高一数学必修三第二章

合集下载

2022版优化方案高一数学人教版必修三学案 第二章 统计 章末演练轻松闯关

2022版优化方案高一数学人教版必修三学案 第二章 统计 章末演练轻松闯关

[A.基础达标]1.抽签法中确保样本代表性的关键是( ) A .制签 B .搅拌均匀 C .逐一抽取 D .抽取不放回解析:选B.只有搅拌均匀每个个体被抽取的可能性相等,这样抽取的样本才有代表性,故选B. 2.下列抽样方式是简洁随机抽样的是( )A .按居民身份证号码的后3位数字是632作为样本,来进行中心电视台春节联欢晚会的收视率的调查B .对不同地区,不同职业的人,按肯定比例抽取作为样本,来进行中心电视台春节联欢晚会的收视率的调查C .从产品生产流水线上随机抽取100个个体作为样本D .某公司从800袋牛奶中抽取60袋.利用随机数表法抽取样本,检验某项指标是否合格解析:选D.由于随机数表法是简洁随机抽样,故选D.3.某市政府在人大会上,要从农业、工业和训练系统的代表中抽查对政府工作报告的意见,为了更具有代表性, 抽样应实行( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样解析:选D.由于样原来自差异较大的三个部分:农业、工业、训练,故选D.4.某校为了了解高三同学的身体状况,抽取了100名女生的体重.将所得的数据整理后,画出了如图所示的频率分布直方图,则所抽取的女生中体重在40~45 kg 的人数是( )A .10B .2C .5D .15解析:选A.由图可知频率=频率组距×组距,故频率=0.02×5=0.1. ∴0.1×100=10人.5.有两位射击运动员在一次射击测试中各射靶10次,每次命中的环数如下:甲 7 , 8 , 7 , 9 , 5 , 4 , 9 , 10 , 7 , 4 乙 9 , 5 , 7 , 8 , 7 , 6 , 8 , 6 , 7 , 7那么,依据这次测试成果得出的结论是( ) A .甲与乙技术一样稳定 B .甲比乙技术稳定C .乙比甲技术稳定D .无法确定解析:选C.由于x -甲=x -乙=7,s 甲=2,s 乙≈1.1,故选C.6.如图是2005年至2022年某省城镇居民百户家庭人口数的茎叶图, 图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到2005年至2022年我省城镇居民百户家庭人口数的平均数为________.解析:这10年的家庭人口数为291,291,295,298,302,306, 310,312,314,317,再求这10个数的平均数为291+291+295+298+302+306+310+312+314+31710=303.6.答案:303.6 7.(2021·山东滨州质检))(单位:人)篮球组 书画组 乐器组 高一 45 30 a 高二151020学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参与这三个爱好小组的同学中抽取30人,结果篮球组被抽出12人,则a 的值为________.解析: 依据分层抽样各层抽样比是一样的,则有30120+a =1260,解得a =30.答案:308.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月月平均气温x (℃) 17 13 8 2 月销售量y (件)24334055由表中数据算出线性回归方程y ^=b ^x +a ^中的b ^≈-2.气象部门猜测下个月的平均气温约为6 ℃,据此估量,该商场下个月毛衣的销售量约为________件.解析:x -=17+13+8+24=10,y -=24+33+40+554=38,a ^=y --b ^x -=58,所以下个月的平均气温约为6 ℃,下个月的销售量估量值为y ^=b ^x +a ^=58-12=46.答案:469.从甲、乙两种棉花苗中各抽10株,测得它们的株高分别如下(单位:cm): 甲:25 41 40 37 22 14 19 39 21 42乙:27 16 44 27 44 16 40 40 16 40 估量两种棉花苗总体的长势: (1)哪种棉花的苗长得高一些? (2)哪种棉花的苗长得整齐一些?解:(1) x -甲=110(25+41+40+37+22+14+19+39+21+42)=30,x -乙=110(27+16+44+27+44+16+40+40+16+40)=31,从棉花株样本的平均数来看,乙苗长得高一些.(2)s 2甲=110[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=104.2;同样s 2乙=128.8,所以s 2甲<s 2乙.即s 甲<s 乙.因此,甲苗株高较平稳,即甲苗长得整齐一些.10.某车站在春运期间为了了解旅客购票状况,随机抽样调查了100名旅客从开头在售票窗口排队到购到车票所用的时间t (以下简称为购票用时,单位为min),下面是这次调查统计分析得到的频率分布表和频率分布直方图(如图所示).分组 频数 频率 一组 0≤t <5 0 0 二组 5≤t <10 10 0.10 三组 10≤t <15 10 ② 四组 15≤t <20 ① 0.50 五组 20≤t ≤25 30 0.30 合计1001.00解答下列问题:(1)这次抽样的样本容量是多少?(2)在表中填写出缺失的数据并补全频率分布直方图; (3)旅客购票用时的平均数可能落在哪一组? 解:(1)样本容量是100. (2)①50 ②0.10所补频率分布直方图如图中的阴影部分:(3)设旅客平均购票用时为t min ,则有 0×0+5×10+10×10+15×50+20×30100≤t <5×0+10×10+15×10+20×50+25×30100,即15≤t <20.所以旅客购票用时的平均数可能落在第四组.[B.力量提升]1.某校共有同学2 000名,各班级男、女生人数如下表,现用分层抽样的方法在全校抽取64名同学,则应在三班级抽取的同学人数为( )一班级 二班级 三班级 女生 373 380 y 男生377 370zA.24 B .18 C .16D .12解析:选C.一、二班级的人数为750+750=1 500,所以三班级人数为2 000-1 500=500, 又64∶2 000=4∶125,因此三班级应抽取人数为500×4125=16.2.总体容量为832, 若接受系统抽样, 当抽样间隔为多少时不需要剔除个体( ) A .12B .13C .14D .15解析:选B.由于分段间隔k =N n ,所以n =N k =83213=64.故选B.3.一个容量为100的样本,其数据的分组与各组的频数如下表组别 (0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70]频数1213241516137则样本数据落在(10,40]上的频率为________.解析:由题意可知频数在(10,40]的有13+24+15=52,由频率=频数÷总数可得,样本数据落在(10,40]上的频率为0.52.答案:0.524.(2021·寿光高一检测)从甲、乙两个品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271273280285285287292294295301303303307308310314319 323325325328331334337352乙品种:284292295304306307312313315315316318318320322322324 327329331333336337343356由以上数据设计的茎叶图如图所示:依据以上茎叶图,对甲、乙两个品种棉花的纤维长度作比较,写出两个统计结论:(1)________________________________________________________________________________________________________________________________________________;(2)________________________________________________________________________________________________________________________________________________.解析:由茎叶图可以看出甲品种棉花的纤维长度比较分散,乙品种棉花的纤维长度比较集中(大部分集中在312~337之间)等,通过分析可以得到答案.答案:(1)从茎叶图上看,甲品种棉花的纤维长度较分散,而乙品种棉花的纤维长度比较集中(2)甲品种棉花的纤维长度中位数是307,乙品种棉花的纤维长度中位数是318,并且它们的对称性较好,因此乙品种的平均长度大于甲品种的平均长度5.以下是在某地搜集到的不同楼盘新居屋的销售价格y(单位:万元)和房屋面积x(单位:m2)的数据:房屋面积x(m2)11511080135105销售价格y(万元)24.821.619.429.222(1)画出数据对应的散点图;(2)推断新居屋的销售价格和房屋面积之间是否具有相关关系?假如有相关关系,是正相关还是负相关?解:(1)数据对应的散点图如图所示:(2)通过以上数据对应的散点图可以推断,新居屋的销售价格和房屋的面积之间具有相关关系,且是正相关.6.(选做题)(2022·高考广东卷)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)19 128 329 330 531 432 3401合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.解:(1)这20名工人年龄的众数为:30;这20名工人年龄的极差为:40-19=21.(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图如下:(3)这20名工人年龄的平均数为:(19+28×3+29×3+30×5+31×4+32×3+40)÷20=30;所以这20名工人年龄的方差为:120(30-19)2+320(30-28)2+320(30-29)2+520(30-30)2+420(30-31)2+320(30-32)2+120(30-40)2=12.6.。

人教b版高一数学

人教b版高一数学

人教b版高一数学
人教B版高一数学必修一、必修二、必修三以及选择性必修一、二、三的目录如下:
1. 必修一:
第一章:集合与函数的概念
第二章:基本初等函数(Ⅰ)
第三章:函数的应用
2. 必修二:
第一章:空间几何体
第二章:点、直线、平面之间的位置关系
第三章:直线与方程
第四章:圆与方程
3. 必修三:
第一章:算法初步
第二章:统计
第三章:概率
4. 选择性必修一:
第一章:复数及其应用
第二章:数系的扩充与复数的引入
第三章:复数的四则运算
第四章:复数在坐标系中的表示及几何意义
第五章:复数的三角形式及运算
第六章:复数在椭圆、双曲线中的应用举例
第七章:复数在实际生活中的应用举例
5. 选择性必修二:
第一章:导数及其应用
第二章:定积分及其应用
第三章:微积分基本定理及导数在研究函数中的应用第四章:微积分在经济生活中的应用举例
第五章:生活中的优化问题举例
第六章:定积分的物理应用举例
第七章:定积分的几何应用举例
第八章:定积分的实际应用举例
6. 选择性必修三:
第一章:数学建模初步
第二章:概率论初步及应用统计初步
第三章:回归分析初步及应用统计初步第四章:独立性检验初步及应用统计初步。

人教版高一数学必修的目录完整版

人教版高一数学必修的目录完整版

人教版高一数学必修的目录HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】人教版高一数学必修1-5的目录必修1第一章集合与函数概念?1.1 集合?1.2 函数及其表示?1.3 函数的基本性质?实习作业?小结?复习参考题第二章基本初等函数(Ⅰ)?2.1 指数函数?2.2 对数函数?2.3 幂函数?小结?复习参考题第三章函数的应用?3.1 函数与方程?3.2 函数模型及其应用?实习作业?小结?复习参考题必修2第一章空间几何体?1.1 空间几何体的结构?1.2 空间几何体的三视图和直观图?1.3 空间几何体的表面积与体积?实习作业?小结?复习参考题第二章点、直线、平面之间的位置关系? 2.1 空间点、直线、平面之间的位置关系? 2.2 直线、平面平行的判定及其性质?2.3 直线、平面垂直的判定及其性质?小结?复习参考题第三章直线与方程?3.1 直线的倾斜角与斜率?3.2 直线的方程?3.3 直线的交点坐标与距离公式?小结?复习参考题必修3第一章算法初步?1.1 算法与程序框图?1.2 基本算法语句?1.3 算法案例?阅读与思考割圆术?小结?复习参考题第二章统计?2.1 随机抽样?阅读与思考一个着名的案例?阅读与思考广告中数据的可靠性?阅读与思考如何得到敏感性问题的诚实反应? 2.2 用样本估计总体?阅读与思考生产过程中的质量控制图?2.3 变量间的相关关系?阅读与思考相关关系的强与弱?实习作业?小结?复习参考题第三章概率?3.1 随机事件的概率?阅读与思考天气变化的认识过程? 3.2 古典概型?3.3 几何概型?阅读与思考概率与密码?小结?复习参考题必修4第一章三角函数?1.1 任意角和弧度制?1.2 任意角的三角函数?1.3 三角函数的诱导公式?1.4 三角函数的图象与性质?1.5 函数y=Asin(ωx+ψ)?1.6 三角函数模型的简单应用?小结?复习参考题第二章平面向量?2.1 平面向量的实际背景及基本概念? 2.2 平面向量的线性运算?2.3 平面向量的基本定理及坐标表示? 2.4 平面向量的数量积?2.5 平面向量应用举例?小结?复习参考题第三章三角恒等变换?3.1 两角和与差的正弦、余弦和正切公式? 3.2 简单的三角恒等变换?小结?复习参考题后记必修5第一章解三角形正弦定理和余弦定理应用举例实习作业第二章数列数列的概念与简单表示法等差数列等差数列的前n项和等比数列等比数列的前n项和第三章不等式不等关系与不等式一元二次不等式及其解法二元一次不等式(组)与简单的线性规划基本不等式:根下ab<=(a+b)/2。

人教社B版高一数学必修三第一章、第二章复习总结

人教社B版高一数学必修三第一章、第二章复习总结



的值;程序框图
重点知识
抽样方法:简单随机抽样、系统
抽样、分层抽样 特征表示的图表:频率分布表、 频率分布条形图、频率分布直方 图、频率分布折线图、茎叶图 数字特征:平均数、方差、众数、 中位数
重点知识
算法特征:有限、确切、通用、
不唯一、顺序 程序框图三种结构:顺序结构、 条件分支、循环结构 算法语句:输入、输出语句、赋 值语句、条件语句、循环语句
y 当x=10时, =0.4+0.25×10=2.9(万元).
求回归直线方程的步骤
第一步:做出散点图,判断是否线性相关; 第二步:列表 xi , y i , xi
n 2
2 , x yi ;
第三步:计算 x, y, xi , xi yi ;
i 1 i 1
n
第四步:代入公式计算 b , a 第五步:写出回归直线方程。
练习
关于某设备的使用年限(单位:年)和所支出的维修 费用(单位:万元)有如下的统计资料: 使用年限x(年) 维修费用y(万元) 2 1 4 1.2 6 2
1.维修费用对使用年限间的回归直线方程; 2.使用年限为十年时,试估计维修费用大约是多少?
解:
序号
1
x
2
y
1
x2
4
xy
2
2
3 Σ
Ù
4
6 12
1.2
2 4.2
16
36 56
4.8
12 18.8
12 4.2 y = 18.8 3 0.25 x + 0.44.2 12 回归系数 b=0.25的意义是: 3 3 0.25 0.4 b 0.25 a 2 设备使用时间x每增加一年,维 3 3 12 修费用 56 3 y平均增加0.25万元。 3 Ù

人教版高一数学必修一至必修五教材目录

人教版高一数学必修一至必修五教材目录

必修一、二、三、四、五章节内容必修一必修四第一章集合与函数的概念第一章三角函数1.1 集合 1.1任意角和弧度制1.2 函数及其表示 1.2任意角的三角函数1.3 函数的基本性质 1.3三角函数的诱导公式第二章基本初等函数 1.4三角函数的图像与性质2.1 指数函数 1.5函数y=Asin(?x+?)2.2对数函数 1.6 三角函数模型的简单应用2.3 幂函数第二章平面向量第三章函数的应用 2.1平面向量的实际背景及基本概念3.1函数与方程 2.2平面向量的线性运算3.2 函数模型及其应用 2.3平面向量的基本定理及坐标表必修五 2.4 平面向量的数量积第一章解三角形 2.5 平面向量应用举例1.1 正弦定理和余弦定理第三章三角恒等变换1.2 应用举例 3.1 两角和与差的正弦、余弦第二章数列 3.2 简单的三角恒等变换2.1 数列的概念与简单表示方法必修二2.2 等差数列第一章空间几何体2.3等差数列的前n项和 1.1 空间几何体的结构2.4 等比数列 1.2 空间几何体的三视图和直观图2.5 等比数列前n项和 1.3 空间体的表面积与体积第三章不等式第二章点、直线、平面间的关系3.1 不等关系与不等式 2.1空间点、直线、平面之间的位3.2一元一次不等式及其解法 2.2 直线、平面平行的判定及其性质3.3 二元一次不等式(组)及其解法 2.3 直线、平面垂直的判定及其性质3.4基本不等式第三章直线与方程3.1直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用。

【精编】人教A版高中数学必修三课件第1部分第二章2.22.2.2用样本的数字特征估计总体的数字特征课件-精心整

【精编】人教A版高中数学必修三课件第1部分第二章2.22.2.2用样本的数字特征估计总体的数字特征课件-精心整
答案:B
6.从高三抽出50名学生参加数学竞赛,由成绩得到如 下的频率分布直方图.
由于一些数据丢失,试利用频率分布直方图求: (1)这50名学生成绩的众数与中位数. (2)这50名学生的平均成绩.
解:(1)由众数的概念可知,众数是出现次数最多的 数.在直方图中最高的矩形底边中点的横坐标即为所求, 所以众数应为75. 将频率分布直方图中所有小矩形的面积一分为二的直线 所对应的成绩即为所求. ∵0.004×10+0.006×10+0.02×10 =0.04+0.06+0.2=0.3, ∴前三个小矩形面积的和为0.3.
(2)中位数: 把一组数据按从小到大的顺序排列,把处于最位中置间的 那个数称为这组数据的中位数.在频率分布直方图中,中 位数左边和右边的直方图的面积. 相等 ①当数据个数为奇数时,中位数是按从小到大顺序排 列的那中个间数. ②当数据个数为偶数时,中位数为排列的最中间的两 个数的.平均数
(3)平均数:
管理 高级
人员 经理
工人 学徒 合计
人员 技工
周工资 2 200 250 220 200 100 2 970
(元)
人数 1
6 5 10 1 23
合计 2 200 1 500 1 100 2 000 100 6 900
(1)指出这个问题中的众数、中位数、平均数. (2)这个问题中,平均数能客观地反映该公司的工资水平 吗?为什么? [思路点拨] 由平均数的定义 → 计算平均数 → 已知数据从小到大排列 → 得中位数、平均数 → 结论
如果有 n 个数 x1、x2、…、xn,
那么 x =
1 n
(x1+x2+…+xn) ,叫做这
n
个数的平均
数.平均数的估计值等于频率分布直方图中每个小矩形的 面积 乘以小矩形底边中点横坐标之和.

2022版优化方案高一数学人教版必修三习题 第二章 统计 2.1.1训练案

[A.基础达标]1.用随机数表法从100名同学(男生25人)中抽选20人进行评教,某男同学被抽到的机率是( ) A.1100 B.125 C.15D.14解析:选C.简洁随机抽样是等可能性抽样,每个个体被抽到的机率都是20100=15.故选C.2.(2021·昌乐二中检测)用随机数法进行抽样有以下几个步骤:①将总体中的个体编号;②猎取样本号码;③选定开头的数字;④选定读数的方向. 这些步骤的先后挨次应为( ) A .①②③④ B .①③④② C .③②①④ D .④③①② 解析:选B.先编号,再选数.3.下列抽样试验中,适合用抽签法的是( )A .从某厂生产的3 000件产品中抽取600件进行质量检验B .从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C .从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D .从某厂生产的3 000件产品中抽取10件进行质量检验解析:选B.A 、D 中个体总数较大,不适合用抽签法;C 中甲、乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B 中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看成是搅拌均匀了.4.某工厂的质检人员对生产的100件产品接受随机数表法抽取10件检查,对100件产品接受下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是 ( ) A .①② B .①③ C .②③ D .③解析:选C.依据随机数表法的要求,只有编号数字位数相同,才能达到随机等可能抽样. 5.(2021·青岛检测)对于简洁随机抽样,下列说法中正确的为( )①它要求总体的个数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种抽样方法的公正性.A .①②③B .①②④C .①③④D .①②③④解析:选D.这四点全是简洁随机抽样的特点. 6.下列调查的样本合理的是________.①在校内发出一千张印有全校各班级的选票,要求被调查同学在其中一个班级旁画“√”,以了解最受欢迎的老师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任状况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各选取3名同学进行调查.解析:①中样本不具有代表性、有效性,在班级前画“√”与了解最受欢迎的老师没有关系;③中样本缺乏代表性;而②④是合理的样本.答案:②④7.某中学高一班级有400人,高二班级有320人,高三班级有280人,以每人被抽取的可能性均为0.2,从该中学抽取一个容量为n 的样本,则n =________.解析:∵n400+320+280=0.2,∴n =200.答案:2008.一个总体数为60的个体编号为00,01,02,…,59,现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最终5行)第11~12列的18开头,依次向下,到最终一行后向右,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95 38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80 82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50 24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49 96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60解析:先选取18,向下81、90、82不符合要求,下面选取05,向右读数,07、35、59、26、39,因此抽取的样本的号码为:18、05、07、35、59、26、39.答案:18、05、07、35、59、26、399.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何接受简洁随机抽样的方法抽取样本?解:法一:(抽签法)将100件轴编号为1,2,…,100,并做好大小、外形相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着逐个不放回地抽取10个号签,然后测量这10个号签对应的轴的直径.法二:(随机数表法)将100件轴编号为00,01,…,99,在随机数表中选定一个起始位置,如取第21行第1个数开头(见教材P 103附表),向右选取10个为68,34,30,13,70,55,74,77,40,44,这10个号码对应的轴即为所要抽取的对象.10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,并写出抽样过程.解:应使用抽签法,步骤如下:①将30辆汽车进行编号,号码是1,2,3,…,30; ②将1~30这30个编号写到大小、外形都相同的号签上; ③将写好的号签放入一个不透亮 的容器中,并搅拌均匀;④从容器中每次抽取一个号签,连续抽取3次,并记录下上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.[B.力量提升]1.接受简洁随机抽样从含有6个个体的总体中抽取一个容量为3的样本,某个个体前两次未被抽到,则第三次被抽到的机会是( )A.12B.13C.16D.15解析:选A.从含有6个个体的总体中,抽取容量为3的样本,则每个个体在每次被抽到的机会都是12,这与第几次抽取无关.2.为了了解全校240名高一同学的体重状况,从中抽取40名同学进行测量.下列说法正确的是( ) A .总体是240 B .个体是每一名同学 C .样本是40名同学D .样本容量是40解析:选D.本题中的争辩对象是同学的体重,而不是同学自身.总体是240名同学的体重,个体是每一名同学的体重,样本是抽取的40名同学的体重,总体容量是240,样本容量是40.3.齐鲁风彩“七乐彩”的中奖号码是从1~30个号码中选出7个号码来按规章确定中奖状况,这种从30个号码中选7个号码的抽样方法是________.解析:当总体的个数不多时,宜接受抽签法.由于它简便易行,可用不同的方式制签,抽签也便利. 答案:抽签法4.2022年10月10日,袁隆平“超级稻”亩产创1 026.7公斤新纪录.要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行试验,利用随机数表法抽取种子,先将850颗种子按001,002, (850)行编号,假如从随机数表第3行第6列的数开头向右读,请依次写出最先检验的4颗种子的编号:________.(随机数表见教材P 103附表)解析:从随机数表第3行第6列的数2开头向右读第一个小于850的数字是227,其次个数字是665,第三个数字是650,第四个数字是267,符合题意.答案:227,665,650,2675.某电视台进行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选择10人,从18名香港艺人中随机选择6人,从10名台湾艺人中随机选择4人.试用抽签法确定选中的艺人,并确定他们的表演挨次.解:第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透亮 小筒中摇匀,从中抽出10个号签,则相应编号的艺人参与演出;(2)运用相同的方法分别从18名香港艺人中抽取6人,从10名台湾艺人中抽取4人.其次步:确定演出挨次:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的挨次,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出挨次,再汇总即可.6.(选做题)(2021·洛阳高一检测)现在有一种够级玩耍,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人,并围成一圈.够级开头时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,依据这张牌上的数字来确定抓牌的先后,这6人依次从216张牌中抓取36张牌,问这种抓牌的方法是否是简洁随机抽样?解:简洁随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始的牌,其他各张牌虽然是逐张抓牌,但是各张在谁手里已被确定,只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌被抽取的可能性不相同,所以不是简洁随机抽样.。

人教版高中数学必修3第二章统计-《2.1.3分层抽样》教案(10)

2.1.3分层抽样学习目标:1、知识与技能:(1)正确理解分层抽样的概念;(2)掌握分层抽样的一般步骤;(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。

2、过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。

3、情感态度与价值观:通过对统计学知识的研究,感知数学知识中“估计与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。

4、重点与难点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。

【探究新知】一、分层抽样的定义。

一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。

【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。

(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等。

二、分层抽样的步骤:(1)分层:按某种特征将总体分成若干部分。

(2)按比例确定每层抽取个体的个数。

(3)各层分别按简单随机抽样的方法抽取。

(4)综合每层抽样,组成样本。

【说明】(1)分层需遵循不重复、不遗漏的原则。

(2)抽取比例由每层个体占总体的比例确定。

(3)各层抽样按简单随机抽样进行。

探究交流(1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行 ( )A 、每层等可能抽样B 、每层不等可能抽样C 、所有层按同一抽样比等可能抽样(2)如果采用分层抽样,从个体数为N 的总体中抽取一个容量为n样本,那么每个个体被抽到的可能性为 ( )A .N 1B.n 1C.N nD.N n 点拨:(1)保证每个个体等可能入样是简单随机抽样、系统抽样、分层抽共同的特征,为了保证这一点,分层时用同一抽样比是必不可少的,故此选C 。

高中数学 第二章 统计模块复习课检测 新人教B版必修3-新人教B版高一必修3数学试题

第2课时统计课后篇巩固探究A组1.下列不具有相关关系的是()A.单产不为常数时,土地面积和总产量B.人的身高与体重C.季节与学生的学习成绩D.学生的学习态度与学习成绩.2.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是()A.5B.7C.11D.13k==16,即每16人抽取一个人.因为39=2×16+7,所以第1小组中抽取的数为7.3.在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.48.49.49.99.69.49.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016=9.5.方差s2=[(9.4-9.5)2+(9.4-9.5)2+(9.6-9.5)2+(9.4-9.5)2+(9.7-9.5)2]=0.016.4.某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家,为了掌握各商店的营业情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的中型商店为() A.2家B.3家C.5家D.13家1:在整个抽样过程中,每个个体被抽到的可能性为,则抽取的中型商店为75×=5(家).方法2:因为大、中、小型商店数的比为30∶75∶195=2∶5∶13,所以抽取的中型商店为20×=5(家).答案:C5.某商场在五一促销活动中,对5月1日9时至14时的销售额进行统计,其频率分布直方图如图,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为()A.6万元B.8万元C.10万元D.12万元解析:由频率分布直方图可知,11时至12时的销售额占全部销售额的,即销售额为25×=10(万元).答案:C6.从一堆苹果中任取了20个,并得到它们的质量(单位:g)数据分布表如下:分组[90,100) [100,110) [110,120) [120,130) [130,140) [140,150)频数 1 2 3 10 1则这堆苹果中,质量不小于120 g的苹果数约占苹果总数的.解析:由表中可知这堆苹果中,质量不小于120 g的苹果数为20-1-2-3=14.故约占苹果总数的=0.70=70%.答案:70%7.某产品的广告费用x与销售额y的统计数据如下表:广告费用x/万元 4 2 3 5销售额y/万元49 26 39 54根据上表可得回归方程x+中的为9.4,据此模型预报广告费用为6万元时销售额约为元.解析:=3.5,=42,∴=42-9.4×3.5=9.1,∴回归方程为=9.4x+9.1,∴当x=6时,=9.4×6+9.1=65.5..58.现有同一型号的电脑96台,为了了解这种电脑每开机一次所产生的辐射情况,从中抽取10台在同一条件下做开机实验,测量开机一次所产生的辐射,得到如下数据:13.712.914.413.813.312.713.513.613.113.4(1)写出采用简单随机抽样抽取上述样本的过程;(2)根据样本,请估计总体平均数与总体标准差的情况.解:(1)利用随机数表法或抽签法.具体过程如下:方法一(抽签法):①将96台电脑随机编号为1~96;②将以上96个分别写在96X相同的小纸条上,揉成小球,制成号签;③把号签放入一个不透明的容器中,充分搅拌均匀;④从容器中逐个抽取10个号签,每次取完后再次搅拌均匀,并记录上面的;⑤找出和所得对应的10台电脑,组成样本.方法二(随机数表法):①将96台电脑随机编号,编号为00,01,02, (95)②在随机数表中任选一数作为开始,然后依次向右读,每次读两位,凡不在00~95中的数和前面已读过的数跳过不读,直到读出10个符合条件的数;③这10个数所对应的10台电脑即是我们所要抽取的样本.(2)=13.44;s2=≈0.461.故总体平均数为13.44,总体标准差约为0.461.9.对某班50人进行智力测验,其得分如下:48,64,52,86,71,48,64,41,86,79,71,68,82,84,68,64,62,68,81,57,90,52,74,73,56,78,47,66,5 5,64,56,88,69,40,73,97,68,56,67,59,70,52,79,44,55,69,62,58,32,58.(1)这次测试成绩的最大值和最小值各是多少?(2)将[30,100)平分成7个小区间,试画出该班学生智力测验成绩的频数分布图.(3)分析这个频数分布图,你能得出什么结论?解:(1)最小值是32,最大值是97.(2)7个区间分别是[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),每个小区间的长度是10,统计出各小区间内的数据频数,列表如下:区间[30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100)频数 1 6 12 14 9 6 2频数分布图如下图所示.(3)可以看出,该班智力测验成绩大体上呈两头小、中间大、左右对称的钟形状态,说明该班学生智力特别好或特别差的是极少数,而智力一般的是多数,这是一种最常见的分布.10.导学号17504078已知学生的总成绩与数学成绩之间有线性相关关系,下表给出了5名同学在一次考试中的总成绩和数学成绩(单位:分).学生编号1 2 3 4 5成绩总成绩/x482 383 421 364 362数学成绩/y78 65 71 64 61(1)求数学成绩与总成绩的回归直线方程.(2)根据以上信息,如果一个学生的总成绩为450分,试估计这个学生的数学成绩;(3)如果另一位学生的数学成绩为92分,试估计其总成绩是多少?解:(1)列出下表,并进行有关计算.编号x y x2xy1 482 78 232 324 37 5962 383 65 146 689 24 8953 421 71 177 241 29 8914 364 64 132 496 23 2965 362 61 131 044 22 082合计 2 012 339 819 794 137 760由上表可得,可得≈0.132,-0.132×≈14.683.故数学成绩y对总成绩x的回归直线方程为=14.683+0.132x.(2)由(1)得当总成绩x为450分时,=14.683+0.132×450≈74(分),即数学成绩大约为74分.(3)若数学成绩为92分,将=92代入回归直线方程=14.683+0.132x中,得x≈586(分).故估计该生的总成绩在586分左右.B组1.设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a解析:=+a=1+a.s2===4.答案:A2.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m o,平均值为,则()A.m e=m o=B.m e=m o<C.m e<m o<D.m o<m e<解析:由题目所给的统计图示可知,30个得分中,按大小顺序排好后,中间的两个得分为5,6,故中位数m e==5.5,又众数m o=5,平均值(3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×2)=,故m o<m e<.答案:D3.某市为加强教师基础素质建设,开展了“每月多读一本书,提高自身修养”的读书活动.设该市参加读书活动的教师平均每人每年读书的本数为x(单位:本),按读书本数分下列四种情况统计:①0~10本;②11~20本;③21~30本;④30本以上.现有10 000名教师参加了此项活动,如图是此次调查中某一项的程序框图,其输出的结果为6 200,则该市参加活动的教师中平均每年读书本数在0~20之间的频率是()A.3 800B.6 200C.0.38D.0.62解析:由程序框图知,当x>20时,S=S+1,故输出的S值应是10 000名教师中读书本数大于20的人数,故S=6 200,∴在0~20之间的频率为=0.38.答案:C4.(2017某某某某二中高三一模)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得为12的学生,则在第八组中抽得为的学生.解析:由题意得,在第八组中抽得为12+(8-3)×5=37.答案:375.某公司为改善职工的出行条件,随机抽取50名职工,调查他们的居住地与公司的距离d(单位:千米).若样本数据分组为[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],由数据绘制的频率分布直方图如图所示,则样本中职工居住地与公司的距离不超过4千米的人数为.解析:样本中职工居住地与公司的距离不超过4千米的频率为(0.1+0.14)×2=0.48,所以样本中职工居住地与公司的距离不超过4千米的人数为50×0.48=24.答案:246.导学号17504079从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125)频数 6 26 38 22 8(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解:(1)(2)质量指标值的样本平均数为=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.7.导学号17504080某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x/元8 8.2 8.4 8.6 8.8 9销量y/件90 84 83 80 75 68(1)求回归直线方程x+,其中=-20,;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解:(1)=8.5,=80.∵=-20,,∴=80+20×8.5=250.∴回归直线方程为=-20x+250.(2)设工厂获得的利润为L元,则L=x(-20x+250)-4(-20x+250)=-20(x-8.25)2+361.25,∴该产品的单价定为8.25元时,工厂获得的利润最大.。

高一数学必修课本目录

【高中数学课本】高中数学必修1~5目录高中数学必修一:第一章. 集合与函数概念1.1. 集合1.2. 函数及其表示1.3. 函数的基本性质第二章. 基本初等函数(I)2.1. 指数函数2.2. 对数函数2.3. 幂函数第三章. 函数的应用3.1. 函数与方程3.2. 函数模型及其应用高中数学必修二:第一章. 空间几何体1.1. 空间几何体的结构1.2. 空间几何体的三视图和直观图1.3. 空间几何体的表面积与体积第二章. 点、直线、平面之间的位置关系2.1. 空间点、直线、平面之间的位置关系2.2. 直线、平面平行的判定及其性质2.3. 直线、平面垂直的判定及其性质第三章. 直线与方程3.1. 直线的倾斜角与斜率3.2. 直线的方程3.3. 直线的交点坐标与距离公式第四章. 圆与方程4.1. 圆的方程4.2. 直线、圆的位置关系4.3. 空间直角坐标系高中数学必修三:第一章. 算法初步1.1. 算法与程序框图1.2. 基本算法语句1.3. 算法案例第二章. 统计2.1. 随机抽样2.2. 用样本估计总体2.3. 变量间的相关关系第三章. 概率3.1. 随机事件的概率3.2. 古典概型3.3. 几何概型高中数学必修四:第一章. 三角函数1.1. 任意角和弧度制1.2. 任意角的三角函数1.3. 三角函数的诱导公式1.4. 三角函数的图像与性质1.5. 函数y=Asin(ωx+φ)的图像1.6. 三角函数模型的简单应用第二章. 平面向量2.1. 平面向量的实际背景及基本概念2.2. 平面向量的线性运算2.3. 平面向量的基本定理及坐标表示2.4. 平面向量的数量级2.5. 平面向量应用举例第三章. 三角恒等变换3.1. 两角和与差的正弦、余弦和正切公式3.2. 简单的三角恒等变换高中数学必修五:第一章. 解三角形1.1. 正弦定理和余弦定理1.2. 应用举例1.3. 实习作业第二章. 数列2.1. 数列的概念与简单表示法2.2. 等差数列2.3. 等差数列的前n项和2.4. 等比数列2.5. 等比数列的前n项和第三章. 不等式3.1. 不等关系与不等式3.2. 一元二次不等式及其解法3.3. 二元一次不等式(组)与简单的线性规划问题3.4. 基本不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章统计一、选择题.1.对于简单随机抽样,有下列说法:①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取,以便在抽取中进行操作;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等.而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性.其中正确的是().A.①②③B.①②④C.①③④D.①②③④2.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2).由上述信息,可知完成(1)、(2)这两项调查宜采用的抽样方法分别是().A.分层抽样法、系统抽样法B.分层抽样法、简单随机抽样法C.系统抽样法、分层抽样法D.简单随机抽样法、分层抽样法3.某校高中生共有2 700人,其中高一年级900人、高二年级1 200人、高三年级600人.现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为().A.45,75,15 B.45,45,45 C.30,90,15 D.45,60,304.下列说法中,正确的是().A.数据5,4,4,3,5,2 的众数是4B.一组数据的标准差是这组数据的方差的平方C.数据2,3,4,5 的标准差是数据4,6,8,10 的标准差的一半D.频率分布直方图中各小长方形的面积等于相应各组的频数5.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在2 700~3 000 的频率为( ).A .0. 001B .0. 1C .0. 2D .0. 36.从甲、乙两班分别任意抽出 10 名学生进行英语口语测验,其测验成绩的方差分别为 s 21=13.2,s 22=26.26,则( ).A .甲班 10 名学生的成绩比乙班 10 名学生的成绩整齐B .乙班 10 名学生的成绩比甲班 10 名学生的成绩整齐C .甲、乙两班 10 名学生的成绩一样整齐D .不能比较甲、乙两班 10 名学生成绩的整齐程度7.在抽查产品尺寸的过程中,按其尺寸分成若干组,[a ,b ]是其中的一组.抽查出的个体在该组的频率为 m ,该组的直方图的高为 h ,则 |a -b | 等于( ).A .hmB .hmC .mh D .h +m8.若工人月工资yˆ(元)依劳动生产率 x (千元)变化的回归方程为y ˆ=50+80x ,则 下列判断中,不正确的是( ).A .劳动生产率为 1 000 元时,工资为 130 元B .劳动生产率提高 1 000 元,则工资提高 80 元C .劳动生产率提高 1 000 元,则工资提高 130 元D .当月工资为 210 元时,劳动生产率为 2 000 元频率 组距9.有下列叙述:①回归函数即用函数关系近似地描述相关关系; ②∑=ni i x 1=x 1+x 2+…+x n ;③线性回归方程 yˆ=bx +a ,其中 b =∑∑nni ii iix x y y x x 1=21=)-()-)(-(,a =y -b x ;④线性回归方程一定可以近似地表示所有相关关系. 其中正确的有( ). A .①②③ B .①②④ C .②③④D .③④10.2003 年春季,我国部分地区 SARS 流行.国家卫生部门采取果断措施,防治结合,很快使疫情得到控制.下表是某同学记载的 5 月 1 日至 5 月 12 日北京市 SARS 治愈者数据,他根据这些数据绘制出了散点图(如图).日期 5.1 5.2 5.3 5.4 5.5 5.6 人数100109115118121134日期 5.7 5.8 5.9 5.10 5.11 5.12 人数141152168175186203有下列说法:①根据此散点图,可以判断日期与人数具有线性相关关系; ②根据此散点图,可以判断日期与人数具有一次函数关系. 其中正确的说法为( ). A .①②B .①C.②D.①②都不对二、填空题.1.某工厂生产A,B,C 三种不同型号的产品,产品数量之比依次为2∶3∶5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号的产品有16 件,那么此样本的容量n=___________.2.若总体中含有1 650 个个体,现在要采用系统抽样,从中抽取一个容量为35 的样本.分段时应从总体中随机剔除________个个体,编号后应均分为____________段,每段有______个个体.3.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10 天后,又从池塘内捞出50条鱼,其中有标记的有2条.根据以上数据,可以估计这个池塘内共有_______条鱼.4.某班主任为了了解学生自修时间,对本班(用抽签法抽取)40名学生某天自修时间进行了调查.将数据(取整数)整理后,绘制出如图所示的频率分布直方图.根据直方图所提供的信息,这一天自修时间在100~119 分钟之间的学生有___________人.5.已知x,y 之间的一组数据:x 1.08 1.12 1.19 1.28y 2.25 2.37 2.40 2.55 则y 与x 之间的线性回归方程yˆ=bx+a对应的直线必过定点_________.6.假设学生在初一和初二数学成绩是线性相关的.若10 个学生初一(x)和初二(y)的数学分数如下:x 74 71 72 68 76 73 67 70 65 74y 76 75 71 70 76 79 65 77 62 72那么初一和初二数学分数间的回归方程为__________________________.三、解答题.1.一个地区共有5 个乡镇,人口3 万人,其中人口比例为3∶2∶5∶2∶3.从3 万人中抽取一个300 人的样本,分析某种疾病的发病率.已知这种疾病与不同的地理位置及水土有关,应采取什么样的方法?并写出具体过程.2.某展览馆22 天中每天进馆参观的人数如下:180 158 170 185 189 180 184 185 140 179 192 185 190 165 182 170 190 183 175 180 185 148 计算参观人数的中位数、众数、平均数、标准差.3.为了检测某种产品的质量,抽取了一个容量为100的样本.数据的分组数如下:[10.75,10.85) 3;[10.85,10.95) 9;[10.95,11.05) 13;[11.05,11.15) 16;[11.15,11.25) 26;[11.25,11.35) 20;[11.35,11.45) 7;[11.45,11.55) 4;[11.55,11.65) 2.(1)列出频率分布表(含累积频率);(2)根据上述表格,估计数据落在[10.95,11.35)范围内的可能性是百分之几?(3)数据小于11.20 的可能性是百分之几?4.一个车间为了规定工时定额,需要确定加工零件所花费的时间.为此进行了10次试验,测得数据如下:请判断y与x是否具有线性相关关系?如果y与x具有线性相关关系,求线性回归方程.参考答案一、选择题.1.C 【解析】②错,若逐个抽取,则非随机抽取,导致抽取可能性不相等. 2.B3.D 【解析】高一 135×700 2900=45;高二 135×700 2200 1=60;高三 135×7002600=30. 4.C 5.D 6.A 7.B8.C 【解析】显然 B ,C 两项相互矛盾,由yˆ=50+80x ,x 增加 1 千元时,y 增加 80元. 9.A 【解析】④错,线性回归方程只能近似地表示一些线性相关关系.10.B 【解析】依照散点图,点列近似地可以用一条直线来拟合.因此,可以判断日期与人数具有线性相关关系,但不一定是一次函数关系.二、填空题. 1.80.【解析】∵5322++n=16,∴ n =80.2.5;35;47.【解析】1 650=35×47+5, ∴ 剔除 5 个个体,分为 35 段,每段 47 个个体. 3.750.【解析】502=n 30,n =750(条). 4.14.【解析】0.017 5×20×40=14(人).5.(1.167 5,2.392 5).【解析】必过四组数据的平均数,即(1.167 5,2.392 5). 6.yˆ=1.218x -14.191. 三、解答题.1.【解】因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.具体过程如下:(1)将 3 万人分为 5 层,其中一个乡镇为一层. (2)按照样本容量的比例随机抽取各乡镇应抽取的样本. 300×153=60(人),300×152=40(人),300×155=100(人),300×152=40(人),300×153=60(人),因此各乡镇抽取人数分别为 60 人、40 人、100 人、40 人、60 人.(3)将 300 人合到一起,即得到一个样本. 2.181,185,177,13.35. 3.【解】(1)画出频率分布表.(2)由上述表格可知,数据落在 [10.95,11.35) 范围内的频率为:0.87-0.12=0.75 =75%,即数据落在 [10.95,11.35) 范围内的可能性是 75%.(3)数据小于 11.20 的可能性即数据小于 11.20 的频率,也就是数据在 11.20 处的累积频率.设为x ,则(x -0. 41)÷(11.20-11.15)=(0. 67-0.41)÷(11.25-11.15),所以 x -0. 41=0.13,故 x =0.54,从而估计数据小于 11.20 的可能性是 54%.4.【解】在直角坐标系中画出数据的散点图,直观判断散点在一条直线附近,故具有线性相关关系.由测得的数据表可知:x =55,y =91.7,∑101=2i ix=38 500,∑101=2i iy=87 777,∑101=i ii yx =55 950.∴ b =∑∑101=22101=10-10-i i i ii xx yx y x =25510-500387.915510-95055⨯⨯⨯≈0.668.A =y -b x =91.7-0.668×55≈54.96.因此,所求线性回归方程为yˆ=bx +a =0.668x +54.96.。

相关文档
最新文档