材料现代测试方法
材料现代分析测试方法-rietveld

材料A的Rietveld分析
通过Rietveld分析确定了材料 A的晶格参数和晶体结构。对定量 分析,确定了多相材料的不 同相的含量。
应力分析中的Rietveld 分析
利用Rietveld分析和细致的晶 格参数测定,研究了材料内 部应力分布的变化。
材料现代分析测试方法rietveld
欢迎来到本次演讲,我们将介绍材料现代分析测试方法中的一种重要技术— —Rietveld分析。让我们一起探索这个引人入胜的领域。
什么是Rietveld分析
Rietveld分析是一种用于材料结构精确测定和相对定量分析的X射线衍射技术。它通过模拟实验光 谱与理论衍射谱之间的匹配,获得材料中的晶格参数、晶体结构和物相信息。
高分子材料
用于聚合物晶体结构、配位化合物和疏水 材料的分析。
Rietveld分析的优势和局限性
优势
• 高精度的结构测定 • 广泛适用于不同材料和结构类型 • 非破坏性分析
局限性
• 对样品质量和衍射数据的要求较高 • 无法解析非晶态或非结晶态样品 • 需要对实验结果进行仔细解释
Rietveld分析的实例和案例研究
总结和展望
Rietveld分析作为一种先进的材料现代分析测试方法,在材料科学和许多其他领域具有广泛应用前 景。希望本次演讲能为大家提供了对Rietveld分析的全面了解和启发。
3 模型优化
4 结构分析
通过最小二乘法将实验和计算的衍射谱 拟合。
从拟合结果中提取材料的晶格参数和晶 体结构信息。
Rietveld分析的应用领域
材料科学
用于研究材料的晶体结构、相变以及材料 表征。
地球科学
用于研究岩石、矿石和地质样品的晶体结 构和相组成。
药物化学
现代材料测试技术测试方法1精选全文

4.1差热分析
4.1.1差热分析的基本原理
2、差热分析的基本理论
ΔH=KS
差热曲线的峰谷面积S和 反应热效应△H成正比, 反应热效应越大,峰谷 面积越大。
具有相同热效应的反应, 传热系数K越小,峰谷面 积越大,灵敏度越高。
4.1差热分析
4.1.2差热分析曲线
1、DTA曲线的特征 DTA曲线是将试样和参比物置于
2、DTA曲线的温度测定及标定:外推法(反应起点、转变点、 终点) 外延起始温度——表示反应的起始温度
3、DTA曲线的影响因素 差热分析是一种热动态技术,在测试过程中体系的温度不断变 化,引起物质热性能变化。因此,许多因素都可影响DTA曲 线的基线、峰形和温度。归纳起来,影响DTA曲线的主要因 素有下列几方面:
用相同质量的试样和升温速度对不同粒度的胆矾进 行研究(如图)。说明颗粒大小影响反应产物的扩散 速度,过大的颗粒和过小的颗粒都可能导致反应温 度改变,相邻峰谷合并,分辨率下降。
4.1差热分析
4.1.2差热分析曲线
试样用量的多少与颗粒大 小对DTA曲线有着类似的 影响,试样用量多,放热 效应大,峰顶温度滞后, 容易掩盖邻近小峰谷,特 别是对在反应过程中有气 体放出的热分解反应。
(1)仪器方面的因素:包括加热炉的形状和尺寸,坩埚材料及大 小,热电偶的位置等。
(2)试样因素:包括试样的热容量、热导率和试样的纯度、结晶 度或离子取代以及试样的颗粒度、用量及装填密度等。
(3)实验条件:包括加热速度、气氛、压力和量程、纸速等。
4.1差热分析
4.1.2差热分析曲线
(1)热容和热导率的变化: 试样的热容和热导率的变化会引起 差热曲线的基线变化,一台性能良 好的差热仪的基线应是一条水平直 线,但试样差热曲线的基线在反应 的前后往往不会停留在同一水平上, 这是由于试样在反应前后热容或热 导率变化的缘故。
材料现代分析测试方法1-1

L-S耦合
称总自旋量子数,表征 的大小。 称总自旋量子数,表征PS的大小。 称总(轨道)角量子数,表征P 的大小。 称总(轨道)角量子数,表征 L的大小。 称内量子数(或总量子数),表征P 的大小, ),表征 称内量子数(或总量子数),表征 J的大小, 为正整数或半整数,取值为: 为正整数或半整数,取值为:L+S,L+S-1, , , L+S-2,…,│L-S│, , , , 个值; 若L≥S,则J有2S+1个值; , 有 个值 个值。 若L<S,则J有2L+1个值。 < , 有 个值 MJ 称总磁量子数,表征 J沿外磁场方向分量大小, 称总磁量子数,表征P 沿外磁场方向分量大小, MJ 取值为:0,±1,±2,…,±J(当J为整数时) 取值为: , 为整数时) , , , ( 为整数时 或±1/2,±3/2,…,±J(当J为半整数时)。 , , , ( 为半整数时)。 为半整数时 S L J J
L-S耦合可记为: 耦合可记为:
)(l )=(S, )= )=J (s1,s2, …)( 1,l2, …)=( ,L)= )( )=( 将各电子自旋角动量( 将各电子自旋角动量(Ps1,Ps2,…)与各电 ) 子轨道角动量( 子轨道角动量 ( Pl1 , Pl1 , …) 分别加和 ( 矢量 ) 分别加和( 获得原子的总自旋角动量 和),获得原子的总自旋角动量PS和总轨道角动量 PL,然后再由PS与PL合成总(自旋-轨道)角动量PJ 合成总 自旋-轨道) (即P J=P S+P L)。 耦合, 按L-S耦合,得到S、L、J、MJ等表征原子运动 状态的原子量子数。 状态的原子量子数。
或任意正整数; 1)主量子数变化Δn=0或任意正整数; 主量子数变化Δ 2)总角量子数变化ΔL=±1; 总角量子数变化Δ 3)内量子数变化ΔJ=0,±1(但J=0时,ΔJ=0的跃 内量子数变化Δ 迁是禁阻的); 迁是禁阻的); 4)总自旋量子数的变化ΔS=0。 总自旋量子数的变化Δ
材料现代分析测试方法复习

XRD X 射线衍射 TEM 透射电镜—ED 电子衍射 SEM 扫描电子显微镜—EPMA 电子探针(EDS能谱仪 WPS 波谱仪) XPS X 射线光电子能谱分析 AES 原子发射光谱或俄歇电子能谱IR —FT —IR 傅里叶变换红外光谱 RAMAN 拉曼光谱 DTA 差热分析法 DSC 差示扫描量热法 TG 热重分析 STM 扫描隧道显微镜 AFM 原子力显微镜测微观形貌:TEM 、SEM 、EPMA 、STM 、AFM 化学元素分析:EPMA 、XPS 、AES (原子和俄歇)物质结构:远程结构(XRD 、ED )、近程结构(RAMAN 、IR )分子结构:RAMAN官能团:IR 表面结构:AES (俄歇)、XPS 、STM 、AFMX 射线的产生:高速运动着额电子突然受阻时,随着电子能量的消失和转化,就会产生X 射线。
产生条件:1.产生并发射自由电子;2.在真空中迫使电子朝一定方向加速运动,以获得尽可能高的速度;3.在高速电子流的运动路线上设置一障碍物(阳极靶),使高速运动的电子突然受阻而停止下来。
X 射线荧光:入射的X 射线光量子的能量足够大将原子内层电子击出,外层电子向内层跃迁,辐射出波长严格一定的X 射线俄歇电子产生:原子K 层电子被击出,L 层电子如L2电子像K 层跃迁能量差不是以产生一个K 系X 射线光量子的形式释放,而是被临近的电子所吸收,使这个电子受激发而成为自由电子,即俄歇电子14种布拉菲格子特征:立方晶系(等轴)a=b=c α=β=γ=90°;正方晶系(四方)a=b ≠cα=β=γ=90°;斜方晶系(正交)a ≠b ≠c α=β=γ=90°;菱方晶系(三方)a=b=c α=β=γ≠90°;六方晶系a=b ≠c α=β=90°γ=120°;单斜晶系a ≠b ≠c α=β=90°≠γ;三斜晶系a ≠b ≠c α≠β≠γ≠90°布拉格方程的推导 含义:线照射晶体时,只有相邻面网之间散射的X 射线光程差为波长的整数倍时,才能产生干涉加强,形成衍射线,反之不能形成衍射线。
材料现代测试方法-XRD

布拉格定律
hkl
h1 k1 l1
h2 k2 l2
h3 k3 l3
h4 k4 l4
h5 k5 l5
.
.
.
dhkl dh1k1l1 dh2k2l2 dh3k3l3 dh4k4l4 dh5k5l5 .
X射线的产生
• 封闭式X射线管
X射线的产生
• 旋转阳极靶X射线管
其他X射线源
• 放射源 • 同步辐射
X射线与物质的相互作用
• X射线与物质相互作用时,就其能量转换而 言,可分为三部分:1)一部分被散射;2) 一部分被吸收;3)一部分透过物质继续沿 原来的方向传播。
散射
相干散射(瑞利散射) 非相干散射 (康普顿散射)
1913年,英国Bragg(布喇格父子)导出X射线 晶体结构分析的基本公式,即著名的布拉格公式。 并测定了NaCl的晶体结构。(1915年获得诺贝尔 奖)
1
X射线的本质
X射线和可见光 一样属于电磁 辐射,但其波 长比可见光短 得多,介于紫 外线与γ射线之 间,约为10-2 到102埃的范围。 与晶体中的键 长相当。
c
d 21 3
b
o
a
晶面(213)及d213
c
d300
b
o
a
晶面(300)及d300
晶面指标hkl及晶面间距dhkl
思考1:对于给定的晶胞,对于任意三个整数hkl(000除外), 我们可以画出这个(hkl)晶面吗?相邻晶面的距离可知吗?
材料现代分析测试方法教学设计

材料现代分析测试方法教学设计1. 引言材料现代分析测试方法是材料科学中的重要领域,它不仅关系到材料的性能评估、质量控制、过程优化等方面,也与材料基础研究密切相关。
本文旨在探讨如何针对材料现代分析测试方法的教学设计,提高学生的实验技能、科学素养和综合素质。
2. 教学目标1.了解材料现代分析测试方法的技术基础、原理和应用;2.掌握现代分析测试方法的基本技能,包括样品制备、测试操作、数据处理等;3.培养学生的实验思维、实验技能和科学态度;4.提高学生的综合素质,包括团队协作、口头表达、写作能力等。
3. 教学内容3.1 材料现代分析测试方法概述介绍材料现代分析测试方法的发展历程、技术分类、应用领域等,使学生了解不同的现代测试方法的特点和优势。
3.2 样品制备与仪器调试掌握样品制备的基本方法和实验技巧,包括样品收集、样品制备、样品保存等方面内容。
同时,对仪器操作、仪器调试等方面进行详细介绍和演示,以保证实验数据的准确性和稳定性。
3.3 现代分析测试方法基础实验介绍常见的材料现代分析测试方法,包括SEM、TEM、XRD、XRF等方法,通过实验演示的方式来掌握分析测试方法的基本操作技能。
3.4 分析测试方法的综合应用选取一些案例,通过现代分析测试方法对材料进行分析测试,提高学生对分析测试方法的综合应用能力。
4. 教学方法与手段该课程以理论与实践相结合的方式进行,顺序讲解每个部分内容,进行示范,引导学生进行操作练习。
同时,结合课程设计,设计习题,让学生进行思考、探讨和解决问题。
5. 教学评价本课程的教学评价是单项评估和综合评估相结合的方式,主要由实验操作能力、实验报告写作和课堂表现三个方面来综合考察学生的综合素质。
6. 教学效果预期通过本次课程的学习,学生将对材料现代分析测试方法有了新的认识和理解,掌握了相关的基本技能和知识。
这将为他们未来的学习学术研究和实践应用打下基础,并有助于提高他们实验技能、科学素养和综合素质。
SEM和EDS的现代分析测试方法

第四节 SEM的构造
一. 电子光学系统
组成: 电子枪, 电磁聚光镜, 光阑, 样品室等.
作用: 用来获得扫描电子束, 作为 使样品产生各种物理信号的 激发源.
1. 电子枪 2. 聚光镜(电磁透镜) 3. 光阑 4. 样品室
用于SEM的电子枪有两种类型
热电子发射型: 普通热阴极三极电子枪 六硼化镧阴极电子枪
一. 导电材料试样制备
1. 试样尺寸尽可能小些,以减轻 仪器污染和保持良好真空。
2. 切取试样时,要避免因受热引 起试样塑性变形,或在观察面 生成氧化层;要防止机械损伤 或引进水、油污及尘埃等污物。
3. 观察表面,特别是各种断口间 隙处存在污物时,要用无水乙 醇、丙酮或超声波清洗法清理 干净。
4. 故障构件断口或电器触点处存 在的氧化层及腐蚀产物,不要 轻易清除。
三. 波谱仪与能谱仪比较
与波谱仪相比,能谱仪的缺点: 1. 能量分辨率低. 2. 峰背比差、检测极限高,定量 分析精度差. 3. Be窗. 4. LN2冷却.
三. 信号检测放大系统
作用:检测样品在入射电子束作 用下产生的物理信号,然 后经视频放大,作为显象 系统的调制信号。
检测器类型
1. 电子检测器:由闪烁体、光导 管和光电倍增器组成。
2. 阴极荧光检测器:由光导管、 光电倍增器组成。
3. X射线检测系统:由谱仪和检测 器两部分组成。
四. 图象显示和记录系统
组成:显示器、照相机、打印机 等。
作用:把信号检测系统输出的调 制信号转换为在阴极射线 管荧光屏上显示的样品表 面某种特征的扫描图象, 供观察或照相记录。
五. 电源系统
组成:稳压、稳流及相应的安全 保护电路等。
作用:提供扫描电子显微镜各部 分所需要的电源。
材料现代分析测试方法

材料现代分析测试方法材料的现代分析测试方法是为了研究材料的组成、结构、性质以及相应的测试手段。
通过分析测试方法,我们可以深入了解材料的特点,进而为材料的研发、优化和应用提供有效的数据支持。
下面将介绍几种常用的材料现代分析测试方法。
一、质谱分析法质谱分析法是一种通过测量样品中不同质荷比(m/z)的离子的相对丰度来确定样品组成和结构的分析方法。
质谱分析法适用于分析有机物和无机物。
其优点是能快速分析出物质组成,提供准确的质量数据,对于结构复杂的样品仍能有效分析。
二、核磁共振(NMR)谱学核磁共振谱学是一种通过测量样品中核自旋与磁场相互作用的现象来分析样品结构和组成的方法。
不同核的共振频率和强度可以提供关于样品分子结构和组成的信息。
核磁共振谱学适用于有机物和无机物的分析。
由于从核磁共振谱图中可以获得丰富的结构信息,所以核磁共振谱学被广泛应用于有机化学、药物研发和材料科学等领域。
三、红外光谱学红外光谱学是一种通过测量样品对不同波长的红外辐射的吸收情况来分析样品结构和组成的方法。
不同官能团在红外区域会有特定的吸收峰位,因此红外光谱能提供有关样品中化学键和官能团的信息。
红外光谱学适用于有机物和无机物的分析。
它具有非破坏性、快速、易于操作等特点,在化学、生物和材料科学领域得到了广泛应用。
四、X射线衍射(XRD)X射线衍射是一种通过测量样品对入射X射线的衍射现象来研究样品结构和晶体结构的方法。
不同物质的晶格结构具有不同的衍射图样,通过分析衍射图样可以获得样品的晶体结构信息。
X射线衍射适用于分析有晶体结构的材料,如金属、陶瓷、单晶等。
它能提供关于晶体结构、晶粒尺寸和应力等信息,被广泛应用于材料科学、地质学和能源领域。
五、扫描电子显微镜(SEM)和透射电子显微镜(TEM)扫描电子显微镜和透射电子显微镜是一种通过聚焦电子束对材料进行观察和分析的方法。
扫描电子显微镜主要用于获得材料的表面形貌、颗粒分布和成分分析。
透射电子显微镜则能提供材料的内部结构和界面微观结构的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1-1 描述力学性能的基本物理量
一、应力与应变
应变——当材料受到外力作用而它所处的环境又使 其不能产生惯性移动时,它的几何形状和 尺寸就会发生变化,这种变化就称为“应 变”。
应力——当材料产生宏观变形时,材料内部分子间 或者原子间原来的引力平衡受到了破坏, 因而会产生一种附加的内力来抵抗外力、 恢复平衡。当到达新的平衡时附加内力和 外力大小相等,方向相反。单位面积上的 附加内力称为“应力”。
研究聚合物的分子运动——
通过热力学性能的变化研究分子运动——示差扫 描量热仪;
通过力学性质变化研究分子运动——静态与动态 热机械分析仪;
通过电磁性质变化研究分子运动——介电松弛与 核磁共振;
通过体积变化研究分子运动——热膨胀计
本门课程教学内容
第一章 聚合物材料力学性能测定 第二章 聚合物分子量与分子量分布测定 第三章 聚合物流变性能测定 第四章 波谱分析在聚合物材料中的应用 第五章 热分析在聚合物材料中的应用 第六章 显微分析技术在聚合物中的应用
A0 F
F
剪切应变: γs = S/d = tgθ —— 剪切角的正切剪
切应力:
τs = F/A。
剪切应力的单位也是N/m2( 帕斯卡)。
3. 均匀压缩 —— 材料受到均匀围压力的作用
材料的压缩应力就是所受到的围压力P;受力 后材料的体积发生变化,由原来的Vo减小为Vo-ΔV, 压缩应变为:
Δ=ΔV/ Vo
聚合物结构的分析表征——
链结构——红外光谱、紫外光谱、荧光光 谱、拉曼光谱、电子能谱、核磁共振、顺 磁共振、X射线衍射(广角)、电子衍射、 中子散射……;
聚集态结构——X射线衍射(小角)、固 体小角激光光散射、电子衍射、电子显微 镜、光学显微镜、原子力显微镜、热分 析……。
聚合物性能的测定——
4、弯曲——对材料施加一弯曲力矩,使材料发生弯 曲。主要有两种形式:
F
一点弯曲
三点弯曲
5、扭转——对材料施加扭转力矩
F
F
二、弹性模量——在弹性形变范围内单位应变所
需应力的大小。是材料刚性的一种表征,代/Ao)/(ΔL/Lo)
简单剪切时: 剪切模量 G =τs/γs = (F/Ao)/ tgθ
1、简单拉伸 ——材料受到一对垂直于材料截面、大 小相等、方向相反并在同一直线上的外力作用
拉伸应变:
ε=L-Lo/Lo=ΔL/Lo 也称为伸长率,无量纲。
拉伸应力:
σ= F/Ao Ao是材料的起始截面积; 应力的单位是 N/m2,称 为“帕斯卡”。
F
A0
A
l0 l
Dl
F
简单拉伸示意图
2. 简单剪切 ——材料受到与截面平行、大小相等、 方向相反,但不在一条直线上的两个外力作用,使 材料发生偏斜。其偏斜角的正切值定义为剪切应变。
屈服点——Y σY:屈服应力 εY:屈服伸长率
断裂点——B σB:断裂应力 εB:断裂伸长率
§1-2 聚合物拉伸试验
拉伸试验测定的力学性能 拉伸强度、断裂强度、屈服强度、定伸强度、断 裂伸长率、应力—应变曲线、弹性模量。
拉伸试验所适用的聚合物材料 热塑性塑料、热固性塑料、橡胶材料
拉伸试验对试样的要求 4类哑铃状试样
σt = P/bd 由于在拉伸过程中试样的宽度和厚度不断变化, 所以一般采用试样起始的尺寸来计算拉伸强度。
2. 弯曲强度——材料抵抗弯曲破坏的能力 在规定的试验条件下对标准试样施加一个弯曲力
矩,直到试样断裂:
测定试验过程中的最大载荷P,并按照下式计算弯曲强度:
f
P lo / 2 1.5 Plo
力学性能——拉伸、弯曲、剪切、压缩试验、冲 击试验、蠕变曲线、应力松弛曲线、高低频疲劳 试验……;
流变性能——旋转流变仪、毛细管流变仪、熔体 流动速率测定仪…… ;
热性能——导热系数测定仪、示差扫描量热仪、 膨胀系数测定仪、热变形温度测定仪…… ;
电性能——表面电阻和体积电阻、介电常数、介 电损耗角正切、高压电击穿试验…… ;
聚合物材料的合成、加工与应用——
聚合物结构的表征——了解聚合物的微观结构、 亚微观结构和宏观结构。
聚合物性能的测定——评价和应用新材料、控制 产品的质量、研究聚合物结构与性能的关系。
聚合物分子运动的测定——分子运动方式不同会 导致聚合物所处的力学状态发生改变——转变。 每种聚合物都有其特定的转变。研究聚合物的松 弛与转变可以帮助人们了解聚合物的结构,建立 结构与性能之间的关系
均匀压缩时: 体积模量 B = P/Δ = PVo/ΔV 由于应变是无量纲的物理量,所以模量的单位
与应力的单位相同,都是N/m2(帕斯卡)。
三、材料强度——材料抵抗外力破坏的能力
拉伸强度——材料抵抗拉伸破坏的能力,也称抗张 强度。
在规定的的温度、湿度和拉伸速度下,对标准 尺寸的哑铃状试样施加拉伸载荷。当材料被拉断时, 试样所承受的最大载荷P与试样的横截面积(宽度 与厚度的乘积)之比即为材料的拉伸强度:
课程说明
教材与参考书
《聚合物研究方法》——张美珍主编,轻工出版社 《高分子物理》——何曼君主编,复旦大学出版社
▪ 教学方法
以课堂讲授为主,结合观摩仪器使用
▪ 成绩评定
作业及平时表现30 %; 期末考试 70 %。
第一章 聚合物力学性能测定
§1-1描述力学性能的基本物理量 §1-2 聚合物拉伸试验 §1-3 聚合物弯曲试验 §1-4 聚合物冲击试验
2 bd 2 / 6
bd 2
3. 冲击强度——材料抵抗冲击载荷破坏的能力,反 映材料的韧性指标。通常定义为试样在冲击载荷 作用下破坏时单位面积吸收的能量 。
冲击强度的试验方法有许多种,包括摆锤式 冲击试验、落球式冲击试验、高速拉伸试验等。 设W为试样断裂所消耗的功,可以有两种表示材 料抵抗冲击载荷破坏的强度:
冲击韧性:
I
W bd
(J / m2)
4、硬度——表征材料表面抵抗外力变形的能力
由一种较硬的材料做为压头,在一定的试验 条件下将压头压入试样中,以压痕的深度计算材 料的硬度。
塑料球压痕硬度
布氏硬度
洛氏硬度
四、应力—应变曲线
对聚合物进行拉伸试验,以试样的应力值对试 样的形变值作图所得到的曲线。通常以应力为纵坐 标、应变为横坐标。