双曲线的性质PPT优秀课件

合集下载

双曲线-完整版PPT课件可编辑全文

双曲线-完整版PPT课件可编辑全文

∴x-32a2+y2=a22.

又 P 点在双曲线上,得ax22-by22=1.

由①,②消去 y,得
(a2+b2)x2-3a3x+2a4-a2b2=0,
即[(a2+b2)x-(2a3-ab2)](x-a)=0.
当 x=a 时,P 与 A 重合,不符合题意,舍去.
当 x=2aa32-+abb2 2时,满足题意的 P 点存在, 需 x=2aa32-+abb2 2>a, 化简得 a2>2b2, 即 3a2>2c2,ac< 26. 又 e>1,∴离心率 e=ac∈1, 26.
考向三 [149] 双曲线的几何性质
(1)(2014·天津高考)已知双曲线ax22-by22=1(a>0,
b>0)的一条渐近线平行于直线 l:y=2x+10,双曲线的一个
焦点在直线 l 上,则双曲线的方程为( )
A.x52-2y02 =1
B.2x02 -y52=1
C.32x52-130y02 =1
二、双曲线的标准方程和几何性质
标准方程 ax22-by22=1(a>0,b>0)
ay22-bx22=1(a>0, b>0)
图形
范围
x≥a或x≤-a
对称轴: 坐标轴
对称性
对称中心: 原点
y≤-a或y≥a 对称轴: 坐标轴 对称中心: 原点
性 顶点 顶点坐标:
顶点坐标:

A1 (-a,0),A2 (a,0) A1 (0,-a,) A2 (0,a)
————————— [1 个对点练] ——————— 过点2,12能作几条与双曲线x42-y2=1 有一个公共点的 直线.
【解】 (1)当斜率不存在时,直线方程为 x=2,显然符 合题意.

3.2.2双曲线的简单几何性质 课件(共24张PPT)

3.2.2双曲线的简单几何性质 课件(共24张PPT)
2
2
=λ(λ≠0).
(5)渐近线为y=±kx的双曲线方程可设为k2x2-y2=λ(λ≠0).
(6)渐近线为ax±by=0的双曲线方程可设为a2x2-b2y2=λ(λ≠0).
跟踪训练 求适合下列条件的双曲线的标准方程:
5
(1)焦点在x轴上,虚轴长为8,离心率为3 ;ห้องสมุดไป่ตู้
跟踪训练
A.
1
4
双曲线x2-my2=1的实轴长是虚轴长的2倍,则m等于
B.
1
2
C.2
D.4
(D)
二、求双曲线方程
例2
根据下列条件,求双曲线方程:
(1)双曲线 x
2
9

y2
1 有共同渐近线,且过点 ( 3, 2 3) ;
16
(2)与双曲线 x
2
16

y2
1 有公共焦点,且过点 (3 2 , 2) .
第三章
3.2
双曲线
3.2.2 双曲线的简单几何性质
学习目标
1.理解双曲线的简单几何性质(范围、对称性、顶点、渐近线、离心率).
2.能用双曲线的简单性质解决一些简单的问题
核心素养:数学运算、数学建模
新知学习
复习引入
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
y
M
M
F2
(2)焦点在 y 轴上的双曲线的标准方程可设为
2
(3)与双曲线
2
2 +
2

2
2
2

=1(a>0,b>0).
2
2
=1 共焦点的双曲线方程可设为

双曲线的简单性质课件ppt课件

双曲线的简单性质课件ppt课件

04 双曲线的标准方程的推导
推导过程
设双曲线上任意一点为$P(x,y)$, 根据双曲线的定义,点$P$到两 个焦点的距离之差为常数,即 $2a$。
利用距离公式和双曲线的定义, 可以得到点$P$到两个焦点的距 离分别为$sqrt{(x+a)^2+y^2}$ 和$sqrt{(x-a)^2+y^2}$。
对称性
01
02
03
对称性
双曲线关于其对称轴对称, 即关于x轴和y轴都对称。
总结词
双曲线关于其对称轴对称, 即关于x轴和y轴都对称。
详细描述
双曲线上的任意一点关于 x轴和y轴的对称点都在双 曲线上。
顶点
顶点
双曲线与对称轴的交点称 为顶点。
总结词
双曲线与对称轴的交点称 为顶点。
详细描述
顶点是双曲线与对称轴的 交点,也是双曲线离准线 最远的点。
比例常数。
性质
双曲线的焦点到任意一点的距离之 差等于常数2a,即|PF1| - |PF2| = 2a。
应用
通过焦点可以计算出双曲线的离心 率和准线方程。
焦距
定义
双曲线的两个焦点之间的距离称 为焦距,记作2c。
性质
焦距与半主轴长a和半次轴长b有 关,关系为c^2 = a^2 + b^2。
应用
通过焦距可以计算出双曲线的离 心率和准线方程。
双曲线的简单性质课件ppt课件
目录
• 双曲线的定义与标准方程 • 双曲线的几何性质 • 双曲线的焦点与焦距 • 双曲线的标准方程的推导 • 双曲线的应用
01 双曲线的定义与标准方程
定义
总结词
双曲线是由两个无限延伸的分支组成的,其形状类似于开口 的抛物线。

双曲线的性质PPT优秀课件

双曲线的性质PPT优秀课件
97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。

双曲线的简单几何性质课件

双曲线的简单几何性质课件
A1(- a,0),A2(a,0)
e c (e 1) a
y b x a
例3:
x2 y2 1 16 9
1、双曲线 9x2-16y2=144的实半轴长
等于 4 虚半轴长等于 3 顶点坐
标是 4,0 渐近线方是y
3 4
x (或 x
4
y
.3
0)
5
离心率e= 4 。
2、离充心要率e=条件2 是。双(曲用线“为充等分轴条双件曲”线“的必要 条件”“充要条件”填空。)
双曲线定义的简单几何性质
定义
图象
方程 范围 对称性 顶点 离心率 渐近线
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
y
M
M
F2
F1
o
F2
x
x
F1
x2 a2
y2 b2
1
x≤-a或x≥a
y2 a2
x2 b2
1
y≤-a或y≥a
关于坐标轴、原点对称(实轴、虚轴、中心)
(-a, 0) (a, 0)
法二 由双曲线的渐近线方程为 y=±12x, 可设双曲线方程为x222-y2=λ(λ≠0), ∵A(2,-3)在双曲线上, ∴2222-(-3)2=λ,即 λ=-8. ∴所求双曲线的标准方程为y82-3x22 =1.
5 离心率
与椭圆类似,双曲线的焦距与实轴长的比 c , a
叫做双曲线的离心率.因为c a 0,所以双
2 2
y2 b2
1
渐进线方程
k
b a
B2
b
k
y
(a,b)
b a
yb x a
可由双曲线

双曲线的性质课件(PPT 15页)

双曲线的性质课件(PPT 15页)

y
B2
A1 F1 O
F2 A2
x
B1
y C3C2 C1
O
x
焦点在x轴上的双曲线图像
y 渐进线方程: b x a
Y x2 y2 1 a2 b2
B2
F1
A1
A2 F2 X B1
离心率对双曲线形状的影响
焦点在y轴上的双曲线图

Y
y2 a2
x2 b2
1
F2
A2
B1
O
B2
X
A1
F1
焦点在y轴上的双曲线的几何性质
2、对称性:关于x轴,y轴,
原点对称。 3、顶点 A1(-a,0),A2(a,0)
F1 A1 O
A2 F2
x
4、轴:实轴 A1A2 虚轴 B1B2
B1
|A1A2|=2ca,|B1B2|=2b 5、离心率:e= a
根据以上几何性质能够
根据以上几何性质能否
较准确地画出椭圆的图形? 较准确地画出双曲线的图形呢?
双曲线标准方程:y 2 x 2 1 双曲线性质: a 2 b2
Y
1、范围:y≥a或y≤-a
F2
2、对称性:关于x轴,y轴,原点对称。
A2
3、顶点 A1(0,-a),A2(0,a)
4、轴:实轴 A1A2 ; 虚轴 B1B2 B1
5、渐近线方程: y a x
o
b
6、离心率:e=c/a
A1
F2
B2 X
Y
F1
B2
F’1 A1 o
B1
X
A2 F’2
F2
证明:(1)设已知双曲线的方程是:
x2 a2
y2 b2
1

双曲线的性质ppt课件

双曲线的性质ppt课件

双曲线的渐近线方程为 y 3 x
b3, 而 c2a2b 2, 3a2b 28 a3
解出 a26, b22
双 曲 线 方 程 为x2
y2
1
6 2 完整版ppt课件
18
小结
x2 a2
y2 b2
1( a> b >0)
x2 a2
y2 b2
1
(
a>
0
b>0)
c 2 a 2 b 2 (a> b>0) c 2 a 2 b 2 (a> 0 b>0)
完整版ppt课件
7
二、导出 y2双 x2曲 1(a线 0,b0) a2 b2
的简单几何性质 y
(1)范围: ya,ya
(2)对称性: 关于x轴、y轴、原点都对称
a
(3)顶点: (0,-a)、(0,a)
(4)渐近线: y a x
b
(5)离心率: e c a
-b o b x -a
完整版ppt课件
A1
A2
o a
x
它与yybx的x位置的变化:趋势
a
B1
(3)利画用出慢渐双慢近曲靠线线近可的草以图较准确的
ybx
a
完整版ppt课件
y b x a
5
5、离心率
(1)定义:双曲线的焦距与 的实 比 e轴c,长 叫做 a
双曲线离的 心率。
(2)e的范围: c>a>0 e >1
(3)e的含义:
b c2a2 (c)21 e21
20
备选练习:
1. 过点(1,2),且渐近线为 y 3 x 4
的双曲线方程是__1_6_y__2__.9x2 55
2.求中心在原点,对称轴为坐标轴,经过点

3.2.2双曲线的简单几何性质课件可编辑图片版共54张PPT

3.2.2双曲线的简单几何性质课件可编辑图片版共54张PPT

x2 a2

y2 b2
=1(a>b>0)共焦点的双曲线系方程可设为
a2x-2 λ-λ-y2b2=1(b2<λ<a2).
题型二 由双曲线方程研究其几何性质
探究 1 利用方程求解几何性质
例 1 (多选)已知双曲线 C:ax22-by22=1(a>0,b>0)的左、右焦点
分别为
F1(-5,0),F2(5,0),则能使双曲线
y2 64

x2 16

λ(λ>0),将点(2,0)的坐标代入方程得λ=-14<0(舍去). 综上可知,所求双曲线的标准方程为x42-y2=1. 答案:x42-y2=1
4.与椭圆
x2 25

y2 16
=1有公共焦点,离心率为32
的双曲线方程为
________.
解析:方法一 由椭圆方程可得焦点坐标为(-3,0),(3,0),
2.常见双曲线方程的设法
(1)渐近线为y=±
n m
x的双曲线方程可设为
x2 m2

y2 n2
=λ(λ≠0,
m>0,n>0);如果两条渐近线的方程为Ax±By=0,那么双曲线的
方程可设为A2x2-B2y2=m(m≠0,A>0,B>0).
(2)与双曲线
x2 a2
- by22
=1或
y2 a2

x2 b2
系,并想办法转化为关于a,b,c的不等关系,结合c2=a2+b2和
c a
=e得到关于e的不等式,然后求解.在建立不等式求e时,经常用
到结论:双曲线上一点到相应焦点距离的最小值为c-a.
双曲线的离心率常以渐近线为载体进行命题,注意二者参数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 2
且 k 1 <k < 5 ;
2 2
2
2
(3)只有一个公共点; (3)k=±1,或k= ± 5 ;
(4)交于异支两点; (4)-1<k<1 ;
5 (5)与左支交于两点. k 1 2
x2 y2 1 1.过点P(1,1)与双曲线 只有 一个 9 16 Y 4 交点的直线 共有_______ 条. ( 1, 1)
d, PF1 , PF2 成等比数列,试求点 P ( x0 , y 0 )的坐标 .
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付��
问题四:切点三角形
x y 1 上的一点P与左、右 例4、由双曲线 9 4 两焦点 F 1、 F 2 构成 PF1 F2 ,求 PF1 F2 的内切圆与
边 F 1 F 2 的切点坐标。
说明:双曲线上一点P与双曲线的两个焦点 F 1、 F 2 构成 的三角形称之为焦点三角形,其中 | P 和 | F1F 2 | F |P F 1 |、 2| 为三角形的三边。解决与这个三角形有关的问题,要充分 利用双曲线的定义和三角形的边角关系、正弦定理、余弦 定理。

变题:将点P(1,1)改为
O
X
1.A(3,4)
2.B(3,0)
3.C(4,0)
4.D(0,0).答案又是怎样的? 1.两条;2.三条;3.两条;4.零条.
2.双曲线x2-y2=1的左焦点为F,点P为左支下半支上任意一点 , 0 1 , (异于顶点),则直线PF的斜率的变化范围是 _________
相切:一个交点
O X
相离:0个交点
Y
相交:一个交点
O
X
判断直线与双曲线位置关系的操作程序
把直线方程代入双曲线方程
得到一元一次方程 直线与双曲线的 >0 =0 <0
相交
相切
相离
y = kx+ m 2 消去y,得: (b2-a2k2)x2-2kma2x+a2(m2+b2)=0 x y2 2 - 2 =1 a b
2 2
x2 2 例5、设双曲线C: 2 y 1(a 0) 与直线 l : x y 1 a 相交于两个不同的点A、B。
(1)求双曲线C的离心率e的取值范围。
5 (2)设直线l与y轴的交点为P,且PA PB, 求a的值。 12
小结:
1 .位置判定 2.弦长公式 3.中点问题 4.垂直与对称
双曲线的性质(三)
直线与双曲线的 位置关系
复习:
椭圆与直线的位置关系及判断方法
相离
判断方法
(1)联立方程组
相切
相交
(2)消去一个未知数 (3)
∆<0
∆=0
∆>0
一:直线与双曲线位置关系种 类 Y
O X
种类:相离;相切;相交(0个交点,一个交点, 一个交点或两个交点)
位置关系与交点个数
Y
相交:两个交点
1.二次项系数为0时,L与双曲线的渐近线平行 或重合。
重合:无交点;平行:有一个交点。
2.二次项系数不为0时,上式为一元二次方程, Δ>0 Δ=0 Δ<0 直线与双曲线相交(两个交点) 直线与双曲线相切 直线与双曲线相离
一、直线与双曲线的位置关系:
①相交两点: △>0 同侧:x 1 x 2 >0 异侧: x 1 x 2 <0 一点: 直线与渐进线平行 △=0
△<0
②相切一点:
③相 离:
特别注意:
直线与双曲线的位置关系中:
一解不一定相切,相交不一定 两解,两解不一定同支

用:
例1.已知直线y=kx-1与双曲线x2-y2=4,试讨论实数k的取 值范围,使直线与双曲线 (1)没有公共点; (1)k< 5 或k> 5 ;
(2)有两个公共点; (2)
x2 y 2 1 交于两点的直线斜率的 3.过原点与双曲线 4 33 3 取值范围是 , ,
2 2
二.弦的中点问题(韦达定理与点差法)
例2.已知双曲线方程为3x2-y2=3,求: (1)以2为斜率的弦的中点轨迹; (2)过定点B(2,1)的弦的中点轨迹; (3)以定点B(2,1)为中点的弦所在的直线方程. (4)以定点(1,1)为中点的弦存在吗?说明理由;
5.设而不求(韦达定理、点差法)
拓展延伸
x2 y2 1.已知 P为双曲线 1右支上的一点 , F1 , F2 16 9 分别为左、右焦点,若 PF1 : PF2 3 : 2,试求点 P ( x0 , y 0 )的坐标。
2 y 2. 已知双曲线 x 2 1左、右焦点分别为 F1 , F2, 3 双曲线左支上的一点 P 到左准线的距离为 d ,且
相关文档
最新文档