高中数学《抛物线》练习题

合集下载

高中数学 2-4-3《抛物线》习题课同步练习 新人教B版选修2-1

高中数学 2-4-3《抛物线》习题课同步练习 新人教B版选修2-1

2.4.3抛物线习题课一、选择题1.P (x 0,y 0)是抛物线y 2=2px (p ≠0)上任一点,则P 到焦点的距离是( ) A .|x 0-p2|B .|x 0+p2|C .|x 0-p |D .|x 0+p |[答案] B[解析] 利用P 到焦点的距离等于到准线的距离,当p >0时,p 到准线的距离为d =x 0+p 2;当p <0时,p 到准线的距离为d =-p 2-x 0=|p2+x 0|.2.已知抛物线的准线方程为x =-7,则抛物线的标准方程为( ) A .x 2=-28y B .y 2=28x C .y 2=-28x D .x 2=28y [答案] B[解析] 由题意,知抛物线的标准方程为:y 2=2px (p >0),又准线方程为x =-7,∴p =14.3.抛物线y 2=-4px (p >0)的焦点为F ,准线为l ,则p 表示( ) A .F 到l 的距离 B .F 到y 轴的距离 C .F 点的横坐标 D .F 到l 的距离的14[答案] B[解析] 设y 2=-2p ′x (p ′>0),p ′表示焦点到准线的距离,又2p ′=4p ,p =p ′2,故P 表示焦点到y 轴的距离.4.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=8,那么|AB |等于( )A .10B .8C .6D .4[答案] A[解析] 设F 为抛物线y 2=4x 的焦点,则由抛物线的定义知|AF |=x 1+p2=x 1+1,|BF |=x 2+p2=x 2+1,∴|AB |=|AF |+|BF |=x 1+x 2+2=10.5.已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点分别为A (x 1,y 1),B (x 2,y 2),则一定有y 1y 2x 1x 2等于( ) A .4 B .-4 C .p 2D .-p 2[答案] B[解析] 设过焦点的直线方程为x +ay -p2=0(a ∈R ),则代入抛物线方程有y 2+2apy-p 2=0,故由根与系数的关系知y 1y 2=-p 2.又由y 21=2px 1,①y 22=2px 2,②①②相乘得y 21y 22=4p 2x 1x 2,∴x 1x 2=p 24,∴y 1y 2x 1x 2=-4. 6.直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若AB 中点的横坐标为2,则k =( )A .2或-2B .-1C .2D .3[答案] C[解析] 由⎩⎨⎧y 2=8xy =kx -2得k 2x 2-4(k +2)x +4=0,则4(k +2)k2=4,即k =2. 7.(2010·山东文,9)已知抛物线y 2=2px (p >0),过焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2[答案] B[解析] 本题考查了抛物线的方程及中点弦问题,属圆锥曲线部分题型,可设A (x 1,y 1),B (x 2,y 2),则中点(x 1+x 22,y 1+y 22),∴y 1+y 22=2,⎩⎨⎧y 21=2px 1 ①y 22=2px 2 ②①-②得y 21-y 22=2p (x 1-x 2)⇒y 1-y 2x 1-x 2=2p y 1+y 2=p y 1+y 22,∴k AB =1=p 2⇒p =2,∴y 2=4x ,∴准线方程式为:x =-1,故选B.8.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为( )A .(2,±22)B .(1,±2)C .(1,2)D .(2,22)[答案] B[解析] 依题意F (1,0)设A 点坐标为(x ,y ),则OA →=(x ,y ),AF →=(1-x ,-y ), OA →·AF →=x (1-x )+y (-y )=x -x 2-y 2,x -x 2-4x ,=-x 2-3x =-4.即x 2+3x -4=0解之得x =1或x =-4 又∵x ≥0,∴x =1,y 2=4,y =±2. ∴A (1,±2).9.一动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( )A .(4,0)B .(2,0)C .(0,2)D .(0,-2)[答案] B[解析] 由抛物线定义知,抛物线上的点到焦点的距离等于它到准线的距离,又动圆圆心在抛物线上且恒与x +2=0相切.∴动圆过定点F (2,0),故选B.10.(2008·宁夏、海南)已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A.⎝ ⎛⎭⎪⎫14,-1B.⎝ ⎛⎭⎪⎫14,1 C .(1,2) D .(1,-2)[答案] A[解析] 依题意,抛物线的焦点F (1,0),准线为l x =-1.过Q 点作直线l 的垂线交抛物线于P 点,交准线l 于M 点,则|QP |+|PF |=|QP |+|PM |=|QM |=3为所求的最小值,此时P ⎝ ⎛⎭⎪⎫14,-1.故选A.二、填空题11.P 点是抛物线y 2=4x 上任一点,到直线x =-1的距离为d ,A (3,4),|PA |+d 的最小值为________.[答案] 2 5[解析] 设抛物线焦点为F (1,0)则d =|PF |,∴|AP |+d =|AP |+|PF |≥|AF |=(3-1)2+(4-0)2=2 5. 12.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是________.[答案] 2x -y +4=0[解析] 设y =3x 2-4x +2在M (1,1)处切线方程为y -1=k (x -1),联立得⎩⎨⎧y =3x 2-4x +2,y -1=k (x -1),∴3x 2-(k +4)x +(k +1)=0. ∵Δ=0,∴k =2.∴过P (-1,2)与切线平行的直线为2x -y +4=0.13.已知点P 在抛物线y 2=2x 上运动,点Q 与点P 关于(1,1)对称,则点Q 的轨迹方程是________.[答案] y 2-4y +2x =0[解析] 设P (x 0,y 0),Q (x ,y )由已知得⎩⎨⎧x 0+x =2,y 0+y =2∴x 0=2-x ,y 0=2-y ,又P (x 0,y 0)在y 2=2x 上, ∴(2-y )2=2(2-x ) 即y 2-4y +2x =0.14.(2010·全国Ⅱ理,15)已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若AM →=MB →,则p =______.[答案] 2[解析] 如图,设B (x 0,y 0),则MK =12BH ,则x 0+p2=2⎝ ⎛⎭⎪⎫1+p 2有x 0=p2+2.可得y 0=p 2+4p ,又直线AB 方程为y =3(x -1),代入有p 2+4p =3⎝ ⎛⎭⎪⎫p 2+2-1,解得p =2. 三、解答题15.已知抛物线y 2=4x ,直线l 过定点P (-2,1),斜率为k ,k 为何值时,直线l 与抛物线满足下列条件:①只有一个公共点; ②有两个公共点; ③没有公共点.[解析] 由题意得直线l 的方程为y -1=k (x +2), 由⎩⎨⎧y -1=k (x +2),y 2=4x ,消去x 得ky 2-4y +4(2k +1)=0①,当k =0时,由方程①得y =1,把y =1代入y 2=4x ,得x =14,此时,直线l 与抛物线只有一个公共点(14,1).当k ≠0时,方程①的判别式为Δ=-16(2k 2+k -1).①当Δ=0,即2k 2+k -1=0,解得k =-1或k =12,此时方程①只有一解,方程组只有一个解,直线l 与抛物线只有一个公共点.②当Δ>0,即2k 2+k -1<0,解得-1<k <12,所以-1<k <12且k ≠0时,直线l 与抛物线有两个公共点.③当Δ<0,即2k 2+k -1>0,解得k >12或k <-1,此时,直线l 与抛物线没有公共点.综上所述可知当k =0或k =-1或k =12时,直线l 与抛物线只有一个公共点;当-1<k <12且k ≠0时,直线l 与抛物线有两个公共点;当k <-1或k >12时,直线l 与抛物线没有公共点.16.已知抛物线y 2=-x 与直线y =k (x +1)相交于A ,B 两点. (1)求证OA ⊥OB ;(2)当△AOB 的面积等于10时, 求k 的值.[解析] (1)证明:如图所示,由方程组⎩⎨⎧y 2=-xy =k (x +1)消去x 得ky 2+y -k =0,设A (x 1,y 1),B (x 2,y 2).由根与系数的关系知y 1y 2=-1.因为A ,B 在抛物线y 2=-x 上,所以y 21=-x 1,y 22=-x 2,y 21y 22=x 1x 2,因为k OA ·k OB =y 1x 1·y 2x 2=y 1y 2x 1x 2=1y 1y 2=-1,所以OA ⊥OB .(2)解:设直线AB 与x 轴交于点N ,显然k ≠0,所以点N 的坐标为(-1,0),因为S △OAB=S △OAN +S △OBN=12|ON ||y 1|+12|ON ||y 2|=12|ON ||y 1-y 2|,所以S △OAB =12·1·(y 1+y 2)2-4y 1y 2=12(1k )2+4,因为S △OAB =10,所以10=121k 2+4,解得k =±16. 17.设抛物线y 2=8x 的焦点是F ,有倾斜角为45°的弦AB ,|AB |=85,求△FAB 的面积.[解析] 设AB 方程为y =x +b ,由⎩⎨⎧y =x +b ,y 2=8x .消去y 得:x 2+(2b -8)x +b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8-2b ,x 1·x 2=b 2.∴|AB |=1+k 2·|x 1-x 2| =2×(x 1+x 2)2-4x 1·x 2 =2[(8-2b )2-4b 2]=85,解得:b =-3.∴直线方程为y =x -3.即:x -y -3=0, ∴焦点F (2,0)到x -y -3=0的距离为d =12=22.∴S △FAB =12×85×22=210. 18.已知抛物线y 2=x 上存在两点关于直线l :y =k (x -1)+1对称,求实数k 的取值范围.[解析] 设抛物线上的点A (y 21,y 1),B (y 22,y 2)关于直线l 对称.则⎩⎪⎨⎪⎧k ·y 1-y2y 21-y 22=-1y 1+y 22=k (y 21+y222-1)+1得⎩⎪⎨⎪⎧y 1+y 2=-k y 1y 2=k 22+1k -12,∴y 1、y 2是方程t 2+kt +k 22+1k -12=0的两个不同根.∴Δ=k 2-4(k 22+1k -12)>0得-2<k <0.。

高中数学选择性必修一(人教版)《3.3抛物线》习题

高中数学选择性必修一(人教版)《3.3抛物线》习题

抛物线11.若抛物线x 2=4y 上的点P (m ,n )到其焦点的距离为5,则n =( ) A .194B .92C .3D .42.(2019·全国卷Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( )A .2B .3C .4D .8 3.已知动点P (x ,y )满足5(x -1)2+(y -2)2=|3x +4y -1|,则点P 的轨迹为( ) A .直线 B .抛物线 C .双曲线D .椭圆4.O 为坐标原点,F 为抛物线C :y 2=2x 的焦点,P (x 0,y 0)为C 上一点,若|PF |=32x 0,则△POF 的面积为( )A .1B .2C .22D .245.已知A ,B 两点均在焦点为F 的抛物线y 2=2px (p >0)上,若|AF |+|BF |=4,线段AB 的中点到直线x =p2的距离为1,则p 的值为( )A .1B .1或3C .2D .2或66.已知A ,B 为抛物线y 2=2x 上两点,且A 与B 的纵坐标之和为4,则直线AB 的斜率为( )A .12B .-12C .-2D .27.(2020·福州期末)设抛物线y 2=2px 上的三个点A ⎝⎛⎭⎫23,y 1,B (1,y 2),C ⎝⎛⎭⎫32,y 3到该抛物线的焦点距离分别为d 1,d 2,d 3.若d 1,d 2,d 3中的最大值为3,则p 的值为________.8.(2018·全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.9.抛物线y =-14x 2上的动点M 到两定点F (0,-1),E (1,-3)的距离之和的最小值为________.10.已知抛物线y 2=2px (p >0)上一点M (1,m )到其焦点的距离为5,双曲线x 2-y 2a=1的左顶点为A ,若双曲线的一条渐近线与直线AM 垂直,则实数a =________.11.如图,已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,点A 到抛物线准线的距离等于5,过点A 作AB 垂直于y 轴,垂足为点B ,OB 的中点为M .(1)求抛物线的方程;(2)过点M 作MN ⊥FA ,垂足为N ,求点N 的坐标.12.已知AB 是抛物线y 2=2px (p >0)的过焦点F 的一条弦.设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0).求证:(1)若AB 的倾斜角为θ,则|AB |=2psin 2θ; (2)x 1x 2=p 24,y 1y 2=-p 2;(3)1|AF |+1|BF |为定值2p .13.已知抛物线y 2=2x .(1)设点A 的坐标为⎝⎛⎭⎫23,0,求抛物线上距离点A 最近的点P 的坐标及相应的距离|PA |; (2)在抛物线上求一点M ,使M 到直线x -y +3=0的距离最短,并求出距离的最小值.。

高中数学《抛物线》典型例题12例(含标准答案)

高中数学《抛物线》典型例题12例(含标准答案)

《抛物线》典型例题12例典型例题一例1 指出抛物线的焦点坐标、准线方程. (1)y x 42= (2))0(2≠=a ay x分析:(1)先根据抛物线方程确定抛物线是四种中哪一种,求出p ,再写出焦点坐标和准线方程.(2)先把方程化为标准方程形式,再对a 进行讨论,确定是哪一种后,求p 及焦点坐标与准线方程.解:(1)2=p Θ,∴焦点坐标是(0,1),准线方程是:1-=y (2)原抛物线方程为:x ay 12=,a p 12=∴①当0>a 时,ap 412=,抛物线开口向右, ∴焦点坐标是)0,41(a ,准线方程是:a x 41-=. ②当0<a 时,a p 412-=,抛物线开口向左, ∴焦点坐标是)0,41(a ,准线方程是:ax 41-=. 综合上述,当0≠a 时,抛物线2ay x =的焦点坐标为)0,41(a,准线方程是:ax 41-=. 典型例题二例2 若直线2-=kx y 与抛物线x y 82=交于A 、B 两点,且AB 中点的横坐标为2,求此直线方程.分析:由直线与抛物线相交利用韦达定理列出k 的方程求解.另由于已知与直线斜率及弦中点坐标有关,故也可利用“作差法”求k .解法一:设),(11y x A 、),(22y x B ,则由:⎩⎨⎧=-=x y kx y 822可得:04)84(22=++-x k x k .∵直线与抛物线相交,0≠∴k 且0>∆,则1->k . ∵AB 中点横坐标为:2842221=+=+∴k k x x , 解得:2=k 或1-=k (舍去). 故所求直线方程为:22-=x y .解法二:设),(11y x A 、),(22y x B ,则有22212188x y x y ==.两式作差解:)(8))((212121x x y y y y -=+-,即2121218y y x x y y +=--. 421=+x x Θ444)(22212121-=-+=-+-=+∴k x x k kx kx y y ,448-=∴k k 故2=k 或1-=k (舍去). 则所求直线方程为:22-=x y .典型例题三例3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切. 分析:可设抛物线方程为)0(22>=p px y .如图所示,只须证明12MM AB =,则以AB 为直径的圆,必与抛物线准线相切. 证明:作l AA ⊥1于l BB A ⊥11,于1B .M 为AB 中点,作l MM ⊥1于1M ,则由抛物线的定义可知:BF BB AF AA ==11, 在直角梯形A A BB 11中:AB BF AF BB AA MM 21)(21)(21111=+=+=AB MM 211=∴,故以AB 为直径的圆,必与抛物线的准线相切. 说明:类似有:以椭圆焦点弦为直径的圆与相对应的准线相离,以双曲线焦点弦为直径的圆与相应的准线相交.典型例题四例4(1)设抛物线x y 42=被直线k x y +=2截得的弦长为53,求k 值. (2)以(1)中的弦为底边,以x 轴上的点P 为顶点作三角形,当三角形的面积为9时,求P 点坐标.分析:(1)题可利用弦长公式求k ,(2)题可利用面积求高,再用点到直线距离求P 点坐标.解:(1)由⎩⎨⎧+==kx y x y 242得:0)44(422=+-+k x k x设直线与抛物线交于),(11y x A 与),(22y x B 两点.则有:4,122121k x x k x x =⋅-=+[][])21(5)1(54)(5))(21(22212212212k k k x x x x x x AB -=--=-+=-+=∴53)21(5,53=-∴=∴k AB ,即4-=k (2)9=∆S Θ,底边长为53,∴三角形高5565392=⨯=h ∵点P 在x 轴上,∴设P 点坐标是)0,(0x 则点P 到直线42-=x y 的距离就等于h ,即55612402220=+--x 10-=∴x 或50=x ,即所求P 点坐标是(-1,0)或(5,0).典型例题五例5 已知定直线l 及定点A (A 不在l 上),n 为过A 且垂直于l 的直线,设N 为l 上任一点,AN 的垂直平分线交n 于B ,点B 关于AN 的对称点为P ,求证P 的轨迹为抛物线.分析:要证P 的轨迹为抛物线,有两个途径,一个证明P 点的轨迹符合抛物线的定义,二是证明P 的轨迹方程为抛物线的方程,可先用第一种方法,由A 为定点,l 为定直线,为我们提供了利用定义的信息,若能证明PN PA =且l PN ⊥即可.证明:如图所示,连结P A 、PN 、NB .由已知条件可知:PB 垂直平分NA ,且B 关于AN 的对称点为P . ∴AN 也垂直平分PB .则四边形P ABN 为菱形.即有PN PA =...l PN l AB ⊥∴⊥Θ则P 点符合抛物线上点的条件:到定点A 的距离与到定直线的距离相等,所以P 点的轨迹为抛物线.典型例题六例6 若线段21P P 为抛物线)0(2:2>=p px y C 的一条焦点弦,F 为C 的焦点,求证:p F P FP 21121=+. 分析:此题证的是距离问题,如果把它们用两点间的距离表示出来,其计算量是很大的.我们可以用抛物线的定义,巧妙运用韦达定理,也可以用抛物线的定义与平面几何知识,把结论证明出来.证法一:)0,2(pF Θ,若过F 的直线即线段21P P 所在直线斜率不存在时, 则有p F P F P ==21,p p p F P FP 2111121=+=+∴. 若线段21P P 所在直线斜率存在时,设为k ,则此直线为:)0)(2(≠-=k px k y ,且设),(),,(222111y x P y x P .由⎪⎪⎩⎪⎪⎨⎧-=-=)2()2(p x k y px k y 得:04)2(22222=++-p k x k p x k2221)2(k k p x x +=+∴ ①4221p x x =⋅ ②根据抛物线定义有:p x x P P px F P p x F P ++=∴+=+=21211211,2,2 则F P F P F P F P F P F P 21212111⋅+=+4)(2)2)(2(22121212121p x x p x x p x x p x p x p x x +++++=++++= 请将①②代入并化简得:p F P FP 21121=+ 证法二:如图所示,设1P 、2P 、F 点在C 的准线l 上的射影分别是'1P 、'2P 、F ',且不妨设1122P P m n P P '=<=',又设2P 点在F F '、11P P'上的射影分别是A 、B 点,由抛物线定义知,p F F m F P n F P ='==,,12 又AF P 2∆∽12BP P ∆,1221P P F P BP AF =∴即nm nn m n p +=-- pn m mnn m p 2112)(=+∴=+∴ 故原命题成立.典型例题七例7 设抛物线方程为)0(22>=p px y ,过焦点F 的弦AB 的倾斜角为α,求证:焦点弦长为α2sin 2pAB =. 分析:此题做法跟上题类似,也可采用韦达定理与抛物线定义解决问题.证法一:抛物线)0(22>=p px y 的焦点为)0,2(p,过焦点的弦AB 所在的直线方程为:)2(tan px y -=α由方程组⎪⎩⎪⎨⎧=-=px y p x y 2)2(tan 2α消去y 得:0tan )(tan 4tan 422222=+-αααp p x设),(),,(2211y x B y x A ,则⎪⎪⎩⎪⎪⎨⎧=⋅+=+=+4)cot 21(tan )2(tan 22122221p x x p p x x ααα 又)(tan 2121x x y y -=α[]ααααααααα242222222222122122212sin 2sin 14)cot 1(cot 4sec 44)cot 1()tan 1(4)()tan 1())(tan 1(pp p p p x x x x x x AB =⋅=+⋅=⎥⎦⎤⎢⎣⎡⋅-++=-++=-+=∴即α2sin 2pAB =证法二:如图所示,分别作1AA 、1BB 垂直于准线l .由抛物线定义有:ααcos cos 11⋅-==+⋅==BF p BB BF p AF AA AF于是可得出:αcos 1-=p AF αcos 1+=pBFαααα22sin 2cos 12cos 1cos 1p pp p BFAF AB =-=++-=+=∴ 故原命题成立.典型例题八例8 已知圆锥曲线C 经过定点)32,3(P ,它的一个焦点为F (1,0),对应于该焦点的准线为1-=x ,过焦点F 任意作曲线C 的弦AB ,若弦AB 的长度不超过8,且直线AB 与椭圆22322=+y x 相交于不同的两点,求 (1)AB 的倾斜角θ的取值范围.(2)设直线AB 与椭圆相交于C 、D 两点,求CD 中点M 的轨迹方程. 分析:由已知条件可确定出圆锥曲线C 为抛物线,AB 为抛物线的焦点弦,设其斜率为k ,弦AB 与椭圆相交于不同的两点,可求出k 的取值范围,从而可得θ的取值范围,求CD 中点M 的轨迹方程时,可设出M 的坐标,利用韦达定理化简即可.解:(1)由已知得4=PF .故P 到1-=x 的距离4=d ,从而d PF = ∴曲线C 是抛物线,其方程为x y 42=.设直线AB 的斜率为k ,若k 不存在,则直线AB 与22322=+y x 无交点. ∴k 存在.设AB 的方程为)1(-=x k y由⎩⎨⎧-==)1(42x k y x y 可得:0442=--k y ky设A 、B 坐标分别为),(11y x 、),(22y x ,则:442121-=⋅=+y y ky y222122122212)1(44)(1))(11(k k y y y y k k y y k AB +=-++=-+=∴∵弦AB 的长度不超过8,8)1(422≤+∴kk 即12≥k 由⎩⎨⎧=+-=223)1(22y x x k y 得:0)1(24)32(2222=-+-+k x k x k ∵AB 与椭圆相交于不同的两点,32<∴k 由12≥k 和32<k 可得:31<≤k 或13-≤<-k 故3tan 1≤≤θ或1tan 3-<<-θ 又πθ<≤0,∴所求θ的取值范围是:34πθπ<≤或4332πθπ≤< (2)设CD 中点),(y x M 、),(33y x C 、),(44y x D由⎩⎨⎧=+-=223)1(22y x x k y 得:0)1(24)32(2222=-+-+k x k x k 9325313231322232)1(2,324222224322132243<+≤∴<≤+-=∴+=+=+-=⋅+=+∴k k k x k k x x x k k x x k k x x ΘΘ则323211522<+-≤k 即3252<≤x .3)1(2)1(23221222222+-⋅-⋅=+=∴-=x y x y k k x x y k Θ 化简得:032322=-+x y x∴所求轨迹方程为:)3252(032322<≤=-+x x y x典型例题九例9 定长为3的线段AB 的端点A 、B 在抛物线x y =2上移动,求AB 的中点到y 轴的距离的最小值,并求出此时AB 中点的坐标.分析:线段AB 中点到y 轴距离的最小值,就是其横坐标的最小值.这是中点坐标问题,因此只要研究A 、B 两点的横坐标之和取什么最小值即可.解:如图,设F 是x y =2的焦点,A 、B 两点到准线的垂线分别是AC 、BD ,又M 到准线的垂线为MN ,C 、D 和N 是垂足,则2321)(21)(21=≥+=+=AB BF AF BD AC MN .设M 点的横坐标为x ,纵坐标为y ,41+=x MN ,则454123=-≥x .等式成立的条件是AB 过点F . 当45=x 时,41221-=-=P y y ,故 22122)(212221221=-=++=+x y y y y y y ,221±=+y y ,22±=y . 所以)22,45(±M ,此时M 到y 轴的距离的最小值为45. 说明:本题从分析图形性质出发,把三角形的性质应用到解析几何中,解法较简.典型例题十例10 过抛物线px y 2=的焦点F 作倾斜角为θ的直线,交抛物线于A 、B 两点,求AB 的最小值. 分析:本题可分2πθ=和2πθ≠两种情况讨论.当2πθ≠时,先写出AB 的表达式,再求范围. 解:(1)若2πθ=,此时p AB 2=.(2)若2πθ≠,因有两交点,所以0≠θ.)2(tan p x y AB -=θ:,即2tan py x +=θ.代入抛物线方程,有0tan 222=--p y py θ. 故θθ22222212csc 44tan 4)(p p p y y =+=-, θθθ2222212212tan csc 4tan )()(p y y x x =-=-. 故θθθ422222csc 4)tan 11(csc 4p p AB =+=. 所以p p AB 2sin 22>=θ.因2πθ≠,所以这里不能取“=”.综合(1)(2),当2πθ=时,p AB 2=最小值.说明:(1)此题须对θ分2πθ=和2πθ≠两种情况进行讨论;(2)从解题过程可知,抛物线点弦长公式为θ2sin 2pl =;(3)当2πθ=时,AB 叫做抛物线的通径.通径是最短的焦点弦.典型例题十一例11 过抛物线px y 22=)0(>p 的焦点F 作弦AB ,l 为准线,过A 、B 作l 的垂线,垂足分别为'A 、'B ,则①''FB A ∠为( ),②B AF '∠为( ).A .大于等于︒90B .小于等于︒90C .等于︒90D 不确定分析:本题考查抛物线的定义、直线与圆的位置关系等方面的知识,关键是求角的大小以及判定直线与圆是否相切.解:①点A 在抛物线上,由抛物线定义,则21'∠=∠⇒=AF AA ,又x AA //'轴31∠=∠⇒.∴32∠=∠,同理64∠=∠,而︒=∠+∠+∠+∠1804632,∴︒=∠+∠9063,∴︒=∠90''FB A .选C .②过AB 中点M 作l MM ⊥',垂中为'M , 则AB BF AF BB AA MM 21)(21)(21'''=+=+=.∴以AB 为直径的圆与直线l 相切,切点为'M .又'F 在圆的外部,∴︒<∠90'B AF .特别地,当x AB ⊥轴时,'M 与'F 重合,︒=∠90'B AF .即︒≤∠90'B AF ,选B .典型例题十二例12 已知点)2,3(M ,F 为抛物线x y 22=的焦点,点P 在该抛物线上移动,当PF PM +取最小值时,点P 的坐标为__________.分析:本题若建立目标函数来求PF PM +的最小值是困难的,若巧妙地利用抛物线定义,结合图形则问题不难解决.解:如图,由定义知PE PF =,故213=≥≥+=+MN ME PM PF PF PM .取等号时,M 、P 、E 三点共线,∴P 点纵坐标为2,代入方程,求出其横坐标为2,所以P 点坐标为)2,2(.。

高中数学抛物线-高考经典例题

高中数学抛物线-高考经典例题

1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质:①顶点是焦点向准线所作垂线段中点。

②焦准距:FK p =③通径:过焦点垂直于轴的弦长为2p 。

④顶点平分焦点到准线的垂线段:2p OF OK ==。

⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。

所有这样的圆过定点F 、准线是公切线。

⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。

所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线。

⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。

所有这样的圆的公切线是准线。

3抛物线标准方程的四种形式:,,px y px y 2222-==。

,py x py x 2222-==4抛物线px y 22=的图像和性质:①焦点坐标是:⎪⎭⎫⎝⎛02,p ,②准线方程是:2p x -=。

③焦半径公式:若点),(00y x P 是抛物线px y 22=上一点,则该点到抛物线的焦点的距离(称为焦半径)是:02p PF x =+, ④焦点弦长公式:过焦点弦长121222p pPQ x x x x p =+++=++ ⑤抛物线px y 22=上的动点可设为P ),2(2y py 或2(2,2)P pt pt 或P px y y x 2),(2=其中5一般情况归纳:方程 图象 焦点 准线 定义特征y 2=kxk>0时开口向右(k/4,0) x= ─k/4到焦点(k/4,0)的距离等于到准线x= ─k/4的距离k<0时开口向左 x 2=kyk>0时开口向上(0,k/4) y= ─k/4到焦点(0,k/4)的距离等于到准线y= ─k/4的距离k<0时开口向下抛物线的定义:例1:点M 与点F (-4,0)的距离比它到直线l :x -6=0的距离4.2,求点M 的轨迹方程.C NM 1QM 2K FPoM 1QM 2KF Poyx分析:点M 到点F 的距离与到直线x =4的距离恰好相等,符合抛物线定义.答案:y 2=-16x例2:斜率为1的直线l 经过抛物线y 2=4x 的焦点,与抛物线相交于点A 、B ,求线段A 、B 的长.分析:这是灵活运用抛物线定义的题目.基本思路是:把求弦长AB 转化为求A 、B 两点到准线距离的和.解:如图8-3-1,y 2=4x 的焦点为F (1,0),则l 的方程为y =x -1.由⎩⎨⎧+==142x y x y 消去y 得x 2-6x +1=0. 设A (x 1,y 1),B (x 2,y 2) 则x 1+x 2=6. 又A 、B 两点到准线的距离为A ',B ',则()()()8262112121=+=++=+++='+'x x x x B B A A点评:抛物线的定义本身也是抛物线最本质的性质,在解题中起到至关重要的作用。

高中数学抛物线经典例题(含解析)

高中数学抛物线经典例题(含解析)

抛物线大题一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.抛物线大题参考答案与试题解析一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.【分析】(1)由题意,结合所给信息列出等式,求出p的值,进而可得抛物线C的方程;(2)(i)结合(1)中所得信息得到点P的坐标,设出A,B两点的坐标,利用斜率公式得到4(y1+y2)+y1y2+20=0,对直线AB的斜率是否存在进行讨论,进而即可求解;(ii)设出A,B两点的坐标,分别讨论直线AB的斜率是否存在,当直线AB的斜率存在时,设出直线AB的方程,将直线方程与抛物线方程联立,利用韦达定理即可得到|F A|•|FB|的最小值,当直线AB的斜率不存在时,结合抛物线的定义即可得到|F A|•|FB|的最小值,两者比较即可求解.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.【分析】(1)由抛物线的准线方程求出p,可得抛物线C的方程;(2)设P(x1,y1),Q(x2,y2),联立直线l和抛物线C的方程,消元写出韦达定理,将OP⊥OQ用坐标表示,代入韦达定理化简计算,可得m的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.【分析】(1)由题意,先设出抛物线C的方程,将点P的坐标代入抛物线方程中,求出p的值,进而可得抛物线C的标准方程;(2)设出直线AB的方程和A,B两点的坐标,将直线AB的方程与抛物线方程联立,求出A,B两点的坐标,进而即可求解.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.【分析】(1)由题意,结合题目所给信息建立有关p的等式,进而即可求解;(2)设出A,B两点的坐标,将直线l的方程与抛物线方程联立,利用向量的坐标运算以及韦达定理再进行求解即可.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.【分析】(1)由题意,先求出的右焦点,根据抛物线C的焦点F与椭圆的右焦点重合,可得,进而求出抛物线方程;(2)结合(1)中所得信息得到直线AB的方程,将直线AB的方程与抛物线方程联立,利用韦达定理以及弦长公式再进行求解即可.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.【分析】(1)由题意,得到点A的坐标,代入抛物线方程中进行求解即可;(2)先得到直线l的方程,将直线方程与抛物线方程联立,利用韦达定理以及抛物线的定义再进行求解即可.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)利用|PF|=5,根据抛物线的定义,求出p的值,即可得解;(2)设A(x1,y1),B(x2,y2),M(s,0),直线l的方程为x=ty+2(t≠0),将其与抛物线的方程联立,利用韦达定理,根据k AM=﹣k MB,求出s的值,即可得解.。

高中数学选修一3.3 抛物线(精练)(解析版)

高中数学选修一3.3 抛物线(精练)(解析版)

3.3 抛物线【题组一 抛物线的定义】1.(2020·全国高二课时练习)已知抛物线24,y x =上一点P 到准线的距离为1d ,到直线l :43110x y -+=为2d ,则12d d +的最小值为( )A .3B .4C D【答案】A【解析】抛物线上的点P 到准线的距离等于到焦点F 的距离, 所以过焦点F 作直线43110x y -+=的垂线,则该点到直线的距离为12d d +最小值,如图所示;由(1,0)F ,直线43110x y -+=,所以123d d +==,故选A.2.(2020·全国高二课时练习)若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于( ) A .12B .1C .3 2D .2【答案】D【解析】由题意,3x 0=x 0+2p ,∴x 0=4p ∴222p = ∵p >0,∴p=2.故选D .3.(2020·昆明市官渡区第一中学高二期中(文))已知抛物线24y x =上点B (在第一象限)到焦点F 距离为5,则点B 坐标为( )A .()1,1B .()2,3C .()4,4D .(【答案】C【解析】设()()000,,0B x y y >, 因为点B 到焦点F 距离为5即5BF =, 根据抛物线定义:00152pBF x x =+=+=, 解得:04x =,代入抛物线方程24y x =, 得04y =即()4,4B 故选:C4.(2020·广东佛山.高二期末)已知抛物线2y x =上的点M 到其焦点的距离为2,则M 的横坐标是( )A .32B .52C .74D .94【答案】C【解析】抛物线2y x =焦点1(,0)4F ,准线方程为14x =-,设点M 的横坐标为0x ,根据抛物线的定义,0017||2,44MF x x =+=∴=.故选:C5.(2020·定远县民族学校高二月考(理))已知抛物线C :28x y =的焦点为F ,()00A x y ,是C 上一点,且02AF y =,则0x =( ) A .2 B .2± C .4 D .4±【答案】D【解析】28x y =,如图,由抛物线的几何意义,可知0022AF Al y y ===+,所以02y =,所以04x =±,故选D .6.(2020·沙坪坝.重庆八中高二月考)若抛物线y 2=2px (p >0)上任意一点到焦点的距离恒大于1,则p 的取值范围是( ) A .p <1 B .p >1C .p <2D .p >2【答案】D【解析】∵设P 为抛物线的任意一点, 则P 到焦点的距离等于到准线:x 2p=-的距离, 显然当P 为抛物线的顶点时,P 到准线的距离取得最小值2p . ∴12p>,即p >2. 故选:D .7.(2019·河南濮阳.高二月考(文))若点P 为抛物线2:2C y x =上的动点,F 为C 的焦点,则||PF 的最小值为( ) A .1 B .12C .14D .18【答案】D【解析】由y =2x 2,得212x y =,∴2p 12=,则128p =, 由抛物线上所有点中,顶点到焦点距离最小可得,|PF |的最小值为18.故选D . 【题组二 抛物线的标准方程】1.(2020·全国高二课时练习)已知抛物线2:2(0)C y px p =>的焦点为F ,点(00,2p M x x ⎛⎫>⎪⎝⎭是抛物线C 上一点,以点M 为圆心的圆与直线2p x =交于E ,G 两点,若13sin MFG ∠=,则抛物线C 的方程是( ) A .2y x =B .22y x =C .24y x =D .28y x =【答案】C【解析】作MD EG ⊥,垂足为点D .由题意得点(002p M x x ⎛⎫> ⎪⎝⎭在抛物线上,则082px =得04px =.①由抛物线的性质,可知,0||2pDM x =-, 因为1sin 3MFG ∠=,所以011||||332p DM MF x ⎛⎫==+ ⎪⎝⎭.所以001232p p x x ⎛⎫-=+ ⎪⎝⎭,解得:0x p =.②. 由①②,解得:02x p ==-(舍去)或02x p ==.故抛物线C 的方程是24y x =. 故选C .2.(2020·定远县育才学校高二月考(文))设斜率为2的直线l 过抛物线2y ax = ()0a ≠的焦点F ,且和y 轴交于点A .若(OAF O 为坐标原点)的面积为4,则抛物线的方程为( ) A .y 2=4x B .y 2=8x C .y 2=±4x D .y 2=±8x【答案】D【解析】2y ax =的焦点是,04a F (),直线l 的方程为2()4a y x =-,令0x =得,(0,)22a ay A =,所以由OAF △的面积为4得,214,64,8224a a a a ⋅⋅===±,故选D .3.(2020·天津和平.耀华中学高二期末)设抛物线22y px = (0p >)的焦点为F ,准线为l ,过焦点的直线分别交抛物线于,A B 两点,分别过,A B 作l 的垂线,垂足为,C D .若3AF BF =,且三角形CDF 的面积为则p 的值为( )A B C D 【答案】C【解析】过点B 作BM l ∥交直线AC 于点M ,交x 轴于点N , 设点()()1122,,A x y B x y 、,由3AF BF =得12322p p x x ⎛⎫+=+ ⎪⎝⎭,即123x x p -=……①, 又因为NF AM ∥,所以14NF BF AM AB ==, 所以()1214NF x x =-, 所以()212142pOF ON NF x x x =+=+-=……②, 由①②可解得123,26p px x ==, 在Rt ABM ∆中,1283AB x x p p =++=, 124=3AM x x p -=,所以BM p ==,所以132CDF S P P ∆==,解得2p =或2p =-(舍去), 故选:C4.(2018·河南洛阳.高二一模(文))已知点(0,2)A ,抛物线C :22(0)y px p =>的焦点为F ,射线FA 与抛物线C 交于点M ,与抛物线准线相交于N ,若MN =,则p 的值为( )A .4B .1C .2D .3【答案】C【解析】依题意F 点的坐标为(2p,0),设M 在准线上的射影为K由抛物线的定义知|MF|=|MK|,5FM MN ∴=则|KN|:|KM|=2:1,02402FN k p p -==--,42p∴-=得p=2,选C. 5.(2019·黑龙江香坊.哈尔滨市第六中学校高二期中(文))已知点(1,2)M 在抛物线2:2(0)C y px p =>上,则p =______;点M 到抛物线C 的焦点的距离是______.【答案】2 2【解析】点(1,2)M 代入抛物线方程得:2221p =⨯,解得:2p =;抛物线方程为:24y x =,准线方程为:1x =-,点M 到焦点的距离等于点M 到准线的距离:112--=()故答案为2,26.(2020·全国高二课时练习)已知抛物线()2:20C y px p =>的焦点为F ,准线为l .若位于x 轴上方的动点A 在准线l 上,线段AF 与抛物线C 相交于点B ,且1AF AF BF-=,则抛物线C 的标准方程为____.【答案】22y x =【解析】如图所示,设(0)2AFO παα∠=<<,过点B 作BB l '⊥于点B ',由抛物线的定义知,BF BB =',FC p =,ABB AFO α∠=∠=';在Rt AB B '∆中,cos BB BF ABABα==',cos BF AB α=,从而(1cos )AF BF AB AB α=+=+;又1AF AF BF-=,所以(1cos )1cos AB AF AB αα+-=,即1cos 1cos AF αα+-=,所以1cos AF α=;在Rt AFC ∆中,cos CF pAFAFα==,cos p AF α=, 所以1·cos 1cos p αα==, 所以抛物线C 的标准方程为22y x =.故答案为22y x =.7.(2020·四川省广元市川师大万达中学高二期中)已知抛物线22(0)y px p =>的准线与圆22670x y x +--=相切,则p 的值为_____.【答案】2;【解析】抛物线y 2=2px (p >0)的准线方程为x=﹣, 因为抛物线y 2=2px (p >0)的准线与圆(x ﹣3)2+y 2=16相切,所以3+=4,解得p=2. 故答案为2【题组三 直线与抛物线的位置关系】1.(2018·湖南衡阳市八中高二期中(文))过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线共有( ) A .1条 B .2条 C .3条 D .4条【答案】C【解析】通过图形可知满足题目要求的直线只能画出3条2.(2020·四川南充.高二期末(文))已知过点M (1,0)的直线AB 与抛物线y 2=2x 交于A ,B 两点,O 为坐标原点,若OA ,OB 的斜率之和为1,则直线AB 方程为______. 【答案】2x +y -2=0【解析】依题意可设直线AB 的方程为:x=ty+1,代入y 2=2x 得2220y ty --=,设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-2,y 1+y 2=2t ,所以12121212122()22422OA OB y y y y t k k t x x y y y y ++=+=+===--,∴21t -=,解得12t =-, ∴直线AB 的方程为:x=12y -+1,即2x+y-2=0.故答案为2x+y-2=0. 3.(2020·四川阆中中学高二月考(文))直线440kx y k --=与抛物线2y x =交于,A B 两点,若AB 4=,则弦AB 的中点到直线102x +=的距离等于________. 【答案】94【解析】如图,直线440kx y k --=过定点1(4,0),而抛物线2y x =的焦点F 为1(4,0),∴弦AB 的中点到准线14x =-的距离为1||22AB =,则弦AB 的中点到直线102x +=的距离等于19244+=. 故答案为:94.4.(2020·昆明市官渡区第一中学高二期末(理))设抛物线24y x =的焦点为F ,过F 的直线l 交抛物线于,A B 两点,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则直线l 的方程为__________.0y --=【解析】抛物线方程为24y x =,∴抛物线焦点为()1,0F ,准线为:1l x =-,设()()1122,,,A x y B x y ,因为P 在第一象限,所以直线AB 的斜率0k >, 设直线AB 方程为()1y k x =-,代入抛物线方程消去y ,得()2222240k x k x k -++=,21212224,1k x x x x k+∴+==, 过AB 的中点M 作准线的垂线与抛物线交于点P , 设P 点的坐标为()00,x y ,可得()01212y y y =+, ()()11221,1y k x y k x =-=-,()21212224422k y y k x x k k k k k+∴+=+-=⋅-=, 得到00221,y x k k =∴=,可得212,P k k ⎛⎫⎪⎝⎭,32PF =,32=,解之得22k =,所以k =)1y x =-0y -=,0y --=. 【题组四 弦长】1.(2019·安徽滁州.高二期末(理))已知,A B 为抛物线2:4C y x =上的不同两点,F 为抛物线C 的焦点,若5AB FB =,则||AB =( )A .252B .10C .254D .6【答案】C【解析】设1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,又(1,0)F ,∴()221,FB x y =-,∴21255x x x -=-,2125y y y -=,∴1212544x x y y =-⎧⎨=-⎩,由()()22222244454y x y x ⎧=⎪⎨-=-⎪⎩,得21144x x ==,,∴1225||24AB x x =++=. 故选C .2.(2020·江西赣州.高二月考(理))过抛物线C :24y x =的焦点F 的直线交抛物线C 于11(,)A x y 、22(,)B x y 两点,且1243x x +=,则弦AB 的长为( ) A .163B .4C .103D .83【答案】C【解析】抛物线的焦点弦公式为:12x x p ++,由抛物线方程可得:2p =,则弦AB 的长为12410233x x p ++=+=.本题选择C 选项. 3.(2020·河南淇滨。

高中数学 3.3.1抛物线及其标准方程 课后练习、课时练习

高中数学  3.3.1抛物线及其标准方程 课后练习、课时练习

一、单选题1. 已知点为抛物线的焦点,点在抛物线上,且,则()A.2 B.4 C.6 D.82. 若P为抛物线y2=2px(p>0)上任意一点,F为抛物线的焦点,则以|PF|为直径的圆与y轴的位置关系为()A.相交B.相离C.相切D.不确定3. 设抛物线的焦点坐标为,准线方程为,则该抛物线的方程为()C.D.A.B.4. 直线过抛物线的焦点,且与抛物线交于两点,线段中点的纵坐标为1,O为坐标原点,则O到直线的距离为()C.D.A.B.5. 已知抛物线的焦点为F,点A在C上,点B满足(O为坐标原点),且线段AB的中垂线经过点F,则=()B.1 C.D.A.6. 已知是拋物线上的三点,如果直线被圆截得的两段弦长都等于,则直线的方程为()A.B.C.D.二、多选题7. 已知抛物线,为坐标原点,点P为直线上一点,过点P作抛物线C的两条切线,切点分别为A,B,则()A.抛物线的焦点坐标为(0,1)B.抛物线的准线方程为C.直线AB一定过抛物线的焦点D.8. 下列结论正确的是()A.若动点到两定点的距离之和为10,则动点P的轨迹方程为B.若动点到两定点的距离之差为8,则动点P的轨迹方程为C.若到定点的距离和到定直线的距离相等,则动点P的轨迹方程为D.已知,若动点满足,则的轨迹方程是三、填空题9. 已知点,的焦点是F,P是上的点,为使|PA|+|PF|取得最小值,P点的坐标是________.10. 长轴长为8,以抛物线的焦点为一个焦点的椭圆的标准方程为______.11. 已知椭圆:,抛物线:,两者的一个交点为,点.定义.若与交于,两点,则周长的取值范围为______.12. 已知抛物线的焦点为,点为上一点,点为轴上一点,若是正三角形,且,则抛物线的准线方程为__________.四、解答题13. 已知抛物线的焦点为F,为抛物线C上一点,且.(1)求抛物线C的方程;(2)设Q为曲线上的一点,过点Q作抛物线C的两条切线QA、QB,切点分别为A、B,且QA、QB的斜率分别为、,求的取值范围. 14. 已知F是抛物线的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,求.15. 设椭圆的焦点在轴上,离心率为,抛物线的焦点在轴上,的中心和的顶点均为原点,点在上,点在上.(1)求曲线,的标准方程;(2)请问是否存在过抛物线的焦点的直线与椭圆交于不同两点,使得以线段为直径的圆过原点?若存在,求出直线的方程;若不存在,说明理由. 16. 设抛物线C:的焦点为F,过F且斜率为k()的直线l与C交于A,B两点,.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.。

高考数学复习题库 抛物线

高考数学复习题库 抛物线

高考数学复习题库抛物线抛物线一.选择题1.抛物线x2=(2a-1)y的准线方程是y=1,则实数a=( )A. B. C.- D.-解析根据分析把抛物线方程化为x2=-2y,则焦参数p=-a,故抛物线的准线方程是y==,则=1,解得a=-. 答案 D2.若抛物线y2=2px(p>0)的焦点在圆x2+y2+2x-3=0上,则p=( )A. B.1 C.2 D.3 解析∵抛物线y2=2px(p>0)的焦点为(,0)在圆x2+y2+2x-3=0上,∴+p-3=0,解得p=2或p=-6(舍去). 答案 C3.已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,则p的值为( ). A. B.1 C.2 D.4 解析抛物线y2=2px(p >0)的准线为x=-,圆x2+y2-6x-7=0,即(x-3)2+y2=16,则圆心为(3,0),半径为4;又因抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,所以3+=4,解得p=2. 答案 C4.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为( ). A.18 B.24 C.36 D.48 解析如图,设抛物线方程为 y2=2px(p>0). ∵当x=时,|y|=p,∴p===6. 又P到AB的距离始终为p,∴S△ABP=×12×6=36. 答案 C5. 过抛物线的焦点的直线交抛物线于两点,点是原点,若,则的面积为() A. B. C. D. 答案 C6.将两个顶点在抛物线y2=2px(p>0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则( ). A.n=0 B.n=1 C.n=2 D.n≥3 解析结合图象可知,过焦点斜率为和-的直线与抛物线各有两个交点,所以能够构成两组正三角形.本题也可以利用代数的方法求解,但显得有些麻烦. 答案 C7.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为( )A. B.3 C. D. 解析依题设P在抛物线准线的投影为P′,抛物线的焦点为F,则F.依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|PA|≥|AF|==. 答案 A二.填空题8.设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为________.解析设抛物线的焦点F,由B为线段FA的中点,所以B,代入抛物线方程得p=,则B到该抛物线准线的距离为+==. 答案9.已知动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为________. 解析设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与其到直线x=-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x. 答案 y2=4x10.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且满足|NF|=|MN|,则∠NMF=________. 解析过N 作准线的垂线,垂足是P,则有PN=NF,∴PN=MN,∠NMF=∠MNP.又cos∠MNP=,∴∠MNP=,即∠NMF=. 答案11.设圆C 位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为________. 解析依题意,结合图形的对称性可知,要使满足题目约束条件的圆的半径最大,圆心位于x轴上时才有可能,可设圆心坐标是(a,0)(0<a<3),则由条件知圆的方程是(x-a)2+y2=(3-a)2.由消去y得x2+2(1-a)x+6a-9=0,结合图形分析可知,当Δ=[2(1-a)]2-4(6a-9)=0且0<a<3,即a=4-时,相应的圆满足题目约束条件,因此所求圆的最大半径是3-a =-1.答案-112. 过抛物线的焦点作直线交抛物线于两点,若则= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《抛物线》练习题
一、选择题:
1. (浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( )
(A)
18 (B)41 (C) 2
1
(D)1 2. (上海)过抛物线x y 42
=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( )
A .有且仅有一条
B .有且仅有两条
C .有无穷多条
D .不存在
3. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )
(A) 2 (B) 3 (C) 4 (D) 5
4. (辽宁卷)已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42
=的准线重合,则该双曲线与抛物线x y 42
=的交点到原点的距离是 ( )
A .23+6
B .21
C .21218+
D .21
5 .(江苏卷)抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) ( A )
1617 ( B ) 1615 ( C ) 8
7 ( D ) 0 6. (湖北卷)双曲线)0(12
2≠=-mn n
y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为
( )
A .
163
B .
8
3 C .
3
16 D .
3
8 二、填空题:
7.顶点在原点,焦点在x 轴上且通径长为6的抛物线方程是 . 8.若抛物线m x x y +-=
22
12
的焦点在x 轴上,则m 的值是 . 9.过(-1,2)作直线与抛物线x y 42
=只有一个公共点,则该直线的斜率为 . 10.抛物线2
2x y =为一组斜率为2的平行弦的中点的轨迹方程是 .
三、解答题:
11. (江西卷)如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB.
(1)若M 为定点,证明:直线EF 的斜率为定值;
(2)若M 为动点,且∠EMF=90°,求△EMF 的重心G 的轨迹
12. (上海)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.
已知抛物线y 2=2px(p>0)的焦点为F,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的
距离等于5,过A 作AB 垂直于y 轴,垂足为B,OB 的中点为M. (1)求抛物线方程;
(2)过M 作MN ⊥FA, 垂足为N,求点N 的坐标;
(3)以M 为圆心,MB 为半径作圆M.当K(m,0)是x 轴上一动点时,丫讨论直线AK 与圆M 的位置关系.
当m<1时, AK 与圆M 相交.
13、(全国卷III)
设()11A x y ,,()22B x y ,两点在抛物线2
2y x =上,l 是AB 的垂直平分线。

(Ⅰ)当且仅当12x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (Ⅱ)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围。

14.(广东卷)在平面直角坐标系xOy 中,抛物线2
y x =上异于坐标原点O的两不同动点A、B满足AO BO ⊥(如图4所示).
(Ⅰ)求AOB ∆得重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ)AOB ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
抛物线练习题答案
解答:一。

BB D BB A
三.1. 解:(1)设M (y 2
0,y 0),直线ME 的斜率为k(l>0)
则直线MF 的斜率为-k ,方程为200().y y k x y -=-
∴由2
002
()y y k x y y x
⎧-=-⎪⎨=⎪⎩,消2
00(1)0x ky y y ky -+-=得 解得20021(1),F F ky ky y x k k --=∴= ∴00220000
222
112
14(1)(1)2E F EF
E F ky ky y y k k k k ky ky ky x x y k k k -+-
--===
=---+--
(定值) 所以直线EF 的斜率为定值 (2)90,45,1,EMF MAB k ∠=∠==o o 当时所以直线ME 的方程为2
00()y y k x y -=-
由2
002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y -- 同理可得200((1),(1)).F y y +-+
设重心G (x , y ),则有2222
00000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x x ⎧+-+++++===⎪⎪⎨
+--+++⎪===-⎪⎩
消去参数0y 得2122().9273
y x x =
-> 4. [解](1) 抛物线y 2=2px 的准线为x=-
2p ,于是4+2
p
=5, ∴p=2. ∴抛物线方程为y 2=4x. (2)∵点A 是坐标是(4,4), 由题意得B(0,4),M(0,2), 又∵F(1,0), ∴k FA =
34;MN ⊥FA, ∴k MN =-4
3
,
则FA 的方程为y=
34(x-1),MN 的方程为y-2=-43x,解方程组得x=58,y=54, ∴N 的坐标(58,5
4). (1) 由题意得, ,圆M.的圆心是点(0,2), 半径为2,
当m=4时, 直线AK 的方程为x=4,此时,直线AK 与圆M 相离. 当m ≠4时, 直线AK 的方程为y=
m -44
(x-m),即为4x-(4-m)y-4m=0, 圆心M(0,2)到直线AK 的距离d=2
)
4(1682-++m m ,令d>2,解得m>1∴当m>1时, AK 与圆M 相离;
当m=1时, AK 与圆M 相切; 当m<1时, AK 与圆M 相交.
8. .解:(Ⅰ)F l FA FB A B ∈⇔=⇔、两点到抛物线的准线的距离相等, ∵抛物线的准线是x 轴的平行线,1200y y ≥≥,,依题意12y y ,不同时为0
∴上述条件等价于()()22
121212120y y x x x x x x =⇔=⇔+-= ∵12x x ≠
∴上述条件等价于120x x += 即当且仅当120x x +=时,l 经过抛物线的焦点F 。

(Ⅱ)设l 在y 轴上的截距为b ,依题意得l 的方程为2y x b =+;过点A B 、的直线方程可写为
12y x m =-+,所以12x x 、满足方程21202x x m +-= 得1214
x x +=-
A B 、为抛物线上不同的两点等价于上述方程的判别式1804m ∆=+f ,即1
32
m -f
13.解:(I )设△AOB 的重心为G(x,y),A(x 1,y 1),B(x 2,y 2),则⎪⎪⎩
⎪⎪⎨⎧+=+=33
2121y y y x x x (1)
∵OA ⊥OB ∴1-=⋅OB OA k k ,即12121-=+y y x x , (2)
又点A ,B 在抛物线上,有2
222
11,x y x y ==,代入(2)化简得121-=x x ∴3
2332)3(31]2)[(31)(31322212212
22121+=+⨯=-+=+=+=
x x x x x x x x y y y 所以重心为G 的轨迹方程为3
2
32+=x y (II )2
2
21212222212221222221212
1))((21||||21y y y x y x x x y x y x OB OA S AOB +++=++==
∆ 由(I )得
1
22
12)1(221222122166
2616261=⨯=+-=+⋅≥++=
∆x x x x S AOB
当且仅当6
261x x =即121-=-=x x 时,等号成立。

所以△AOB 的面积存在最小值,存在时求最小值1;。

相关文档
最新文档