传染病模型
传染病模型精选推荐(一)

传染病模型精选推荐(一)引言:传染病模型是研究传染病传播方式和防控策略的重要工具。
本文将介绍5个精选的传染病模型,并探讨它们的特点和应用领域。
大点一:SIR模型1. SIR模型是传染病模型中最基本的一种,包括易感者(Susceptible)、感染者(Infected)和康复人群(Recovered)。
2. SIR模型适用于研究人群中的疾病传播情况,可以预测传染病的爆发和蔓延趋势。
3. SIR模型假设人群中没有出生死亡和迁移,并且感染后具有免疫力。
4. SIR模型可以通过改变参数来研究不同防控措施的效果,如隔离、疫苗接种等。
大点二:SEIR模型1. SEIR模型在SIR模型的基础上增加了潜伏期(Exposed)的状态,即潜伏期内已经感染但还未展现症状的人群。
2. SEIR模型适用于研究传染病的潜伏期和潜伏期内的传播方式。
3. SEIR模型可以更准确地描述疾病的传播过程,并提供更精确的防控策略。
4. SEIR模型可以通过添加接触率和潜伏期的参数来模拟不同传染性和潜伏期的疾病。
大点三:SEIRD模型1. SEIRD模型在SEIR模型的基础上增加了死亡者(Death)的状态,用于研究传染病的死亡率和致死风险。
2. SEIRD模型适用于研究死亡率高的传染病,如高致病性禽流感等。
3. SEIRD模型可以通过改变死亡率和康复率的参数来预测传染病的死亡数量和康复情况。
4. SEIRD模型有助于评估不同防控策略对死亡率的影响,如加强医疗资源、提高疫苗接种率等。
大点四:Agent-based模型1. Agent-based模型是一种基于个体行为和交互的传染病模型。
2. Agent-based模型可以模拟个体之间的接触和传播过程,更加现实和细致。
3. Agent-based模型适用于研究人口密集区域的传染病传播,如城市、机场等。
4. Agent-based模型能够考虑到不同个体的行为差异和健康状态,有助于制定个体化的防控策略。
传染病传播模型

传染病传播模型传染病一直是人类面临的严重公共卫生问题之一,了解传染病的传播规律对于控制疫情的蔓延至关重要。
在传染病学领域,研究人员提出了各种传染病传播模型,以帮助我们更好地理解疾病的传播过程。
本文将介绍几种常见的传染病传播模型。
一、SIR模型SIR模型是最经典的传染病传播模型之一,模型中将人群划分为易感者(S),感染者(I)和康复者(R)三个群体。
在SIR模型中,易感者被感染后转为感染者,感染者经过一段潜伏期后康复并具有免疫力。
该模型适用于传染病传播速度较慢且一旦康复后不再感染的情况。
二、SEIR模型SEIR模型在SIR模型的基础上增加了潜伏者(E)这一群体,即将易感者感染后先转化为潜伏者,再由潜伏者成为感染者。
这样的模型更适用于具有潜伏期的传染病,如流感和艾滋病等。
通过引入潜伏者这一群体,SEIR模型可以更准确地反映出疾病的传播过程。
三、SI模型与SIR模型和SEIR模型不同,SI模型只考虑了易感者和感染者这两类人群,即易感者一旦被感染就无法康复并具有免疫力。
SI模型适用于那些一旦感染就无法康复的传染病,比如艾滋病和病毒性肝炎等。
四、SIS模型SIS模型在SI模型的基础上增加了康复者再次成为易感者这一过程,即感染者可以康复但并没有永久的免疫力。
SIS模型适用于那些患者可以反复感染的传染病,如流感和普通感冒等。
五、SEIRS模型在SEIR模型的基础上,SEIRS模型引入了康复者再次成为易感者这一过程,从而更为贴合实际传染病的传播过程。
SEIRS模型适用于那些感染后康复后不具备永久免疫力的疾病。
以上是一些常见的传染病传播模型,每种模型都有其适用的场景和特点。
在实际研究和预测传染病传播过程时,我们可以根据病原体的特性和传播规律选择合适的模型来进行分析和预测,从而更好地控制疫情的蔓延。
传染病模型的研究为我们提供了有效的工具,帮助我们更好地理解传染病的传播机制,为公共卫生工作提供科学依据。
希望在未来的研究中能够进一步完善传染病传播模型,为防控传染病提供更有力的支持。
数学建模传染病模型例题

数学建模传染病模型例题一、传染病模型简介传染病模型是数学建模的一个重要分支,主要用于描述传染病在人群中的传播规律。
通过构建合适的数学模型,可以研究传染病的传播动力学、预测疫情发展趋势以及评估防控措施的效果。
本文将重点介绍几种常见的传染病模型及其应用。
二、传染病模型的类型及应用1.SIR模型SIR模型是一种基于微分方程的传染病模型,其中S、I、R分别代表易感者(Susceptible)、感染者(Infected)和康复者(Recovered)。
该模型通过描述易感者感染、感染者康复以及康复者不再易感的动态过程,揭示了传染病在人群中的传播规律。
SIR模型在分析疫情爆发、研究防控措施等方面具有广泛应用。
2.SEIR模型SEIR模型是在SIR模型基础上发展的一种传染病模型,其中E代表潜伏者(Exposed)。
与SIR模型相比,SEIR模型增加了潜伏期这一概念,使得模型更加符合实际情况。
该模型可以用于研究传染病的传播速度、预测疫情发展趋势以及评估疫苗的效果。
3.SI模型SI模型是一种简化的传染病模型,仅包含易感者和感染者两个群体。
该模型适用于分析短期传染病,如流感等。
通过研究易感者与感染者的动态关系,可以预测疫情爆发的时间和规模。
三、传染病模型的参数估计与预测传染病模型的参数估计是数学建模的关键环节,通常采用最大似然估计、贝叶斯估计等方法。
此外,基于传染病模型的预测技术在疫情防控中也具有重要意义。
通过构建时间序列模型,如ARIMA、SVM等,可以预测未来一段时间内疫情的发展趋势。
四、数学建模在传染病防控中的实际应用数学建模在传染病防控中具有广泛应用,如疫情监测、防控措施评估、疫苗研究等。
通过对传染病模型的深入研究,可以为政府部门提供科学依据,协助制定针对性的防控策略。
五、案例分析本文将结合具体案例,如我国2003年非典疫情、2020年新冠肺炎疫情等,详细阐述传染病模型在实际应用中的重要作用。
通过分析案例,可以加深对传染病模型的理解,为今后疫情防控提供借鉴。
传染病的数学模型有哪些(一)

传染病的数学模型有哪些(一)引言:传染病是一种对人类健康造成严重威胁的疾病,为了更好地理解和控制传染病的传播过程,研究人员利用数学模型对传染病进行建模和预测。
本文将介绍传染病的数学模型,为了更好地控制和预防传染病的传播提供参考。
正文:1. 推广SIR模型a. SIR模型是一种常见的传染病数学模型,包括易感者(Susceptible)、感染者(Infectious)和康复者(Recovered)三个状态。
b. SIR模型基于一组微分方程进行建模,描述了各个人群状态之间的转化过程。
c. SIR模型可以通过改变参数值来预测和控制传染病的传播速度和范围。
2. 扩展SEIR模型a. SEIR模型是对SIR模型的扩展,引入了潜伏者(Exposed)的概念。
b. 潜伏者是指已经感染病毒但尚未表现出症状的人群。
c. SEIR模型可以更准确地预测传染病的传播速度和范围,尤其对于具有潜伏期的传染病。
3. 基于网络的模型a. 基于网络的传染病模型将人群视为图网络中的节点,节点之间的连接表示传播途径。
b. 网络模型可以更好地考虑人群的空间结构和社交关系对传染病传播的影响。
c. 网络模型常使用随机图、小世界网络或无标度网络等来表示人群间的联系。
4. 多主体模型a. 多主体模型是一种把个体行为和人群行为结合起来的传染病模型。
b. 多主体模型通过建立个体决策规则、交流机制和协调行为,考虑个体之间的相互作用和行为变化。
c. 多主体模型可以模拟人群在传染病传播中的决策行为,为制定个性化的防控策略提供参考。
5. 结合机器学习的模型a. 机器学习模型可以通过学习数据中的模式和规律,对传染病进行预测和控制。
b. 机器学习方法可以结合传染病流行病学和社会行为数据,提高模型的预测准确性。
c. 机器学习模型可以通过监督学习、无监督学习和强化学习等方法,对传染病的传播机制和防控策略进行建模和优化。
总结:传染病的数学模型有多种类型,包括SIR模型、SEIR模型、基于网络的模型、多主体模型和结合机器学习的模型。
传染病模型

染病类(Infectives):其数量记为I(t),表示t时刻已经
被感染成病人而且具有传染力的人数;
移出类(Removed):其数量记为R(t),表示t时刻已经从染
病类移出的人数;
Susceptibles
Infectives
模型1
假设 建模
已感染人数(病人)
i (t )
1/ σ 阈值
• s0 < 1 / σ ( P2 ) → i (t )单调降至0
模型4
预防传染病蔓延的手段
传染病不蔓延的条件——
s0 < 1 / σ
• 提高阈值1 / σ ⇒ σ ( = λ / µ ) ↓⇒ λ ↓, µ ↑
λ (日接触率)↓ ⇒ 卫生水平↑ µ(日治愈率)↑ ⇒ 医疗水平↑
• 降低s0 ( s0 + i0 + r0 = 1) ⇒ r0 ↑
t
tm~传染病高潮到来时刻 λ (日接触率)↓ → tm↑
1 − 1 t m = λ ln i 0
t → ∞ ⇒ i →1 ?
病人可以治愈!
模型3
增加假设
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染
SIS 模型
3)病人每天治愈的比例为µ µ ~日治愈率
建模 N [i (t + ∆t ) − i (t )] = λNs (t )i (t ) ∆t − µNi (t ) ∆t
第二部分 建立模型前的准备工作
1. 艾滋病发展阶段
感染
潜伏
发病
死亡
2个 月
8年
1年
每年的新发HIV感染数
年龄段 性别 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 男 13.5 0 10.65 8.18 5.63 4.39 1.24 0 0 0.34 0 0 0 0 合计(千人) 45.06 2000 女 6.44 2.31 2.25 3.43 0.89 0.98 0.89 0.32 0 0.28 0 0 0 0 18.86 男 12.48 0 9.86 7.23 6.5 5.06 1.08 0 0 0.39 0 0 0 0 43.78 2001 女 5.94 1.08 1.73 2.94 0.47 1.26 0.71 0.36 0 0.25 0 0 0 0 15.89 男 21.21 7.83 22.7 24.19 22.51 15.96 8.21 0 0.76 0.73 0 0 0 0 125.5 2002 女 9.02 5.81 7.04 7.79 4.15 3.26 2.22 1.35 0 0.42 0 0 0 0 42.45 男 19.13 5.32 16.14 17.34 18.67 12.27 4.13 0 1.04 0.51 0 0 0 0 96.2 2003 女 8.91 4.75 5.53 6.75 3.73 3.43 1.52 1.3 0 0.42 0 0 0 0 37.9 男 25.7 10.6 20.52 24.78 27.45 18.05 6.35 0 1.84 0.48 0 0 0 0 137.7 2004 女 11.62 7 6.6 8.17 5.42 4.43 2.09 1.91 0 0.58 0 0 0 0 49.65 男 35.95 19.4 28.71 38.62 43.4 29.7 12.58 0.96 3.18 0.55 0 0 0 0 215.5 2005 女 16.64 11.79 10.15 13.12 9.81 7.22 3.53 3.21 0 1.11 0 0 0 0 78.89
传染病传播模型

传染病传播模型随着世界人口的不断增加和人类活动的频繁交流,传染病的传播成为了一个日益严重的问题。
为了更好地理解和应对传染病的传播,科学家们提出了各种传染病传播模型。
本文将介绍几种常见的传染病传播模型,并分析它们的特点和应用。
一、SI模型SI模型是最简单的传染病传播模型之一,其中S表示易感者(Susceptible)、I表示感染者(Infectious)。
在SI模型中,人群中的个体只有在易感者和感染者两种状态之间相互转换。
具体而言,易感者可以通过与感染者接触而被感染,一旦感染,就成为感染者,并在一段时间内具有传播传染病的能力。
然而,在SI模型中,感染者随着时间的流逝不会重新变回易感者。
由于缺乏免疫力的存在,SI模型所描述的传染病在人群中的传播速度通常很快,例如流感等。
二、SIR模型SIR模型是相对复杂一些的传染病传播模型,其中R表示康复者(Recovered)。
和SI模型一样,SIR模型中的人群也被分为易感者、感染者和康复者三个状态。
然而,SIR模型引入了康复者的概念,即感染者经过一段时间的潜伏期后可以康复并具有免疫力。
在SIR模型中,康复者不再具有传播传染病的能力,不会再感染其他人。
与SI模型相比,SIR模型所描述的传染病传播速度相对较慢,且可能经历一次大规模的传播后逐渐衰减。
三、SEIR模型SEIR模型是在SIR模型的基础上进一步扩展的,其中E表示潜伏者(Exposed)。
在SEIR模型中,人群被分类为易感者、潜伏者、感染者和康复者四个状态。
潜伏者是指已经被感染但尚未表现出症状的个体,潜伏期结束后,潜伏者会进一步转化为感染者,并开始传播传染病。
由于潜伏期的存在,SEIR模型所描述的传染病具有一定的潜伏期,并且在人群中的传播速度相对较慢。
四、SIRS模型SIRS模型是对SIR模型的改进,其中S表示易感者、I表示感染者,R表示免疫者(Susceptible-Infected-Recovered-Susceptible)。
传染病的传播模型与分析

传染病的传播模型与分析传染病是指通过接触、空气传播、飞沫传播等途径从一个人传播到另一个人的疾病。
了解传染病的传播模型以及相应的分析方法对预防与控制传染病具有重要意义。
本文将探讨传染病的传播模型以及常用的分析方法。
一、传染病的传播模型1. SIR模型SIR模型将人群分为易感者(Susceptible)、感染者(Infectious)和康复者(Recovered)三个互不重叠的类别,描述了传染病在人群中的传播过程。
在这个模型中,一个人从易感者状态转变为感染者状态后再转变为康复者状态,整个过程是一个动态的流程。
2. SEIR模型SEIR模型在SIR模型的基础上增加了一个潜伏期状态(Exposed),即感染者已经被病原体感染但尚未表现出明显症状。
该模型可以更准确地描述某些疾病的传播特征,例如新冠病毒。
3. 网络传播模型网络传播模型基于人与人之间复杂的联系,将人与人之间的接触关系表示为网络结构,从而可以更好地研究疾病在社交网络中的传播过程。
该模型为防控传染病提供了新的思路和方法。
二、传染病的分析方法1. 流行病学调查流行病学调查是研究传染病传播规律的核心方法之一。
通过对患者、病原体、传播途径等进行全面的调查,可以了解感染源、传播途径、传染力大小等信息,从而为疫情防控提供科学依据。
2. 数学模型数学模型是传染病研究中常用的工具之一。
基于传染病的传播机理以及传染力大小等参数,可以建立相应的数学模型,并通过模型推导出预测结果,如疫情的发展趋势、传播速度等。
常用的数学模型包括微分方程模型、积分方程模型、格点模型等。
3. 统计分析统计分析是对大量传染病数据进行处理和分析的重要手段。
通过对病例数据进行整理、汇总和统计,可以得到病例分布、死亡率、复发率等重要指标。
同时,还可以运用统计学方法对数据进行建模和预测。
4. 传播网络分析传播网络分析是一种基于网络结构的方法,可以研究传染病在社交网络中的传播特征。
通过分析网络拓扑结构、节点特征以及传播路径等信息,可以发现传播的薄弱环节和高风险群体,并制定有针对性的防控策略。
传染病的传播模型

传染病的传播模型传染病是指通过直接或间接接触,人与人之间传播的一类由病原体引起的疾病。
了解传染病的传播模型对于控制和预防疾病的传播具有重要意义。
本文将介绍一些常见的传染病传播模型,并对其特点和应用进行分析。
一、接触传播模型接触传播模型是指病原体通过直接接触传播至受感染者的传播方式。
这种传播方式主要包括密切接触和接触传播。
密切接触是指患者和健康人员之间有较长时间的近距离接触,如同居、护理和工作等。
接触传播是指通过接触患者的血液、体液、呕吐物、粪便等体液传播病原体。
二、空气传播模型空气传播模型是指病原体通过空气传播至受感染者的传播方式。
这种传播方式主要包括飞沫传播和气溶胶传播。
飞沫传播是指通过患者咳嗽、打喷嚏等方式,将含有病原体的液体颗粒释放到空气中,进而被他人吸入而导致感染。
气溶胶传播是指患者排出的微小液滴中的病原体随空气流动传播至他人。
三、血液传播模型血液传播模型是指病原体通过血液传播至受感染者的传播方式。
这种传播方式主要包括输血传播、注射传播和性传播。
输血传播是指通过输血过程中病原体传播至受血者的方式。
注射传播是指共用注射器、针头等器械而导致病原体传播的方式。
性传播是指通过性接触传播病原体的方式,特别是对于性传播病毒如艾滋病病毒等。
四、垂直传播模型垂直传播模型是指病原体通过母婴传播至受感染者的传播方式。
这种传播方式主要包括围产儿传播和胎儿传播,即在婴儿在子宫内感染或在分娩过程中被母亲感染。
传染病的传播模型对于制定疾病防控策略具有重要意义。
根据不同传播模型的特点,可以采取相应的预防措施来降低疾病的传播风险。
例如,对于接触传播模型,需要加强个人卫生和环境卫生措施,如勤洗手、保持通风等。
对于空气传播模型,需要加强呼吸道防护,如佩戴口罩等。
对于血液传播模型,需要加强注射安全和性保护等。
对于垂直传播模型,需要加强孕产妇的健康管理和儿童疫苗接种等。
总之,传染病的传播模型多种多样,了解和掌握不同传播模型的特点对于预防和控制疾病的传播至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
病毒扩散与传播的控制模型摘 要随着科技的发展,病毒扩散与传播越来越受到人们的关注。
本文通过建立微分方程模型,描述了病毒扩散与传播的过程,最后通过分析,得到了控制病毒扩散与传播的方法。
对问题一,我们通过分析影响变量的因素,建立微分方程模型。
对问题二,我们通过把增加的影响因素加入到问题一的微分方程模型中,改善后得到了新的微分方程模型。
最后把变量代入,求解微分方程模型,得到结果。
当t=13天时,确诊患者人数达到峰值6793000人;t=150天时,确诊人数减少到116800人。
对问题三、问题四、问题五,通过把改变后的条件代入到问题二中的微分方程模型中,可以得到其对应结果。
问题三的结果,当t=13天时,确诊人数达到峰值6769000人,t=150天时,确诊人数减少到108400人。
问题四的结果,当t=13天时,确诊人数达到峰值6795000人,t=150天时,确诊人数减少到116200人。
问题五的结果,当t=12天时,确诊人数达到峰值6793000人,当t=150天时,确诊人数减少到113500人对问题六,结合前面所得到的结果,我们分析在其它因素都不变的情况下只改变一种因素,分析得到该种因素的灵敏度,最后得出各个因素的灵敏度。
可以得到,尽快开始隔离、治愈时间1t 、2t ,加强隔离强度p 、减少人均日接触率r 都可以改善病情。
对问题七,在问题六的基础上,可以得出相应的减轻病情的方法和建议。
关键词: 微分方程模型 微分方程组求解(MATLAB )一、问题的重述已知某种不完全确知的具有传染性病毒的潜伏期为d1~d2天,病患者的治愈时间为d3天。
该病毒可通过直接接触、口腔飞沫进行传播、扩散,该人群的人均每天接触人数为r。
为了控制病毒的扩散与传播将该人群分为五类:确诊患者、疑似患者、治愈者、死亡和正常人,可控制参数是隔离措施强度p(潜伏期内的患者被隔离的百分数)。
要求:1.在合理的假设下试建立该病毒扩散与传播的控制模型;2.利用你所建立的模型针对如下数据进行模拟条件1:d1=1, d2=11, d3=30, r=10,条件2:已经知道的初始发病人数为890、疑似患者为2000条件3:隔离措施强度p=60%条件4:患者2天后入院治疗,疑似患者2天后被隔离,试给出患者人数随时间变化的曲线图,并明确标识图中的一些特殊点的具体数据,分析结果的合理性。
3.若将2中的条件4改为条件:患者1.5天后入院治疗,疑似患者1.5天后被隔离,模拟结果有何变化?4.若仅将2中的条件3改为条件:隔离措施强度p=40%,模拟结果有何变化?5.若仅将2中的条件1改为条件:d1=1, d2=11, d3=30, r=250,模拟结果有何变化?6.分析问题中的参数对计算结果的敏感性。
7.针对如上数据给政府部门写一个不超过400字的建议报告。
二、问题的分析2.1 问题一的分析问题一的解决,在于对疑似患者、确诊患者、治愈者、正常人、死亡者的理解,在理解的基础上,我们分析影响它们的因素有哪些,最后通过建立微分方程模型来解释这些影响关系。
2.2 问题二的分析问题二的解决基于问题一,在问题已的基础上,我们对于增加的影响因素进项分析,并且改进问题一中的微分方程模型。
我们会得到考虑更加全面的微分方程模型,最后把已知的数据带入方程组中,最后用MATLAB 进行求解,可以得到结果。
2.3 问题三的分析问题三的解决,即把已知的条件代入问题二的微分方程组中,最后用MATLAB 求解,可以得到结果。
2.4 问题四的分析问题四的解决,即把已知的条件代入问题二的微分方程组中,最后用MATLAB 求解,可以得到结果。
2.5 问题五的分析问题五的解决,即把已知的条件代入问题二的微分方程组中,最后用MATLAB 求解,可以得到结果。
2.6 问题六的分析通过对问题二、问题三、问题四、问题五结果的分析,通过相互之间的对比,我们会发现不同影响因素对病情的影响,最终得出结论。
2.7 问题七的分析通过问题六的结果,我们会得到影响病情的因素以及影响关系,通过这些关系,提出减轻病情的建议和方法。
三、模型的假设1.总人数N 不变,人群分为确诊患者、疑似患者、治愈者、死亡和正常人; 2. 疑似患者是被病毒感染,但是没有发病的人;3.确诊患者自动被隔离,不具备传染病毒的能力,所以人群中只有未被隔离的疑似患者能够传染疾病;4.治愈者具有了免疫能力,不会再被该病毒感染; 5.平均潜伏期为121d d 5. 在问题二中,假设人群总数为1000 0000四、符号说明五、模型的建立与求解5.1 问题一的模型建立与求解易知显然有S+I+R+H+D=1根据已知条件以及假设,分析可得:疑似患者在人群中的比例决定于未被隔离的疑似患者和疑似患者发病的比例有关。
确诊患者在人群中的比例决定于疑似患者发病和患病者得到治愈的比例有关。
治愈者在人群中的比例决定于确诊患者被治愈的比例有关。
正常人的比例决定于未被隔离的疑似患者的比例有关。
死亡者的比例则是人群中每一时刻人群原来整数减去疑似患者、确诊患者、治愈者、正常人人数的比例。
有以上分析以及题目中所数据和假设中的数据可将此问题满足的微分方程模型建立,如下:4(1)dS S NNr p SH N dt d =-- 43dI S INN N dt d d =- 3dR IN N dt d = (1)dHNNr p SH dt=--1D S I R H =----到此,我们建立该病毒扩散与传播的控制模型;5.2 问题二的模型建立与求解问题二模型的建立是建立在问题一的基础上,由题中给出的额外条件患者1t 天后得到治疗和疑似患者2t 天后被隔离,所以我们基于问题一的模型。
考虑到此事疑似患者感染人群的天数增加 2t 天,所以此时人群中每天疑似患者的增加人数比问题一多2rSHNt ;相反人群中正常人每天比问题一减少2rSHNt 。
考虑到此时患病者1t 天后开始治疗,所以这时治愈时间变为1t +3d 天,此时人群中每天治愈者的增加人数变为31INd t +;相反人群中每天确诊患者的变为431S I NN d d t -+ 。
所以得到问题二的微分方程模型,如下:24(1)dS rSH SNN Nr p SH N dt t d =+-- 431dI S INN N dt d d t =-+ 31dR IN N dt d t =+2(1)dH NrSH NNr p SH dt t -=-- 1D S I R H =----把问题二中已知的条件1、条件2、条件3、条件4可得:11d =,211d =,330d =,10r =,60%p =,122t t == , 46d = 0I =0.000089, 0S =0.00002 , 0R =0由假设可得0H =0.9997 将这些数据代入上述方程,可得微分方程组,如下:96dS S SH dt =⨯- 632dI S I dt =- 32dR Idt =9dHSH dt=-⨯ 1D S I R H =----0I =0.000089,0S =0.00002 , 0R =0,0H =0.9997用MATLAB 求解此微分方程模型,可以得到患者人数随时间变化的曲线图如下图所示:问题二的结果(由于死亡者的比例几乎解决于0,甚至是一个很小的负数,所以与横坐标轴重合)在图中标出三个特殊点,(0,0.000089)(13,0.6793)(150,116800)。
分析可得,起初即t=0时,人群中确诊患者的比例为0.000089,即890人;当t=13时,确诊患者人数比例达到最多0.6793,即6793000人。
并且0~13天,确诊患者人数递增;13~150天,确诊患者人数递减,最后在150天时,确诊患者比例为0.01168,即116800人。
5.3 问题三的模型建立与求解由已知可得,改变问题二中的条件四,12 1.5t t == 可得微分方程组:10.676dS SSH dt =⨯- 631.5dI S Idt =-31.5dR Idt =10.67dHSH dt=-⨯ 1D S I R H =----0I =0.000089,0S =0.00002 , 0R =0,0H =0.9997用MATLAB 求解此微分方程模型,可以得到患者人数随时间变化的曲线图如下图所示:问题三的结果在图中标出俩个特殊点,(0,0.000089)(13,0.6769)(150,108400)。
分析可得,起初即t=0时,人群中确诊患者的比例为0.000089,即890人;当t=13时,确诊患者人数比例达到最多0.6769,即6769000人。
并且0~13天,确诊患者人数递增;13~150天,确诊患者人数递减,最后在150天时,确诊患者比例为0.01084,即108400人。
5.4 问题四的模型建立与求解由已知可得,改变问题二中的条件三改为p=40%,同理可得微分方程:116dS S SH dt =⨯- 632dI S I dt =- 32dR Idt =11dHSH dt=-⨯ 1D S I R H =----0I =0.000089,0S =0.00002 , 0R =0,0H =0.9997用MATLAB 求解此微分方程模型,可以得到患者人数随时间变化的曲线图如下图所示:问题四的结果在图中标出俩个特殊点,(0,0.000089)(13,0.6795)(150,116200)。
分析可得,起初即t=0时,人群中确诊患者的比例为0.000089,即890人;当t=13时,确诊患者人数比例达到最多0.668,即6795000人。
并且0~13天,确诊患者人数递增;13~150天,确诊患者人数递减,最后在150天时,确诊患者比例为0.01162,即116200人。
5.5 问题五的模型建立与求解由已知可得,改变问题二中的条件一改为11d =,211d =,330d =,250r =同理可得微分方程:2756dS S SH dt =⨯- 632dI S I dt =- 32dR Idt =275dHSH dt=-⨯ 1D S I R H =----0I =0.000089,0S =0.00002 , 0R =0,0H =0.9997用MATLAB 求解此微分方程模型,可以得到患者人数随时间变化的曲线图如下图所示:问题五的结果 在图中标出俩个特殊点,(0,0.000089)和(12,0.6793)。
分析可得,起初即t=0时,人群中确诊患者的比例为0.000089,即890人;当t=13时,确诊患者人数比例达到最多0.6793,即6793000人。
并且0~13天,确诊患者人数递增;13~150天,确诊患者人数递减,最后在150天时,确诊患者比例为0.01135,即113500人。