '在线段B C ′′上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为______.【答案】 ①. 90α°− ②.【解析】【分析】①连接CC ′,根据正方形的性质每个内角为直角以及折叠带来的折痕与对称点连线段垂直的性质,再结合平行线的性质即可求解;②记HG 与NC ′交于点K , 可证:AEH BFE DHG CGF △≌△≌△≌△,则4AE CG DH ===,8DG BE ==,由勾股定理可求HG =,由折叠的性质得到:90NC B NCB ′∠=∠=°,89∠=∠,90D GD H ′∠=∠=°,NC NC ′=,8GD GD ′==,则NG NK =,4KC GC ′==,由的NC GD ′′∥,得HC K HD G ′′△∽,继而可证明HK KG =,由等腰三角形的性质得到PK PG =,故34PH HG ==. 【详解】解:①连接CC ′,由题意得4C NM ′∠=∠,MN CC ′⊥,∵MN EF ⊥,∴CC FE ′∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=°,∴343290∠+∠=∠+∠=°,190BEF ∠+∠=°,∴24∠∠=,190α∠=°−, ∴490α∠=°−<∴90C NM α′∠=°−,故答案为:90α°−;②记HG 与NC ′交于点K ,如图:∵四边形ABCD 是正方形,四边形EFGH 是正方形,∴90A B C D ∠=∠=∠=∠=°,HE FE =,90HEF ∠=°,∴567690∠+∠=∠+∠=°,∴57∠=∠,∴AEH BFE △≌△,同理可证:AEH BFE DHG CGF △≌△≌△≌△,∴4AE CG DH ===,8DG BE ==,在Rt HDG △中,由勾股定理得HG =由题意得:90NC B NCB ′∠=∠=°,89∠=∠,90D GD H ′∠=∠=°,NC NC ′=,8GD GD ′==, ∴NC GD ′′∥,∴9NKG ∠=∠,∴8NKG ∠=∠,∴NG NK =,∴NC NG NC NK ′−=−,即4KC GC ′==,∵NC GD ′′∥,∴HC K HD G ′′△∽,∴12HKC K HGD G ′==′, ∴12HK HG =, ∴HK KG =,由题意得MN HG ⊥,而NG NK =,∴PK PG =,∴34PH HG ==故答案为:.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.三、(本大题共2小题,每小题8分,满分16分)15. 解方程:223x x −=【答案】13x =,21x =−【解析】【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x −=,∴223=0x x −−,∴(3)(1)0x x −+=, ∴13x =,21x =−.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16. 如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180°得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.【答案】(1)见详解 (2)40(3)()6,6E (答案不唯一)【解析】【分析】本题主要考查了画旋转图形,平行四边形的判定以及性质,等腰三角形的判定以及性质等知识,结合网格解题是解题的关键.(1)将点A ,B ,C 分别绕点D 旋转180°得到对应点,即可得出111A B C △.(2)连接1BB ,1CC ,证明四边形11BC B C 是平行四边形,利用平行四边形的性质以及网格求出面积即可.(3)根据网格信息可得出5AB =,5AC,即可得出ABC 是等腰三角形,根据三线合一的性质即可求出点E 的坐标.【小问1详解】解:111A B C △如下图所示: 【小问2详解】连接1BB ,1CC ,的∵点B 与1B ,点C 与1C 分别关于点D 成中心对称,∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形, ∴1111122104402BC B C S CC B ==×××= . 【小问3详解】∵根据网格信息可得出5AB =,5AC, ∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,()10,4 ∴点21084,22E ++, 即()6,6E .(答案不唯一)四、(本大题共2小题,每小题8分,满分16分)17. 乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数 每公顷所需投入资金(万元) A4 8 B 3 9已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【解析】【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y += +=, 解得34x y = = , 答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18. 数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y −(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数): N 奇数 4的倍数表示结果 22110=− 22420=−22321=−22831=− 22532=− 221242=−22743=− 221653=−22954=−222064=−一般结论()22211n n n −=−− 4n =______按上表规律,完成下列问题:(ⅰ)24=( )2−( )2;(ⅱ)4n =______; (2)兴趣小组还猜测:像261014 ,,,,这些形如42n −(n 为正整数)的正整数N 不能表示为22x y −(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y −=−,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m −=−=−为4的倍数.而42n −不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数, 则()()22222121x y k m −=+−+=______为4的倍数.而42n −不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y −为奇数.而42n −是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +−−; (2)()224k m k m −+−【解析】【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解; (2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【小问1详解】(ⅰ)由规律可得,222475=−,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+−−,故答案为:()()2211n n +−−;【小问2详解】解:假设2242n x y −=−,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m −=−=−为4的倍数.而42n −不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数, 则()()()22222221214x y k m k m k m −=+−+=−+−为4的倍数. 而42n −不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y −为奇数.而42n −是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m −+−. 五、(本大题共2小题,每小题10分,满分20分)19. 科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=°,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60°≈,cos36.90.80°≈,tan 36.90.75°≈).【答案】43【解析】【分析】本题考查了解直角三角形,勾股定理,三角函数,过点EF AD ⊥于F ,则90AFE ∠=°,DF CE =,由题意可得,36.9BEC α∠=∠=°,CBE β∠=∠, 1.2m =EF , 解Rt BCE 求出CE 、BE ,可求出sin β,再由勾股定理可得AE ,进而得到sin γ,即可求解,正确作出辅助线是解题的关键.【详解】解:过点EF AD ⊥于F ,则90AFE ∠=°,DF CE =,由题意可得,36.9BEC α∠=∠=°,CBE β∠=∠, 1.2m =EF , 在Rt BCE 中, 1.2 1.6m tan 0.75BC CE α=≈=, 1.22m sin 0.6BC BE α=≈=, ∴ 1.64sin 25CE BE β===, 1.6m DF =, ∴ 2.5 1.60.9m AF AD DF =−=−=,∴在Rt AFE, 1.5m AE ===, ∴0.93sin 1.55AF AEγ===, ∴4sin 453sin 35βγ==.20. 如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解 (2)【解析】【分析】本题主要考查了等腰三角形的性质,圆周角定理,勾股定理等知识,掌握这些性质以及定理是解题的关键.(1)由等边对等角得出FAE AEF ∠=∠,由同弧所对的圆周角相等得出FAE BCE ∠=∠,由对顶角相等得出AEF CEB ∠=∠,等量代换得出CEB BCE ∠=∠,由角角平分线的定义可得出ACE DCE ∠=∠,由直径所对的圆周角等于90°可得出90ACB ∠=°,即可得出90CEB DCE BCE ACE ACB ∠+∠=∠+∠=∠=°,即90CDE ∠=°.(2)由(1)知,CEB BCE ∠=∠,根据等边对等角得出BE BC =,根据等腰三角形三线合一的性质可得出MA ,AE 的值,进一步求出OA ,BE ,在利用勾股定理即可求出AC .【小问1详解】证明:∵FA FE =,∴FAE AEF ∠=∠,又FAE ∠与BCE ∠都是 BF所对的圆周角, ∴FAE BCE ∠=∠,∵AEF CEB ∠=∠,∴CEB BCE ∠=∠,∵CE 平分ACD ∠,∴ACE DCE ∠=∠,∵AB 是直径,∴90ACB ∠=°,∴90CEB DCE BCE ACE ACB ∠+∠=∠+∠=∠=°,故90CDE ∠=°,即CD AB ⊥.【小问2详解】由(1)知,CEB BCE ∠=∠,∴BE BC =,又FA FE =,FM AB ⊥,∴2MA ME MO OE ==+=,4AE =,∴圆的半径3OA OB AE OE ==−=,∴2BE BC OB OE ==−=,在ABC 中.26AB OA ==,2BC =∴AC即AC 的长为六、(本题满分12分)21. 综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别 AB C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤< 7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a 的值.【数据分析与运用】任务2 A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数. 任务3 下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C ,D 两组的柑橘认定为一级,B 组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由. 根据所给信息,请完成以上所有任务.【答案】任务1:40;任务2:6;任务3:①;任务4:乙园的柑橘品质更优,理由见解析【解析】【分析】题目主要考查统计表及频数分布直方图,平均数、中位数及众数的求法,根据图标获取相关信息是解题关键.任务1:直接根据总数减去各部分的数据即可;任务2:根据加权平均数的计算方法求解即可;任务3:根据中位数、众数及极差的计算方法求解即可;任务4:分别计算甲和乙的一级率,比较即可.【详解】解:任务1:2001570502540a =−−−−=;任务2:1545057065071586200×+×+×+×+×=, 乙园样本数据的平均数为6;任务3:①∵1570100,157050101+++,∴甲园样本数据的中位数在C 组, ∵1550100,155070101+++,∴乙园样本数据的中位数在C 组,故①正确;②由样本数据频数直方图得,甲园样本数据的众数均在B 组,乙园样本数据的众数均在C 组,故②错误; ③无法判断两园样本数据的最大数与最小数的差是否相等,故③错误;故答案为:①;任务4:甲园样本数据的一级率为:5040100%45%200+×=, 乙园样本数据的一级率为:7050100%60%200+×=, ∵乙园样本数据的一级率高于甲园样本数据的一级率,∴乙园的柑橘品质更优.七、(本题满分12分)22. 如图1,ABCD 的对角线AC 与BD 交于点O ,点M ,N 分别在边AD ,BC 上,且AM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD 为菱形,且2MD AM =,60EHF ∠=°,求AC BD的值. 【答案】(1)见详解 (2)(ⅰ)见详解,(ⅱ【解析】 【分析】(1)利用平行四边形的性质得出AM CN ∥,再证明AMCN 是平行四边形,再根据平行四边形的性质可得出OAE OCF ∠=∠,再利用ASA 证明AOE COF △≌△,利用全等三角形的性质可得出OE OF =.(2)(ⅰ)由平行线截直线成比例可得出OH OE OA OB =,结合已知条件等量代换OH OF OA OD=,进一步证明HOF AOD ∽ ,由相似三角形的性质可得出OHF OAD ∠=∠,即可得出HF AD ∥.(ⅱ)由菱形的性质得出AC BD ⊥,进一步得出30EHO FHO ∠=∠=°,OH =,由平行线截直线成比例可得出13AH AM HC BC ==,进一步得出2OA OH =,同理可求出5OB OE =,再根据25AC OA OH BD OB OE ==即可得出答案.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,OA OC =,∴AM CN ∥,又∵AM CN =,∴四边形AMCN 是平行四边形,∴∥AN CM ,∵OAE OCF ∠=∠.在AOE △与COF 中,OAE OCF OA OCAOE COF ∠=∠ = ∠=∠∴()ASA AOE COF ≌.∴OE OF =.【小问2详解】(ⅰ)∵HE AB ∥∴OH OE OA OB=, 又OB OD =.OE OF =, ∴OH OF OA OD=, ∵HOF AOD ∠=∠,∴HOF AOD ∽ ,∴OHF OAD ∠=∠,∴HF AD ∥(ⅱ)∵ABCD 是菱形,∴AC BD ⊥,又OE OF =,60EHF ∠=°,∴30EHO FHO ∠=∠=°,∴OH =,∵AM BC ∥.2MD AM =, ∴13AHAM HC BC ==, 即3HC AH =,∴()3OA AH OA OH +=−,∴2OA OH =,∵BN AD ∥,2MD AM =,AM CN =, ∴23BEBN ED AD ==, 即32BE ED =,∴()()32OB OE OB OE −+∴5OB OE =,故25ACOA OH BD OB OE ===. 【点睛】本题主要考查了平行四边形的判定以及性质,全等三角形判定以及性质,相似三角形的判定以及性质,平行线截线段成比例以及菱形的性质,掌握这些判定方法以及性质是解题的关键.八、(本题满分14分)23. 已知抛物线2y x bx =−+(b 为常数)的顶点横坐标比抛物线22y x x =−+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =−+上,点()11,B x t y h ++在抛物线2y x bx =−+上. (ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =−,求h 的最大值.【答案】(1)4b =(2)(ⅰ)3;(ⅱ)103 【解析】【分析】题目主要考查二次函数的基本性质及化为顶点式,解一元二次方程,理解题意,熟练掌握运用二次根数的基本性质是解题关键.(1)根据题意求出22yx x =−+的顶点为()1,1,确定抛物线2y x bx =−+(b 为常数)的顶点横坐标为2,即可求解; (2)根据题意得出21112y x x =−+, 2111()4()y h x t x t +=−+++,然后整理化简211224h t x t x t =−−++;(ⅰ)将3h t =代入求解即可;(ⅱ)将11x t =−代入整理为顶点式,即可得出结果.【小问1详解】解:2222(21)1(1)1yx x x x x =−+=−−++=−−+, ∴22y x x =−+的顶点为()1,1,∵抛物线2y x bx =−+(b 为常数)的顶点横坐标比抛物线22y x x =−+的顶点横坐标大1, ∴抛物线2y x bx =−+(b 为常数)的顶点横坐标为2, ∴()221b −=×−, ∴4b =;【小问2详解】由(1)得224y x bx x x =−+=−+ ∵点()11,A x y 在抛物线22y x x =−+上,点()11,B x t y h ++在抛物线24y x x =−+上. ∴21112y x x =−+, 2111()4()y h x t x t +=−+++,整理得:211224h t x t x t =−−++ (ⅰ)∵3h t =, ∴2113224t t x t x t =−−++,整理得:()1122t t x t x +=+, ∵10x ≥,0t >, ∴1t =,∴3h =;(ⅱ)将11x t =−代入211224h t x t x t =−−++, 整理得224103823()33h t t t =−+−=−−+, ∵30−<, ∴当43t =,即113x =时,h 取得最大值为103.。
2024年安徽省数学中考试题正式版含答案解析

绝密★启用前2024年安徽省数学中考试题学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−5的绝对值是( )A. 5B. −5C. 15D. −152.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 0.944×107B. 9.44×106C. 9.44×107D. 94.4×1063.某几何体的三视图如图所示,则该几何体为( )A. B. C. D.4.下列计算正确的是( )A. a3+a5=a6B. a6÷a3=a2C. (−a)2=a2D. √ a2=a5.若扇形AOB的半径为6,∠AOB=120∘,则AB⏜的长为( )A. 2πB. 3πC. 4πD. 6π6.已知反比例函数y=kx(k≠0)与一次函数y=2−x的图象的一个交点的横坐标为3,则k的值为( )A. −3B. −1C. 1D. 37.如图,在Rt△ABC中,AC=BC=2,点D在AB的延长线上,且CD=AB,则BD的长是( )A. √ 10−√ 2B. √ 6−√ 2C. 2√ 2−2D. 2√ 2−√ 68.已知实数a,b满足a−b+1=0,0<a+b+1<1,则下列判断正确的是( )A. −12<a<0 B. 12<b<1C. −2<2a+4b<1D. −1<4a+2b<09.在凸五边形ABCDE中,AB=AE,BC=DE,F是CD的中点.下列条件中,不能..推出AF与CD一定垂直的是( )A. ∠ABC=∠AEDB. ∠BAF=∠EAFC. ∠BCF=∠EDFD. ∠ABD=∠AEC10.如图,在Rt▵ABC中,∠ABC=90∘,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为( )A. B. C. D.第II卷(非选择题)二、填空题:本题共4小题,每小题5分,共20分。
2024安徽中考数学试卷

一、选择题1.下列哪个数不是有理数?A.0B.-3/2C.π(答案)D.0.52.下列哪个数轴上的点表示的是正数?A.在原点左侧3个单位长度的点B.在原点右侧2个单位长度的点(答案)C.原点D.在原点左侧和右侧各1个单位长度的点3.下列哪个是代数式?A. 5 > 3B.x + 1 = 5C.2a - b(答案)D.你吃了吗?4.下列哪个是单项式?A.x + yB.2x2yC.1/xD.5(答案)5.下列运算正确的是?A.3a - 2a = 1B.a2 + a3 = a5C.7a - a = 6a(答案)D.(ab)2 = ab26.下列哪个是不等式?A.x + 3 = 5B.x - 2 > 3(答案)C.x2 - 4x + 4D.x/27.下列哪个数不是整数?A.-3B.0C.3/2(答案)D.58.下列哪个是多项式?A.x2 - 2x(答案)B.1/xC.√xD.x2 - 2x + 3 = 09.下列哪个是不等式的解?A.x = 2 是不等式x > 3 的解B.x = -1 是不等式x < -2 的解C.x = 4 是不等式x ≥4 的解(答案)D.x = 0 是不等式x ≠0 的解10.下列哪个运算符合分配律?A.a(b + c) = ab + cB.a(b + c) = ab + ac(答案)C. a + b = abD.(a + b)2 = a2 + b2。
安徽省宿州市2020年(春秋版)中考数学试卷(I)卷

安徽省宿州市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·东安模拟) 如图,数轴上点A所表示的数的倒数是()A . ﹣2B . 2C .D .2. (2分)下列计算错误的是()A . 2m + 3n=5mB . a6÷a2=a4C . (x2)3=x6D . a•a2=a33. (2分) (2017七下·东城期中) 如图,将三角板的直角顶点放在直尺的一边上,若,则的度数为()A .B .C .D .4. (2分)数轴上点M表示-2,点A到点M的距离是3,那么点A表示的数是()A . 1B . -5C . 3D . 1或-55. (2分)一个正比例函数的图象经过点(2,-3),它的表达式为()A . y=-2xB . y=2xC . y=−xD .6. (2分) (2016高二下·抚州期中) 两列火车都从A地驶向B地,已知甲车的速度为x千米/时,乙车的速度为y千米/时,经过3时,乙车距离B地5千米,此时甲车距离B地()千米A . 3(-x+y)-5B . 3(x+y)-5C . 3(-x+y)+5D . 3(x+y)+57. (2分)(2020·台州) 如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C (0,-1)对应点的坐标为()A . (0,0)B . (1,2)C . (1,3)D . (3,1)8. (2分)如图,若⊙O的弦AB垂直平分半径OC,则四边形OACB是()A . 正方形B . 菱形C . 矩形D . 平行四边形9. (2分)已知二次函数y=ax2+4x+a﹣1的最小值为2,则a的值为()C . 4D . 4或﹣110. (2分)如图,在矩形ABCD中,AE⊥BD于E,∠DAE=3∠BAE,则∠EAC为()A . 30°B . 45°C . 60°D . 75°11. (2分)(2016·孝义模拟) 如图,正六边形ABCDEF内接于⊙O,点P为上一点,则tan∠APC的值为()A .B .C .D . 112. (2分)(2017·平川模拟) 如图,P为平行四边形ABCD边AD上一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S、S1、S2 ,若S=2,则S1+S2=()A . 4D . 不能确定二、填空题 (共6题;共6分)13. (1分)若是方程2x﹣3y=11的解,则k=________.14. (1分)在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,下列式子:①a=c•sinB,②a=c•cosB,③a=c•tanB,④a= ,必定成立的是________.15. (1分) (2019八上·江汉期中) 如图,△ABC的边BC上有一点D,取AD的中点E,连接BE, CE,如果△ABC 的面积为2,则图中阴影部分的面积为________16. (1分) (2016八下·红安期中) 将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为________度.17. (1分)(2017·通州模拟) 抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是________.18. (1分)(2018·甘肃模拟) 已知a1=-,a2=,a3=-,a4=,a5=-,…,则a8=________.三、解答题 (共7题;共70分)19. (10分) (2017七下·梁子湖期中) 计算:(1) + ﹣;(2) + ×()2﹣| ﹣2|20. (6分) (2017八下·江阴期中) 在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)①若△ABC和△A1B1C1关于原点O成中心对称图形,画出△A1B1C1;②将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(2)在x轴上存在一点P,满足点P到点B1与点C1距离之和最小,请直接写出P B1+ P C1的最小值为________.21. (10分) (2016九上·兖州期中) 如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.22. (9分) (2017八下·南京期中) 在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(9)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:(1)按表格数据格式,表中的a=________;b=________;(2)请估计:当次数s很大时,摸到白球的频率将会接近________;(3)请推算:摸到红球的概率是________(精确到0.1);(4)试估算:口袋中红球有多少只?23. (10分)已知:如图,在梯形ABCD中,,点E在边AD上,CE与BD相交于F点,AD=4,AB=5,BC=BD=6,DE=3.(1)求证:;(2)求线段CF的长.24. (15分)(2013·衢州)(1)【提出问题】如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.(2)【类比探究】如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN 还成立吗?请说明理由.(3)【拓展延伸】如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.25. (10分) (2018八上·茂名期中) 我校有一块四边形的空地ABCD(如图所示),为了美化我们的校园,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)求空地ABCD的面积:(2)学校己筹得6800元经费,若种植草皮每平方米需要200元,试问这笔经费够种植草皮吗?为什么?参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共70分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、24-3、25-1、25-2、第11 页共11 页。
安徽省2024年中考数学试卷(解析版)

2024年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2024•安徽)(﹣2)×3的结果是()A.﹣5 B.1C.﹣6 D.6考点:有理数的乘法.分析:依据两数相乘同号得正,异号得负,再把肯定值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行肯定值的运算.2.(4分)(2024•安徽)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:依据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,娴熟驾驭性质是解题的关键.3.(4分)(2024•安徽)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简洁几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(4分)(2024•安徽)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义.分析:依据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.5.(4分)(2024•安徽)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.2考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,依据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的学问点是:频率=频数÷总数.6.(4分)(2024•安徽)设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.7.(4分)(2024•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.(4分)(2024•安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A 点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,依据中点的定义可得BD=3,在Rt△ABC 中,依据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2++32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.(4分)(2024•安徽)如图,矩形ABCD中,AB=3,BC=4,动点P从A点动身,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,依据同角的余角相等求出∠APB=∠P AD,再利用相像三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D 到AP 的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相像三角形的判定与性质,难点在于依据点P的位置分两种状况探讨.10.(4分)(2024•安徽)如图,正方形ABCD的对角线BD长为2,若直线l满意:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1B.2C.3D.4考点:正方形的性质.分析:连接AC与BD相交于O,依据正方形的性质求出OD=,然后依据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满意条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线相互垂直平分,点D到O的距离小于是本题的关键.czsx二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2024•安徽)据报载,2024年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(5分)(2024•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:依据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,依据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了依据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.13.(5分)(2024•安徽)方程=3的解是x=6.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程肯定留意要验根.14.(5分)(2024•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中肯定成立的是①②④.(把全部正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等学问,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2024•安徽)计算:﹣|﹣3|﹣(﹣π)0+2024.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,其次项利用肯定值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2024=2024.点评:此题考查了实数的运算,娴熟驾驭运算法则是解本题的关键.16.(8分)(2024•安徽)视察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…依据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的改变类;完全平方公式.分析:由①②③三个等式可得,被减数是从3起先连续奇数的平方,减数是从1起先连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的改变规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2024•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相像比不为1.考点:作图—相像变换;作图-平移变换.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相像图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相像变换和平移变换,得出变换后图形对应点位置是解题关键.18.(8分)(2024•安徽)如图,在同一平面内,两条平行高速马路l1和l2间有一条“Z”型道路连通,其中AB段与高速马路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速马路间的距离(结果保留根号).考点:解直角三角形的应用.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,依据三角函数求得BE,在Rt△BCF中,依据三角函数求得BF,在Rt△DFG中,依据三角函数求得FG,再依据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速马路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2024•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相像三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再依据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相像比可计算出⊙O的半径OC=9;接着在Rt△OCF中,依据勾股定理可计算出C=3,由于OF⊥CD,依据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相像三角形的判定与性质.20.(10分)(2024•安徽)2024年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2024年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2024年处理的这两种垃圾数量与2024年相比没有改变,就要多支付垃圾处理费8800元.(1)该企业2024年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业安排2024年将上述两种垃圾处理总量削减到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2024年该企业最少须要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据题意,得,解得.答:该企业2024年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,依据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2024年该企业最少须要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分)21.(12分)(2024•安徽)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.专题:计算题.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出全部等可能的状况数,找出这三根绳子能连结成一根长绳的状况数,即可求出所求概率.解答:解:(1)三种等可能的状况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)全部等可能的状况有9种,其中这三根绳子能连结成一根长绳的状况有6种,则P==.点评:此题考查了列表法与树状图法,用到的学问点为:概率=所求状况数与总状况数之比.七、(本题满分12分)22.(12分)(2024•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后依据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类探讨的思想,考查了阅读理解实力.而对新定义的正确理解和分类探讨是解决其次小题的关键.八、(本题满分14分)23.(14分)(2024•安徽)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,推断四边形OMGN是否为特别四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN 于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出协助线,依据三角形全等找出相等的线段.- 21 -。
宿州中考数学试题及答案

宿州中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程 \(x^2 - 5x + 6 = 0\) 的解?A. \(x = 1\)B. \(x = 2\)C. \(x = 3\)D. \(x = 4\)答案:B2. 函数 \(y = 2x + 3\) 的图象与x轴交点的坐标是?A. \((-3, 0)\)B. \((0, 3)\)C. \((-1.5, 0)\)D. \((1.5, 0)\)答案:A3. 一个等腰三角形的底边长为6,高为4,其周长是多少?A. 14B. 16C. 18D. 20答案:C4. 如果一个圆的半径是5,那么它的面积是多少?A. \(25\pi\)B. \(50\pi\)C. \(75\pi\)D. \(100\pi\)答案:B5. 一个数的相反数是-3,那么这个数是?A. 3B. -3C. 0D. 6答案:A6. 以下哪个选项是不等式 \(2x - 5 < 3\) 的解?A. \(x < 4\)B. \(x > 4\)C. \(x < 1\)D. \(x > 1\)答案:A7. 一个数的平方是9,那么这个数可能是?A. 3B. -3C. 3或-3D. 以上都不是答案:C8. 一个等差数列的首项是2,公差是3,那么它的第五项是多少?A. 14B. 17C. 20D. 23答案:A9. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A10. 一个正五边形的内角和是多少?A. \(540^\circ\)B. \(720^\circ\)C. \(900^\circ\)D. \(1080^\circ\)答案:B二、填空题(每题3分,共15分)11. 一个数的立方是-8,那么这个数是______。
答案:-212. 一个圆的周长是 \(2\pi r\),如果周长是12.56,那么半径 \(r\) 是______。
安徽省宿州市中考数学试卷

安徽省宿州市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)的倒数是()A .B .C .D . -2. (2分) (2019八上·潮安期末) 芝麻作为食品和药物,均广泛使用,经测算,一粒芝麻重量约有0.00 000 201kg,用科学记数法表示10粒芝麻的重量为()A . 2.01×10-6kgB . 2.01×10-5kgC . 20.1×10-7kgD . 20.1×10-6kg3. (2分) (2016九上·鄞州期末) 将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1 , B1C1交CD于点E,AB= ,则四边形AB1ED的内切圆半径为()A .B .C .D .4. (2分)设方程的两个根为、,那么的值等于()。
A .B .C .D .5. (2分)右图是某个几何体的三视图,该几何体是()A . 长方体B . 三棱柱C . 正方体D . 圆柱6. (2分)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A . 10B .C . 2D .7. (2分) (2017八上·潮阳月考) 如图,ΔABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB 于E,且AB=6cm,则ΔDEB的周长为()A . 4cmB . 6cmC . 10cmD . 以上都不对8. (2分)二次函数的图象如图,若一元二次方程有实数解,则k的最小值为()A . -4B . -6C . -8D . 0二、填空题 (共8题;共8分)9. (1分)(2018·广东模拟) 分解因式 ________.10. (1分) (2017七下·扬州月考) 如图,将长方形ABCD沿AE折叠,已知∠CED′=50°,则∠EAB=________.11. (1分)(2019·新会模拟) 把函数y=x2的图象向右平移2个单位长度,再向下平移1个单位长度,得到函数________的图象.12. (1分) (2019九上·温州期中) 在圆柱形油槽内装有一些油,截面如图,油面宽AB为4分米,如果再注入一些油后,油面AB上升1分米,油面宽变为6分米,圈柱形油槽的直径MN为________.13. (1分)某种药品经过两次降价由原来的每盒 12.5 元降到每盒 8 元,如果 2 次降价的百分率相同,设每次降价的百分率为 x,可列出的方程为________.14. (1分)不等式组的整数解是________15. (1分) (2019九上·龙湾期中) 如图,边长为2的正方形的顶点、在一个半径为2的圆上,顶点、在该圆内.将正方形绕点逆时针旋转,当点第一次落在圆上时,点旋转到,则 ________ .16. (1分)如图,△ABD中,∠BAD=45°,AE⊥BD于E,DF⊥AB于F,交AE于G,BE=4,DE=3,则AG=________.三、解答题 (共8题;共80分)17. (10分)化简:[ + ÷( + )2]• .18. (5分)(2019·山西) 已知:如图,点B,D在线段AE上,AD=BE,AC∥EH,∠C=∠H.求证:BC=DH.19. (15分)(2017·天津模拟) 在一个不透明的盒子中,共有“一白三黑”四个围棋子,其除颜色外无其他区别.(1)随机地从盒子中取出1子,则提出的是白子的概率是多少?(2)随机地从盒子中取出1子,不放回再取出第二子,请用画树状或列表的方式表示出所有可能的结果,并求出恰好取出“一黑一白”的概率是多少?20. (5分)(2018·南京) 刘阿姨到超市购买大米,第一次按原价购买,用了元.几天后,遇上这种大米折出售,她用元又买了一些,两次一共购买了 kg.这种大米的原价是多少?21. (5分)如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 ).22. (10分)如图,直线与双曲线相交于A(2,1)、B两点.(1)求m及k的值;(2)不解关于x、y的方程组直接写出点B的坐标;(3)直线经过点B吗?请说明理由.23. (15分)(2016·深圳模拟) 如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB= ,BC=2,求⊙O的半径.24. (15分) (2017八下·长春期末) 某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元,由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额(万元)与月份(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本(万元)与销售额(万元)之间函数关系的图象如图2中线段AB所示.(1)求经销成本(万元)与销售额(万元)之间函数关系式;(2)分别求该公司3月、4月的利润;(3)把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额-经销成本)参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共80分)17-1、18-1、19-1、19-2、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省宿州市中考数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共8题;共16分)
1. (2分) (2020七下·交城期末) 下列化简正确的是
A .
B .
C .
D .
2. (2分) (2019七上·福田期末) 中国高速路里程已突破13万公里,居世界第一位,将13万用科学记数法表示为()
A .
B .
C .
D .
3. (2分)(2014·衢州) 下列四个几何体中,主视图为圆的是()
A .
B .
C .
D .
4. (2分) (2018九上·定安期末) 若关于的方程(k为常数)有两个相等的实数根,则
的值为()
A . ﹣4
B . 4
C . ﹣
D .
5. (2分)(2017·天等模拟) 如图所示,AB∥C D,EF,HG相交于点O,∠1=40°,∠2=60°,则∠EOH的角度为()
A . 80°
B . 100°
C . 140°
D . 120°
6. (2分)武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如下图,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()
A . 九(1)班的学生人数为40
B . m的值为10
C . n的值为20
D . 表示“足球”的扇形的圆心角是70°
7. (2分)(2017·盘锦模拟) 如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,
AF分别与DE、DB相交于点M,N,则MN的长为()
A .
B .
C .
D .
8. (2分)(2020·衢州) 二次函数y=x²的图象平移后经过点(2,0),则下列平移方法正确的是()
A . 向左平移2个单位,向下平移2个单位
B . 向左平移1个单位,向上平移2个单位
C . 向右平移1个单位,向下平移1个单位
D . 向右平移2个单位,向上平移1个单位
二、填空题 (共8题;共8分)
9. (1分)(2019·平房模拟) 把多项式b3﹣6b2+9b分解因式的结果是________.
10. (1分) (2019九上·汶上期中) 点( ,2)关于原点对称的点的坐标是________.
11. (1分) (2020八下·铜仁期末) 一个菱形的边长是,一条对角线长,则此菱形的面积为________ .
12. (1分) (2019九上·长白期中) 如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转与△CBP'重合,若PB = 3,则PP' = ________
13. (1分)(2020·慈溪模拟) 不等式 <x的解是________。
14. (1分)(2017·临沂模拟) 某药品原价是95元,经连续两次降价后,价格变为60.8元,如果每次降价的百分率是一样的,那么每次降价的百分率是________.
15. (1分) (2017九上·浙江月考) 蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角
形的个数有________个
16. (1分)(2018·罗平模拟) 一次函数y= x+b(b<0)与y= x﹣1图象之间的距离等于3,则b的值为________.
三、解答题 (共8题;共63分)
17. (5分) (2019七下·宁化期中) 计算:
18. (5分)△ABC和△ECD都是等边三角形
(1)如图1,若B、C、D三点在一条直线上,求证:BE=AD;
(2)保持△ABC不动,将△ECD绕点C顺时针旋转,使∠ACE=90°(如图2),BC与DE有怎样的位置关系?说明理由.
19. (7分)(2017·路北模拟) 某校举办一项小制作评比,作品上交时限为5月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的频数是12.
请你回答:
(1)本次活动共有________件作品参赛;
(2)若将各组所占百分比绘制成扇形统计图,那么第四组对应的扇形的圆心角是________度.
(3)本次活动共评出2个一等奖和3个二等奖及三等奖、优秀奖若干名,对一、二等奖作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出两张卡片,用列表法或树状图求抽到的作品恰好一个是一等奖,一个是二等奖的概率是多少?
20. (5分)(2020·常德) 第5代移动通信技术简称5G ,某地已开通5G业务,经测试5G下载速度是4G 下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?
21. (5分)(2020·仙居模拟) 如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O 处的距离为80cm,AO与地面垂直。
现调整靠背,把OA绕点O旋转35°到OA'处。
求调整后点A'比调整前点A的高度降低多少厘米?(结果取整数)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)
22. (15分) (2017九上·江都期末) 如图,⊙ 的圆心在反比例函数的图像上,且与
轴、轴相切于点、,一次函数的图像经过点,且与轴交于点,与⊙ 的另一个交点为点 .
(1)求的值及点的坐标;
(2)求长及的大小;
(3)若将⊙ 沿轴上下平移,使其与轴及直线均相切,求平移的方向及平移的距离.
23. (11分)(2017·孝感) 如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB 交CA的延长线于点E,连接AD,BD.
(1)由AB,BD,围成的曲边三角形的面积是________;
(2)求证:DE是⊙O的切线;
(3)求线段DE的长.
24. (10分)(2019·瑞安模拟) 如图,直线y=2x﹣8分别交x轴、y轴于点A、点B,抛物线y=ax2+bx(a≠0)经过点A,且顶点Q在直线AB上.
(1)求a,b的值.
(2)点P是第四象限内抛物线上的点,连结OP、AP、BP,设点P的横坐标为t,△OAP的面积为s1 ,△OBP 的面积为s2 ,记s=s1+s2 ,试求s的最值.
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共8题;共8分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共8题;共63分)
17-1、
18-1、19-1、19-2、
19-3、20-1、
21-1、22-1、
22-2、
22-3、
23-1、23-2、
23-3、
24-1、24-2、。