废水中氨氮的去除

合集下载

污水及废水氨氮去除处理工艺液膜法分析与设计实施方案(附:14种氨氮污水处理方法优缺点与选择原则)

污水及废水氨氮去除处理工艺液膜法分析与设计实施方案(附:14种氨氮污水处理方法优缺点与选择原则)

污水及废水氨氮去除处理工艺液膜法分析与设计实施方案(附:14种氨氮污水处理方法优缺点与选择原则)一.液膜法1、概述:许多人认为液膜分离法有可能成为继萃取法之后的第二代分离纯化技术,尤其适用于低浓度金属离子提纯及废水处理等过程。

乳状液膜法去除氨氮的机理是:氨态氮(NH3-N)易溶于膜相(油相),它从膜相外高浓度的外侧,通过膜相的扩散迁移,到达膜相内侧与内相界面,与膜内相中的酸发生解脱反应,生成的NH4+不溶于油相而稳定在膜内相中,在膜内外两侧氨浓度差的推动下,氨分子不断通过膜表面吸附,渗透扩散迁移至膜相内侧解吸,从而达到分离去除氨氮的目的。

通常采用硫酸为吸收液,选用耐酸性疏水膜,NH3在吸收液-微孔膜界面上为H2SO4吸收,生成不挥发的(NH4)2SO4而被回收。

已经对膜吸收法中膜的渗漏问题进行了研究,并发现较高的氨氮和盐量能有效抑制水的渗透蒸馏通量。

该法具有投资少、能耗低、高效、使用方便和操作简单等特点,此外膜吸收法还有传质面积大的优点和没有雾沫夹带、液泛、沟流、鼓泡等现象发生。

2、土壤灌溉:土壤灌溉是把低浓度的氨氮废水( < 50mg/ L)作为农作物的肥料来使用,既为污灌区农业提供了稳定的水源,又避免了水体富营养化,提高了水资源利用率。

西红柿罐头废水与城市污水混合并经氧化塘处理至11mg 氨氮/ L 后用于灌溉,氨氮可完全被吸收;马铃薯加工厂废水也用于喷淋灌溉,经测定25mg 氨氮/ L 的排放水中有75%的氨氮被吸收。

只需占总面积5%的水稻田就可以吸收该地区所有排污渠中一半的氨氮负荷。

但用于土壤灌溉的废水必须经过预处理,去除病菌、重金属、酚类、氰化物、油类等有害物质,防止对地面、地下水的污染及病菌的传播。

二.氨氮污水处理技术分析与选择原则1、氨氮污水的处理技术都有各自的优势与不足:生物法处理氨氮污水较稳定,但一般要求氨氮浓度在400 mg/L以下,总氮去除率可达70%~95%,是目前运用最多的一种方法。

氨氮去除原理

氨氮去除原理

氨氮去除原理
氨氮去除的原理是利用一系列化学和生物过程将含氨废水中的氨氮转化为无害物质或使其从水体中脱落。

首先,氨氮可以被化学氧化剂氧化为亚硝酸盐和硝酸盐。

这一过程被称为氨氮硝化。

通常,常见的氨氮硝化方法是通过添加氧化剂如次氯酸钠或过氧化氢来触发氨氮的氧化反应。

接下来,亚硝酸盐可以进一步被氧化为硝酸盐,这个过程被称为亚硝酸盐硝化。

常见的亚硝酸盐硝化方法是利用硝化细菌进行微生物硝化作用,这些细菌能够将亚硝酸盐氧化为硝酸盐。

除了氧化,氨氮还可以通过生物过程进行去除。

其中一种常见的方法是利用硝化细菌和反硝化细菌的共同作用。

硝化细菌将氨氮转化为亚硝酸盐和硝酸盐,并将其释放到水中。

反硝化细菌然后会利用硝酸盐作为电子受体进行反硝化作用,将硝酸盐还原为氮气或氮氧化物,从而将氨氮从水体中去除。

此外,还有一些其他的氨氮去除方法,如吸附剂和膜分离技术。

吸附剂可以将氨氮吸附在其表面上,并进行后续处理;膜分离技术则是利用不同孔径大小的膜将水中的氨氮分离出来。

总的来说,氨氮的去除过程可以通过氧化反应、硝化细菌、反硝化细菌以及吸附剂和膜分离技术等多种方式进行。

通过这些方法,可以有效地将水体中的氨氮转化为无害物质或使其从水中去除,以实现废水处理和水环境保护的目的。

电解食盐水间接氧化法去除工业废水中氨氮的原理

电解食盐水间接氧化法去除工业废水中氨氮的原理

电解食盐水间接氧化法去除工业废水中氨氮的原理如下:
1.电解食盐水:在电解槽中通过电流将食盐水进行电解,产生氯
气和氢气。

2.间接氧化反应:产生的氯气与水反应生成次氯酸,次氯酸是一
种强氧化剂,可以将氨氮氧化成氮气和水。

3.去除氨氮:将工业废水加入到电解槽中,氨氮在次氯酸的氧化
下被分解为氮气和水,从而去除氨氮。

4.沉淀处理:经过氧化反应后,废水中会产生一些沉淀物,可以
通过沉淀去除的方式进行处理。

通过电解食盐水间接氧化法去除工业废水中的氨氮,相比传统的生物法等方法具有反应速度快、处理效率高、工艺流程简单等优点,同时也可以节约能源和降低排放成本。

废水中氨氮的去除

废水中氨氮的去除

废水中氨氮的去除废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在.生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。

目前采用的除氮工艺有生物硝化与反硝化、沸石选择交换吸附、空气吹脱及折点氯化等四种。

一、生物硝化与反硝化(生物陈氮法)(一)生物硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

生物硝化的反应过程为:由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4。

57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7。

lg。

影响硝化过程的主要因素有:(1)pH值当pH值为8。

0~8。

4时(20℃),硝化作用速度最快。

由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。

亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d—1(温度20℃,pH8.0~8。

4)。

为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间 .在实际运行中,一般应取>2 ,或>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。

一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD 负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌.若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。

所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。

(二)生物反硝化在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2—-N和NO3——N还原成N2的过程,称为反硝化。

反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。

氨氮废水处理方法

氨氮废水处理方法

一、含氨氮废水的主要处理方法及其优缺点(1)传统生物脱氮法传统生物脱氮技术是通过氨化、硝化、反硝化以及同化作用来完成。

传统生物脱氮的工艺成熟,脱氮效果较好。

但存在工艺流程长、占地多、常需外加碳源、能耗大、成本高等缺点。

(2)氨吹脱法包括蒸汽吹脱法和空气吹脱法〔2~4〕,其机理是将废水调至碱性,然后在吹脱塔中通入空气或蒸汽,经过气液接触将废水中的游离氨吹脱出来。

此法工艺简单,效果稳定,适用性强,投资较低。

但能耗大,有二次污染。

(3)离子交换法离子交换法实际上是利用不溶性离子化合物(离子交换剂)上的可交换离子与溶液中的其它同性离子(NH4+)发生交换反应,从而将废水中的NH4+牢固地吸附在离子交换剂表面,达到脱除氨氮的目的。

虽然离子交换法去除废水中的氨氮取得了一定的效果,但树脂用量大、再生难,,导致运行费用高,有二次污染。

(4)折点氯化法折点氯化法是投加过量的氯或次氯酸钠,使废水中的氨氮氧化成氮气的化学脱氮工艺。

该方法的处理效率可达到90% ~100%,处理效果稳定,不受水温影响。

但运行费用高,副产物氯胺和氯代有机物会造成二次污染。

(5)磷酸铵镁沉淀法向含氨氮废水中投加Mg2+和PO43-,三者反应生成MgNH4PO4·6H2O(简称MAP)沉淀。

此法工艺简单,操作简便,反应快,影响因素少,能充分回收氨实现废水资源化。

该方法的主要局限性在于沉淀药剂用量较大,从而致使处理成本较高,沉淀产物MAP的用途有待进一步开发与推广。

二、我公司应采取的除氮方法根据我公司制浆工艺方式、公司所在地的气候条件、投资费用和去除效率,折点氯化法较为合理。

为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点。

应将此法和生物硝化连用,加氯点设置在BAF1前端为宜,氯气溶于水生成次氯酸,具有漂白杀菌作用,可以避免水中大量细菌对微生物分解有机物过程产生影响,同时可以起到水质脱色的作用。

除氨氮

除氨氮

1.气提法:这是大多数化肥厂采用的方法,实用。

一次性投资费用中等,处理费用合理。

2.吹脱法:将PH值调整到10.5-11左右,将氨从液相转移到气相,必须进行吸收,否则污染空气且污染物转移是不行的。

一次性投资高,操作工艺流程复杂,处理成本较高,能耗高。

3.蒸氨塔蒸发法;原理同气提法,投资费用较高,但处理效率更高,用于焦化废水处理较好。

4.MAP法:即是用磷酸根、镁盐与氨反应生成鸟粪石沉淀的化学反应,生成的鸟粪石可作为肥料,尤其用作花肥较好。

处理效果好,一次投资低,但处理成本较高。

5.折点加氯法:即氧化法,一次性投资费用较高,处理效果好,但处理成本高。

0氨氮(NH3-N)是水环境中氮的主要形态,可使水体富营养化,生成的亚硝胺则直接威胁着人类的健康,而且随着经济的发展和生活水平的提高,氨氮现己成为环境的主要污染指标之一。

因此,有效地控制氨氮己成为治理废水污染所而临的重大课题。

物理化学方法是废水中氨氮去除的主要方法之一。

它主要包括折点氯化法、化学沉淀法、离子交换法、空气吹脱与水蒸气气提法、液膜法、电化学法以及湿式催化氧化法等。

(1)折点氯化法。

折点氯化法是将氯气通人废水中,到达一定状态时水中游离氯含量最低,而氨的浓度降为零,该状态下的氯化称为折点氯化。

处理后的出水须除去水中残氯。

氧化1mg 氨氮约需要9~10mg氯气,影响因素是温度、pH 值及氨氮浓度。

折点氯化法适于处理低浓度氨氮废水,液氯的使用和贮存要求高,处理成本高。

(2)化学沉淀法。

化学沉淀法是将氨与化学沉淀剂(H3PO4 + MgO)反应生成沉淀物以去除废水中的氨氮。

向废水中投加MgCI2+6H2O和Na2HPO4+12H2O以去除氨氮。

结果表明,在pH值为 8.91,Mg2+∶NH4+PO43-的物质的量的比为1.25∶1∶1,反应温度为25℃,反应时间为20 min,沉淀时间为20 min的条件下,氨氮浓度由9500mg/L降到460mg/L,去除率达95%以上。

高氨氮废水处理方法

高氨氮废水处理方法

高氨氮废水处理方法
高氨氮废水处理方法可以采用以下几种方法:
1. 生物处理:利用生物菌群降解氨氮。

常用的生物处理方法有曝气法、厌氧法和序批式生物反应器法。

曝气法通过供氧促进氨氮的细菌降解;厌氧法则在无氧条件下降解氨氮;序批式生物反应器法则通过有氧、无氧和静止等不同阶段的操作进行处理。

2. 化学处理:可以使用化学药剂与氨氮发生反应,将其转化为不溶于水的物质沉淀或析出。

常用的化学处理方法有硫酸亚铁法、氯化法、碱法等。

3. 膜分离技术:利用膜过滤、膜生物反应器等膜分离技术将氨氮与其他物质分离。

常见的膜分离技术包括逆渗透、纳滤和超滤。

4. 离子交换:通过离子交换树脂将废水中的氨氮吸附、去除。

离子交换方法适用于氨氮浓度较高的废水处理。

5. 蒸发浓缩:将废水中的氨氮用蒸发浓缩的方式进行处理。

这种方法适用于氨氮含量较高、体积较小的废水。

需要根据具体情况选择合适的方法进行处理,也可以组合使用多种方法进行高氨氮废水的处理。

同时,注意控制处理过程中的氨氮浓度,以避免对环境造成进一
步污染。

给排水工艺中的去除氨氮总氮技术

给排水工艺中的去除氨氮总氮技术

给排水工艺中的去除氨氮总氮技术随着城市发展和人口增长,污水处理成为了一项关键的环保任务。

而其中,去除氨氮和总氮是污水处理过程中的重要指标之一。

本文将介绍几种常用的去除氨氮总氮技术,包括生物法、化学法和物理法。

一、生物法生物法是最常见的去除氨氮总氮的方法之一。

其原理是利用微生物将有机物和氨氮等有害物质转化为无害的固体物或气体。

常用的生物法包括活性污泥法、厌氧氨氧化法和硝化—反硝化法。

1. 活性污泥法活性污泥法利用污水中的微生物菌群,通过细菌的降解作用将氨氮和有机物质转化为沉淀物。

该方法适用于中小型污水处理厂,具有成本低、运行稳定等优点。

2. 厌氧氨氧化法厌氧氨氧化法是利用厌氧菌将氨氮氧化为亚硝酸盐。

该方法适用于高氨氮浓度的废水处理,能够大幅度减少氨氮的去除能耗。

3. 硝化—反硝化法硝化—反硝化法是将氨氮先氧化成硝酸盐,然后通过反硝化将硝酸盐还原为氮气排出。

该方法适用于氨氮浓度较低的废水处理,能够实现氮气的高效去除。

二、化学法化学法是采用化学品与氨氮或总氮发生反应,从而实现去除的方法。

常用的化学法包括硝化—硝化法和氨氮氧化法。

1. 硝化—硝化法硝化—硝化法是利用化学药剂将氨氮转化为亚硝酸盐或硝酸盐,再通过沉淀、吸附等方式进行去除。

该方法适用于废水中氨氮浓度较高的情况,但同时也会产生相应的化学废物。

2. 氨氮氧化法氨氮氧化法是利用高效氧化剂将氨氮氧化为无机氮。

该方法适用于氨氮含量较低的废水处理,但氧化剂的使用会增加运营成本。

三、物理法物理法主要是通过物理手段去除废水中的氨氮和总氮。

常用的物理法包括吸附法和膜分离法。

1. 吸附法吸附法是利用吸附剂吸附污水中的氨氮和总氮物质,从而实现去除。

常用的吸附剂有活性炭、树脂等。

该方法适用于小型污水处理系统,但吸附剂的再生和处理也需要额外考虑。

2. 膜分离法膜分离法是利用膜的筛选作用,通过渗透、过滤等方式将废水中的氨氮和总氮分离出来。

常见的膜分离方法有超滤法、反渗透法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

废水中氨氮的去除废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。

生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。

目前采用的除氮工艺有生物硝化与反硝化、沸石选择交换吸附、空气吹脱及折点氯化等四种。

一、生物硝化与反硝化(生物陈氮法)(一) 生物硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

生物硝化的反应过程为:由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。

影响硝化过程的主要因素有:(1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。

由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。

亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。

为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。

在实际运行中,一般应取>2 ,或>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。

一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。

若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。

所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。

(二) 生物反硝化在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。

反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。

以甲醇作碳源为例,其反应式为:6NO3-十2CH3OH→6NO2-十2CO2十4H2O6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-由上可见,在生物反硝化过程中,不仅可使NO3--N、NO2--N被还原,而且还可位有机物氧化分解。

影响反硝化的主要因素:(1)温度温度对反硝化的影响比对其它废水生物处理过程要大些。

一般,以维持20~40℃为宜。

苦在气温过低的冬季,可采取增加污泥停留时间、降低负荷等措施,以保持良好的反硝化效果;(2)pH值反硝化过程的pH值控制在7.0~8.0;(3)溶解氧氧对反硝化脱氮有抑制作用。

一般在反硝化反应器内溶解氧应控制在0.5mg/L以下(活性污泥法)或1mg/L以下(生物膜法);(4)有机碳源当废水中含足够的有机碳源,BOD5/TN>(3~5)时,可无需外加碳源。

当废水所含的碳、氮比低于这个比值时,就需另外投加有机碳。

外加有机碳多采用甲醇。

考虑到甲醇对溶解氧的额外消耗,甲醇投量一般为NO3--N的3倍。

此外,还可利用微生物死亡;自溶后释放出来的那部分有机碳,即"内碳源",但这要求污泥停留时间长或负荷率低,使微生物处于生长曲线的静止期或衰亡期,因此池容相应增大。

二、沸石选择交换吸附沸石是一种硅铝酸盐,其化学组成可表示为(M2+,2M+)O.Al2O3.mSiO2·nH2O (m=2~10,n=0~9),式中M2+代表Ca2+、Sr2+等二价阳离子,M+代表Na+、K+等一价阳离子,为一种弱酸型阳离子交换剂。

在沸石的三维空间结构中,具有规则的孔道结构和空穴,使其具有筛分效应,交换吸附选择性、热稳定性及形稳定性等优良性能。

天然沸石的种类很多,用于去除氨氮的主要为斜发沸石。

斜发沸石对某些阳离子的交换选择性次序为:K+,NH4+>Na+>Ba2+>Ca2+>Mg2+。

利用斜发沸石对NH4+的强选择性,可采用交换吸附工艺去除水中氨氮。

交换吸附饱和的拂石经再生可重复利用。

溶液pH值对沸石除氨影响很大。

当pH过高,NH4+向NH3转化,交换吸附作用减弱;当pH过低,H+的竞争吸附作用增强,不利于NH4+的去除。

通常,进水pH值以6~8为灾。

当处理合氨氮10~20mg/L 的城市严水时,出水浓度可达lmg/L以下。

穿透时通水容积约100~150床容。

沸石的工作交换容量约0.4×10-3n-1mol/g左右。

吸附铵达到饱和的沸石可用5g/L的石灰乳或饱和石灰水再生。

再生液用量约为处理水量的3~5%。

研究表明,石灰再生液中加入0.1mol的NaCl,可提高再生效率。

针对石灰再生的结垢问题,亦有采用2%的氯化钠溶液作再生液的,此时再生液用量较大。

再生时排出的高浓度合氨废液必须进行处理,其处理方法有:(1)空气吹脱吹脱的NH3或者排空,或者由量H2S04吸收作肥料;(2)蒸气吹脱冷凝液为1%的氨溶液,可用作肥料;(3)电解氧化(电氯化) 将氨氧化分解为N2。

三、空气吹脱在碱性条件下(pH>10.5),废水中的氨氮主要以NH3的形式存在(图20-2)。

让废水与空气充分接触,则水中挥发性的NH3将由液相向气相转移,从而脱除水中的氨氮。

吹脱塔内装填木质或塑料板条填料,空气流由塔的下部进入,而废水则由塔顶落至塔底集水池。

影响氨吹脱效果的主要因素有:(1)pH值一般将pH值提高至10.8~11.5;(2)温度水温降低时氨的溶解度增加,吹脱效率降低。

例如,20℃时氨去除率为90~95%,而10℃时降至约75%,这为吹脱塔在冬季运行带来困难;(3)水力负荷水力负荷(m3/m2.h)过大,将破坏高效吹脱所需的水流状态,而形成水幕;水力负荷过小,填料可能没有适当湿润,致使运行不良,形成干塔。

一般水力负荷为2.5~5m3/m2.h;(4)气水比对于一定塔高,增加空气流量,可提高氨去除率;但随着空气流量增加,压降也增加,所以空气流量有一限值。

一般,气/水比可取2500~5000(m3/m2);(5)填料构型与高度由于反复溅水和形成水滴是氨吹脱的关键,因此填料的形状、尺寸、间距、排列方式够都对吹脱效果有影响。

一般,填料间距40~50mm,填料高度为6~7.5m。

若增加填料间距,则需更大的填料高度;(6)结垢控制填料结垢(CaCO3)特降低吹脱塔的处理效率。

控制结垢的措施有:用高压水冲洗垢层;在进水中投加阻垢剂:采用不合或少含CO2的空气吹脱(如尾气吸收除氨循环使用);采用不易结垢的塑料填料代替木材等。

空气吹脱法除氨,去除率可达60~95%,流程简单,处理效果稳定,基建费和运行费较低,可处理高浓度合氨废水。

但气温低时吹脱效率低,填科结垢往往严重干扰运行,且吹脱出的氨对环境产生二次污染。

四、折点氯化投加过量氯或次氯酸钠(超过"折点",参见第十四章),使废水中氨完全氧化为N2的方法,称为折点氯化法,其反应可表示为:NH4+十1.5HOCl→0.5N2十1.5H2O十2.5H+十1.5Cl-由反应式可知,到达折点的理论需氯(C12)量为7.6kg/kg(NH3-N),而实际需氯量在8~10kg/kg(NH3-N)。

在pH=6~7进行反应,则投药量可最小。

接触时间一般为0.5~2h。

严格控制pH 值和投氯量,可减少反应中生成有害的氯胺(如NCl3)和氯代有机物。

折点氯化法对氨氮的去除率达90~100%,处理效果稳定,不受水温影响,基建费用也不高。

但其运行费用高;残余氯及氯代有机物须进行后处理。

在目前采用的四种脱氮工艺中,物理化学法由于存在运行成本高、对环境造成二次污染等问题,实际应用受到-定限制。

而生物脱氮法能饺为有效和彻底地除氮,且比较经济,因而得到较多应用。

氨氮废水常用处理方法过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。

因此,废水脱氮处理受到人们的广泛关注。

目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。

消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。

高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。

1 物化法1.1 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。

一般认为吹脱效率与温度、pH、气液比有关。

王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。

在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。

吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。

最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。

为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。

同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。

Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。

而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。

据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。

1.2 沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。

沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。

然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。

小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

Milan等[5]用沸石离子交换法处理经厌氧消化过的猪肥废水时发现Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo 中Na-Zeo沸石效果最好,其次是Ca-Zeo。

增加离子交换床的高度可以提高氨氮去除率,综合考虑经济原因和水力条件,床高18 cm(H/D=4),相对流量小于7.8BV/h是比较适合的尺寸。

相关文档
最新文档