2018-2019成都市中考必备数学考前押题密卷模拟试卷11-15(共5套)附详细试题答案

合集下载

∥3套精选试卷∥成都市2018-2019中考数学阶段模拟试题

∥3套精选试卷∥成都市2018-2019中考数学阶段模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知⊙O 的半径为5,若OP=6,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 外C .点P 在⊙O 上D .无法判断 【答案】B【解析】比较OP 与半径的大小即可判断.【详解】r 5=,d OP 6==,d r ∴>,∴点P 在O 外,故选B .【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外d r ⇔>;②点P 在圆上d r ⇔=;①点P 在圆内d r ⇔<. 2.下面的几何体中,主视图为圆的是( )A .B .C .D .【答案】C【解析】试题解析:A 、的主视图是矩形,故A 不符合题意;B 、的主视图是正方形,故B 不符合题意;C 、的主视图是圆,故C 符合题意;D 、的主视图是三角形,故D 不符合题意;故选C .考点:简单几何体的三视图.3.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF= 【答案】A【解析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB ∥CD ∥EF ,∴AD BCDF CE.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.4.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°【答案】C【解析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.5.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【答案】C【解析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.6.若x=-2 是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为()A.1或4 B.-1或-4 C.-1或4 D.1或-4 【答案】B【解析】试题分析:把x=﹣2代入关于x的一元二次方程x2﹣52ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案选B.考点:一元二次方程的解;一元二次方程的解法.7.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定【答案】D【解析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1③<<为随机事件.8.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(32,0)B.(2,0)C.(52,0)D.(3,0)【答案】C【解析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.9.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A.平均数B.中位数C.众数D.方差【答案】B【解析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B .【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。

2019年四川省成都市中考数学模拟试卷及答案

2019年四川省成都市中考数学模拟试卷及答案

2019年四川省成都市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30分)1.实数a,b在数轴上的位置如图所示,下列结论正确的是()A. b>0B. a<0C. b>aD. a>b2.据2017年1月24日《中山日报》报道,三乡镇2016年财政收入突破180亿元,在中山各乡镇中排名第二.将180亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10103.如图所示是一个底面为正方形的几何体,则它的俯视图可能为()A. B.C. D.4.在平面直角坐标系中,点A(2,5)与点B关于原点对称,则点B的坐标是()A. (−5,−2)B. (2,−5)C. (−2,5)D. (−2,−5)5.下列计算正确的是()A. a2+a2=a4B. a2⋅a3=a6C. (−a2)2=a4D. (a+1)2=a2+16.如图,点E、F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是( )A. ∠A=∠CB. ∠D=∠BC. AD//BCD. DF//BE7.在一次演讲比赛中,参赛的10名学生成绩统计如图所示,下列说法中错误的是()A. 众数是90分B. 中位数是90分C. 平均数是90分D. 极差是15分8.分式方程x−2x =12的解为()A. 1B. 2C. 3D. 49.如图,⊙A,⊙B,⊙C的半径都是2cm,则图中三个扇形(即阴影部分)面积之和是()A. 2πB. πC. 12π D. 6π10.下列关于二次函数y=x2−2x−1的说法中,正确的是()A. 抛物线的开口向下B. 抛物线的顶点坐标是(1,−1)C. 当x>1时,y随x的增大而减小D. 当x=1时,函数y的最小值是−2二、填空题(本大题共9小题,共36分)11.若等腰三角形的一个内角为50∘,则它的底角的度数为______.12.一个不透明盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为______ .13.如果a2=b3,则a+bb的值为______ .14.如图,矩形ABCD中,AB=3,BC=5,过对角线交点O作OE⊥AC交AD于点E,则AE的长是.15.已知x+y=2,则x2+2xy+y2=______ .16.如图所示,我国古代著名的“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.若直角三角形两条直角边的长分别是2和1,小军随机地向大正方形内部区域投掷飞镖.则飞镖投中小正方形(阴影)区域的概率是______.17.已知S1=x,S2=3S1−2,S3=3S2−2,S4=3S3−2,…,S2015=3S2014−2,则S2015=______.(结果用含x的代数式表示).18.如图,在菱形纸片ABCD中,AB=3,∠A=60∘,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则tan∠EFG的值为______.19.如图,已知直线y=−13x+1与坐标轴交于A,B两点,矩形ABCD的对称中心为M,双曲线y=kx(x>0)正好经过C,M两点,则直线AC的解析式为:______.三、计算题(本大题共1小题,共12分)20.(1)计算:(−1)2+sin30∘−√83;(2)计算:(a +1a−2)÷(1+1a−2).四、解答题(本大题共8小题,共72分)21. 已知关于x 的一元二次方程x 2−2x +m −1=0有两个实数根x 1,x 2.求m 的取值范围;22. 为了帮助贫困留守儿童,弘扬扶贫济困的传统美德,某校团委在学校举行“送温暖,献爱心”捐款活动,全校2000名学生都积极参与了该次活动,为了解捐款情况,随机调查了该校部分学生的捐款金额,并用得到的数据绘制出如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为______,图1中m 的值是______.(2)求本次调查获取的样本数据的平均数;(3)根据样本数据,估计该校本次活动捐款金额超过20元的学生人数.23.如图,一艘渔船位于小岛M的北偏东42∘方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60∘方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(参考数据:参考数据:sin42∘≈0.6691,cos42∘≈0.7431,tan42∘≈0.9044,√3≈1.732,结果精确到0.1海里)(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时)24.在平面直角坐标系xOy中,反比例函数y=m的图象过点A(6,1).x(1)求反比例函数的表达式;(2)过点A的直线与反比例函数y=m图象的另一个交点为B,与y轴交于点P,若AP=3PB,求点Bx的坐标.25.已知:BD为⊙O的直径,O为圆心,点A为圆上一点,过点B作⊙O的切线交DA的延长线于点F,点C为⊙O上一点,且AB=AC,连接BC交AD于点E,连接AC.(1)如图1,求证:∠ABF=∠ABC;DA;(2)如图2,点H为⊙O内部一点,连接OH,CH若∠OHC=∠HCA=90∘时,求证:CH=12(3)在(2)的条件下,若OH=6,⊙O的半径为10,求CE的长.26.某农业观光园计划将一块面积为900m2的园圃分成A、B、C三个区域,分别种植甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株。

2019届成都中考数学终极预测卷(3)答案

2019届成都中考数学终极预测卷(3)答案
设反比例函数的解析式为 y = k , x
则 −2 = k ,得 k = 4 , −2
反比例函数的解析式为 y = 4 , x
点 A 的纵坐标是 4, 4 = 4 ,得 x = 1 , x
点 A 的坐标为 (1, 4) ,
一次函数 y = mx + n(m 0) 的图象过点 A(1, 4) 、点 B(−2, −2) ,
ADC = BDC = 45 ,
DC ⊥ AB ,DEA = DEB = 90 ,
DAE = DBE = 45 , AE = BE ,
点 E 与点 O 重合, DC 为 O 的直径, DC = AB ,
在等腰直角三角形 DAB 中,
DA = DB = 2 AB , DA + DB = 2AB = 2CD , DA + DB = 2 ;
2019 届成都中考数学终极预测卷(3)
参考答案 一、选择题:1—5 DABDC 6—10 CDCAD
二、填空题:11、0.04 12、 62 13、 14、 3 3
三、解答题:
15、解:(1)原式 = −4
x = −3
(2)方程组的解为
y
=

7 3
16、原式 = 3a − 4 − a2 + 4 a−2
(1 + 1)2 + (4 − a)2 + 12 + 42 = 12 + a2 ,
解得: a = 9 , P(−1, 9) ,
2
2
如图 2,当 APO = 90 ,
OP2 = OA2 − PA2 = PD2 + OD2 ,
12 + 42 − [(1 + 1)2 + (4 − a)2 ] = 12 + a2 ,

四川省成都市2019年中考数学模拟试卷

四川省成都市2019年中考数学模拟试卷

2019年四川省成都市中考数学模拟试卷一.选择题(满分30分,每小题3分)1.4的绝对值为()A.±4 B.4 C.﹣4 D.22.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×1073.下列整式的运算中,正确的是()A.(a2)3=a5B.4a2﹣2a2=2a2C.a2•a3=a6D.a3+a2=a54.使函数有意义的自变量x的取值范围为()A.x≠0 B.x≥﹣1 C.x≥﹣1且x≠0 D.x>﹣1且x≠0 5.在Rt△ABC中,AC=8,BC=6,则cos A的值等于()A.B.C.或D.或6.方程x(x﹣1)=0的根是()A.0 B.1 C.0或1 D.无解7.如图,D是△ABC内一点,BD⊥CD,E、F、G、H分别是边AB、BD、CD、AC的中点.若AD =10,BD=8,CD=6,则四边形EFGH的周长是()A.24 B.20 C.12 D.108.已知点(3,﹣4)在反比例函数y=的图象上,则下列各点也在该反比例函数图象上的是()A.(3,4)B.(﹣3,﹣4)C.(﹣2,6)D.(2,6)9.矩形具有而菱形不一定具有的性质是()A .对边分别相等B .对角分别相等C .对角线互相平分D .对角线相等10.如图,在平面直角坐标系中,已知点O (0,0),A (6,0),B (0, 8),以某点为位似中心,作出与△AOB 的位似比为k 的位似△CDE ,则位似中心的坐标和k 的值分别为( )A .(0,0),2B .(2,2),C .(2,2),2D .(1,1),二.填空题(满分16分,每小题4分) 11.如果x :y =1:2,那么= .12.分解因式:4m 2﹣16n 2= .13.如图,迎宾公园的喷水池边上有半圆形的石头(半径为1.12m )作为装饰,其中一块石头正前方5.88m 处有一彩灯,某一时刻,该灯柱落在此半圆形石头上的影长为0.56πm .如果同一时刻,一直立0.6m 的杆子的影长为1.8m ,则灯柱的高 m .14.如图,P 1、P 2、P 3是同一双曲线上的三点,过这三点分别作y 轴的垂线,垂足分别为A 1、A 2、A 3,连结OP 1、OP 2、OP 3,得到△A 1OP 1、△A 2OP 2,△A 3OP 3的面积分别为S 1、S 2、S 3,那么S 1、S 2、S 3,的大小关系为 .三.解答题15.(1)计算:cos45°﹣2sin30°+(﹣2)0(2)解方程:(x﹣2)2=(2x+3)216.先化简,再求值:,其中x=3.17.为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类女生有名,D类男生有名,将上面条形统计图补充完整;(2)扇形统计图中“课前预习不达标”对应的圆心角度数是;(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,18.如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)19.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,直线AB与反比例函数y=(m>0)在第一象限的图象交于点C、点D,其中点C的坐标为(1,8),点D的坐标为(4,n).(1)分别求m、n的值;(2)连接OD,求△ADO的面积.20.如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P.【观察猜想】①AE与BD的数量关系是;②∠APD的度数为.【数学思考】如图2,当点C在线段AB外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;【拓展应用】如图3,点E为四边形ABCD内一点,且满足∠AED=∠BEC=90°,A E=DE,BE=CE,对角线AC、BD交于点P,AC=10,则四边形ABCD的面积为.四.填空题21.设α、β是方程x2+2020x﹣2=0的两根,则(α2+2020α﹣1)(β2+2020β+2)=.22.如图,菱形ABCD中,点E、F在对角线BD上,BE=DF=BD,若四边形AECF为正方形,则tan∠ABE=.23.要使关于x的方程的解是正数,a的取值范围是.24.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB 的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为.25.如图,已知直线与双曲线y=相交于A、B两点,与x轴,y轴分别相交于D、C两点,若AB=5,则k=.五.解答题26.(10分)某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.该产品在第x周(x为正整数,且1≤x≤8)个销售周期的销售价格为y元,y与x之间满足如图所示的一次函数.(1)求y与x之间的函数关系;(2)产品在第x个销售周期的销售数量为p万台,p与x之间满足:.已知在某个销售周期的销售收入是16000万元,求此时该产品的销售价格是多少元?27.(10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥BD交CB的延长线于点G.(1)求证:DE∥BF.(2)若∠G=90°.①求证:四边形DEBF是菱形;②当AG=4,BG=3时,求四边形DEBF的面积.28.(10分)如图,直线y=2x+2与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P 点坐标;(3)点N(a,1)是反比例函数y=(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.。

2018-2019年最新四川省成都市中考数学考前终极押题密卷【共3卷】【精准押题】

2018-2019年最新四川省成都市中考数学考前终极押题密卷【共3卷】【精准押题】

2018-2019年最新成都市中考数学押题密卷A卷注:全面覆盖成都市中考考点,通过严格的分析整理而成,对今年的考试方向进行有效预测,密卷共分为三卷。

本密卷为押题卷一。

一、选择题(每题4分,共40分)1.(4分)-2的绝对值是()A.2 B.-2 C.12D.-122.(4分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1073.(4分)下列运算正确的是()235222353475.(4分)我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A.71.8 B.77 C.82 D.95.76.(4分)如图是由6个大小相同的正方体组成的几何体,它的左视图是()A.B.C.D.7.(4分)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.(6,1)B.(0,1)C.(0,-3)D.(6,-3)8.(4分)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°9.(4分)下列函数中,y随x的增大而减少的函数是()A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x10.(4分)用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A.2πcm B.1.5cm C.πcm D.1cm二、填空题(每题4分,共16分)靶子,试估计小射手依次击中靶子的概率为_____。

┃附加五套中考模拟卷┃2018-2019学年四川省成都市成华区中考数学二诊试卷

┃附加五套中考模拟卷┃2018-2019学年四川省成都市成华区中考数学二诊试卷

2019年四川省成都市成华区中考数学二诊试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共10个小题,每小题3分,共30分)1.在2,,0,﹣2四个数中,最大的一个数是()A.2 B.C.0 D.﹣22.下面所给几何体的俯视图是()A.B.C.D.3.下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8C. =±3 D. =﹣24.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10105.下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.6.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115°C.125°D.130°7.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=48.已知关于x的方程x2+2x﹣(m﹣2)=0有两个不相等的实数根,则m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<19.如图,点A、B、C、D在⊙O上,DE⊥OA,DF⊥OB,垂足分别为E,F,若∠EDF=50°,则∠C的度数为()A.40° B.50° C.65° D.130°10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a<0;②c>0;③a﹣b+c<0;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共4个小题,第小题4分,共16分)11.因式分解:a2﹣9= .12.函数中,自变量x的取值范围是.13.如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=2,则菱形ABCD的周长是.14.如图,在矩形ABCD中,点E在边BC上,BE=EC=2,且AE=AD,以A为圆心,AB长为半径作圆弧AE于点F,则扇形ABF的面积是(结果保留π).三、解答题(本大题共6个小题,共54分)15.(1)计算:|1﹣|﹣3tan30°+(π﹣2017)0﹣(﹣)﹣1(2)解不等式组并在数轴上表示它的解集.16.先化简(1﹣)•,再在1,2,3中选取一个适当的数代入求值.17.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)18.在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是,乙成绩的平均数是;(2)经计算知S甲2=6,S乙2=42.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.19.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求一次函数和反比例函数的解析式;(2)求点C的坐标;(3)结合图象直接写出不等式0<x+m≤的解集.20.已知:AB为⊙O的直径,C是⊙O上一点,如图,AB=12,BC=4.BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.(1)求CE的长;(2)延长CE到F,使EF=,连接BF并延长BF交⊙O于点G,求BG的长;(3)在(2)的条件下,连接GC并延长GC交BH于点D,求证:BD=BG.一、填空题(本大题共5小题,每小题4分,共20分)21.在平面直角坐标系xOy中,点P(4,a)在正比例函数y=x的图象上,则点Q(2a﹣5,a)关于y轴的对称点Q'坐标为.22.定义新运算:a*b=a(b﹣1),若a、b是关于一元二次方程x2﹣x+m=0的两实数根,则b*b﹣a*a的值为.23.如图,AB是⊙O的直径,AB=10,∠A=40°,点D为弧BC的中点,点P是直径AB上的一个动点,PC+PD的最小值为.24.如图,已知双曲线y=与直线y=k2x(k1,k2都为常数)相交于A,B两点,在第一象限内双曲线y=上有一点M(M在A的左侧),设直线MA,MB分别与x轴交于P,Q两点,若MA=m•AP,MB=n•QB,则n﹣m的值是.25.如图,在正n边形(n为整数,且n≥4)绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为正n边形的“叠弦角”,△AOP为“叠弦三角形”.以下说法,正确的是.(填番号)①在图1中,△AOB≌△AOD';②在图2中,正五边形的“叠弦角”的度数为360°;③“叠弦三角形”不一定都是等边三角形;④正n边形的“叠弦角”的度数为60°﹣.二、解答题(本大题共3个小题,共30分)26.骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,某车行经营的A型车去年3月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年3月份与去年3月份卖出的A型车数量相同,则今年3月份A型车销售总额将比去年3月份销售总额增加25%.(1)求今年3月份A型车每辆销售价多少元?(2)该车行计划今年4月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,A、B两种型号车的进货和销售价格如下表,问应如何进货才能使这批车获利最多?27.(1)如图1,在正方形ABCD中,点O是对角线AC的中点,点E是边BC上一点,连接OE,过点O作OE的垂线交AB于点F.求证:OE=OF.(2)若将(1)中,“正方形ABCD”改为“矩形ABCD”,其他条件不变,如图2,连接EF.ⅰ)求证:∠OEF=∠BAC.ⅱ)试探究线段AF,EF,CE之间数量上满足的关系,并说明理由.28.如图,抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣1,0),B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)连接BC,点P为抛物线上第一象限内一动点,当△BCP面积最大时,求点P的坐标;(3)设点D是抛物线的对称轴上的一点,在抛物线上是否存在点Q,使以点B,C,D,Q为顶点的四边形为平行四边形?若存在,求出点Q的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.在2,,0,﹣2四个数中,最大的一个数是()A.2 B.C.0 D.﹣2【考点】2A:实数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得2>>0>﹣2,∴在2,,0,﹣2四个数中,最大的一个数是2.故选:A.2.下面所给几何体的俯视图是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】直接利用俯视图的观察角度从上往下观察得出答案.【解答】解:由几何体可得:圆锥的俯视图是圆,且有圆心.故选:B.3.下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8C. =±3 D. =﹣2【考点】46:同底数幂的乘法;22:算术平方根;24:立方根;4C:完全平方公式.【分析】利用同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式分别计算后即可确定正确的选项.【解答】解:A、(a﹣3)2=a2﹣6a+9,故错误;B、a2•a4=a6,故错误;C、=3,故错误;D、=﹣2,故正确,故选D.4.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.5.下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.6.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115°C.125°D.130°【考点】JA:平行线的性质.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.7.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4【考点】A6:解一元二次方程﹣配方法.【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.【解答】解:x2﹣6x﹣5=0,x2﹣6x=5,x2﹣6x+9=5+9,(x﹣3)2=14,故选:A.8.已知关于x的方程x2+2x﹣(m﹣2)=0有两个不相等的实数根,则m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<1【考点】AA:根的判别式.【分析】关于x的方程x2+2x﹣(m﹣2)=0有两个不相等的实数根,即判别式△=b2﹣4ac>0,即可得到关于m 的不等式,从而求得m的范围.【解答】解:∵关于x的方程x2+2x﹣(m﹣2)=0有两个不相等的实数根,∴△=b2﹣4ac=22+4×1×(m﹣2)=4m﹣4>0,解得:m>1.故选C.9.如图,点A、B、C、D在⊙O上,DE⊥OA,DF⊥OB,垂足分别为E,F,若∠EDF=50°,则∠C的度数为()A.40° B.50° C.65° D.130°【考点】M5:圆周角定理;M2:垂径定理.【分析】根据四边形的内角和等于360°求出∠AOB,根据圆周角定理计算即可.【解答】解:∵DE⊥OA,DF⊥OB,∴∠OED=∠OFD=90°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,由圆周角定理得,∠C=∠AOB=65°,故选:C.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a<0;②c>0;③a﹣b+c<0;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4【考点】H4:二次函数图象与系数的关系.【分析】根据图象可知开口方向,对称轴的位置,与x轴交点的个数等信息,从而可判断出答案.【解答】解:抛物线开口向下:a<0,故①正确;抛物线与y轴交点位于y轴的正半轴:c>0,故②正确;当x=﹣1时,y=a﹣b+c<0,故③正确,抛物线与x轴有两个交点,∴△>0,故④正确二、填空题(本大题共4个小题,第小题4分,共16分)11.因式分解:a2﹣9= (a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】a2﹣9可以写成a2﹣32,符合平方差公式的特点,利用平方差公式分解即可.【解答】解:a2﹣9=(a+3)(a﹣3).12.函数中,自变量x的取值范围是x≥3且x≠4 .【考点】E4:函数自变量的取值范围;62:分式有意义的条件;72:二次根式有意义的条件.【分析】根据二次根式的意义可知:x﹣3≥0,根据分式的意义可知:x﹣4≠0,就可以求出x的范围.【解答】解:根据题意得:x﹣3≥0且x﹣4≠0,解得:x≥3且x≠4.13.如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=2,则菱形ABCD的周长是16 .【考点】L8:菱形的性质;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理得出EO是△ABC的中位线,进而得出BC的长,即可得出菱形周长.【解答】解:∵在菱形ABCD中,AC、BD相交于点O,E为AB的中点,∴EO是△ABC的中位线,∵OE=2,∴BC=4,则菱形ABCD的周长是:4×4=16.故答案为:16.14.如图,在矩形ABCD中,点E在边BC上,BE=EC=2,且AE=AD,以A为圆心,AB长为半径作圆弧AE于点F,则扇形ABF的面积是π(结果保留π).【考点】MO:扇形面积的计算;LB:矩形的性质.【分析】根据直角三角形的性质得出∠BAE=30°,得出∠DAE=60°,根据扇形的面积公式得出答案即可.【解答】解:∵BE=EC=2,且AE=AD,∴AD=AE=4,∴∠BAE=30°,∴∠DAE=60°,∴AB==2,∴S△ABF==π,故答案为π.三、解答题(本大题共6个小题,共54分)15.(1)计算:|1﹣|﹣3tan30°+(π﹣2017)0﹣(﹣)﹣1(2)解不等式组并在数轴上表示它的解集.【考点】CB:解一元一次不等式组;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;C4:在数轴上表示不等式的解集;T5:特殊角的三角函数值.【分析】(1)根据实数的混合运算法则计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=﹣1﹣3×+1﹣3=﹣1﹣+1﹣3=﹣3;(2)解不等式①,得:x<,解不等式②,得:x≥﹣1,∴不等式的解集为﹣1≤x<,表示在数轴上如下:16.先化简(1﹣)•,再在1,2,3中选取一个适当的数代入求值.【考点】6D:分式的化简求值.【分析】此题只需先进行分式运算得到最简结果,再挑选出一个使分式有意义的值代入求得结果即可.【解答】解:(1﹣)•,=•,=,∵x﹣1≠0,x﹣3≠0,∴x≠1,x≠3,∴把x=2代入得:原式==﹣2.17.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.18.在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是83 ,乙成绩的平均数是82 ;(2)经计算知S甲2=6,S乙2=42.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.【考点】X6:列表法与树状图法;W1:算术平均数;W7:方差.【分析】(1)根据平均数的定义可列式计算;(2)由平均数所表示的平均水平及方差所衡量的成绩稳定性判断可知;(3)列表表示出所有等可能的结果,找到能使该事件发生的结果数,根据概率公式计算可得.【解答】解:(1)==83(分),==82(分);(2)选拔甲参加比赛更合适,理由如下:∵>,且S甲2<S乙2,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.(3)列表如下:由表格可知,所有等可能结果共有25种,其中两个人的成绩都大于80分有12种,∴抽到的两个人的成绩都大于80分的概率为.故答案为:(1)83,82.19.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求一次函数和反比例函数的解析式;(2)求点C的坐标;(3)结合图象直接写出不等式0<x+m≤的解集.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先把A(2,1)代入y=x+m得到m=﹣1,再把A(2,﹣1)代入y=可求出k=﹣2,从而得出一次函数和反比例函数的解析式;(2)令y=0,求得一次函数与x轴的交点坐标即为点C的坐标;(3)观察函数图象得到不等式0<x+m≤的解集为1<x≤2.【解答】解:(1)∵一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,点A的坐标为(2,1),∴1=2+m,解得m=﹣1,1=,解得k=﹣2.故一次函数的解析式为y=x﹣1,反比例函数的解析式为y=;(2)令y=0,则0=x﹣1,解得x=1.故点C的坐标为(1,0);(3)观察函数图象得到不等式0<x+m≤的解集为1<x≤2.20.已知:AB为⊙O的直径,C是⊙O上一点,如图,AB=12,BC=4.BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.(1)求CE的长;(2)延长CE到F,使EF=,连接BF并延长BF交⊙O于点G,求BG的长;(3)在(2)的条件下,连接GC并延长GC交BH于点D,求证:BD=BG.【考点】MC:切线的性质;KQ:勾股定理;S9:相似三角形的判定与性质.【分析】(1)只要证明△ABC∽△CBE,可得=,由此即可解决问题.(2)连接AG.只要证明△ABG∽△FBE,可得=,由BE==4,再求出BF,即可解决问题.(3)通过计算首先证明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可证明.【解答】解:(1)∵BH与⊙O相切于点B,∴AB⊥BH,∵BH∥CE,∴CE⊥AB,∵AB是直径,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC,∴△ABC∽△CBE,∴=,∵AC==4,∴CE=4.(2)连接AG.∵∠FEB=∠ACB=90°,∠EBF=∠ABC,∴△ABG∽△FBE,∴=,∵BE==4,∴BF==3,∴=,∴BG=8.(3)易知CF=4+=5,∴GF=BG﹣BF=5,∴CF=GF,∴∠FCG=∠FGC,∵CF∥BD,∴∠GCF=∠BDG,∴∠BDG=∠BGD,∴BG=BD.一、填空题(本大题共5小题,每小题4分,共20分)21.在平面直角坐标系xOy中,点P(4,a)在正比例函数y=x的图象上,则点Q(2a﹣5,a)关于y轴的对称点Q'坐标为(1,2).【考点】F8:一次函数图象上点的坐标特征;P5:关于x轴、y轴对称的点的坐标.【分析】把点P坐标代入正比例函数解析式可得a的值,进而求得Q点的坐标,然后根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:∵点P(4,a)在正比例函数y=x的图象上,∴a=2,∴2a﹣5=﹣1,∴Q(﹣1,2),∴点Q(﹣1,2)关于y轴的对称点Q′的坐标为(1,2),故答案为:(1,2).22.定义新运算:a*b=a(b﹣1),若a、b是关于一元二次方程x2﹣x+m=0的两实数根,则b*b﹣a*a的值为0 .【考点】A3:一元二次方程的解;2C:实数的运算;AB:根与系数的关系.【分析】由a、b是关于一元二次方程x2﹣x+m=0的两实数根,可得出a2﹣a=﹣m、b2﹣b=﹣m,根据定义新运算的定义式,将b*b﹣a*a展开,代入数据即可得出结论.【解答】解:∵a、b是关于一元二次方程x2﹣x+m=0的两实数根,∴a2﹣a=﹣m,b2﹣b=﹣m,∴b*b﹣a*a=b(b﹣1)﹣a(a﹣1)=b2﹣b﹣(a2﹣a)=﹣m﹣(﹣m)=0.故答案为:0.23.如图,AB是⊙O的直径,AB=10,∠A=40°,点D为弧BC的中点,点P是直径AB上的一个动点,PC+PD的最小值为5.【考点】M5:圆周角定理;PA:轴对称﹣最短路线问题.【分析】作出D关于AB的对称点D′,则PC+PD的最小值就是CD′的长度,在△COD′中根据边角关系即可求解.【解答】解:作出D关于AB的对称点D′,连接OC,OD′,CD′.又∵点C在⊙O上,∠CAB=40°,D为的中点,即=,∴∠BAD′=∠CAB=20°.∴∠CAD′=60°.∴∠COD′=120°,∵OC=OD′=AB=5,∴CD′=5.故答案为:5.24.如图,已知双曲线y=与直线y=k2x(k1,k2都为常数)相交于A,B两点,在第一象限内双曲线y=上有一点M(M在A的左侧),设直线MA,MB分别与x轴交于P,Q两点,若MA=m•AP,MB=n•QB,则n﹣m的值是 2 .【考点】G8:反比例函数与一次函数的交点问题.【分析】作MH⊥y轴,AN⊥y轴,BI⊥y轴分别于点H、N、I,则MH∥AN∥BI,ON=OI,根据平行线分线段成比例定理即可求解.【解答】解:作MH⊥y轴,AN⊥y轴,BI⊥y轴分别于点H、N、I,则MH∥AN∥BI.∵反比例函数是中心对称图形,∴ON=OI.∵MH∥AN∥BI,MA=m•AP,MB=n•QB∴m==,n===,又∵ON=OI,∴n==+2=m+2,∴n﹣m=2.故答案是:2.25.如图,在正n边形(n为整数,且n≥4)绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为正n边形的“叠弦角”,△AOP为“叠弦三角形”.以下说法,正确的是①.(填番号)①在图1中,△AOB≌△AOD';②在图2中,正五边形的“叠弦角”的度数为360°;③“叠弦三角形”不一定都是等边三角形;④正n边形的“叠弦角”的度数为60°﹣.【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KM:等边三角形的判定与性质;L1:多边形.【分析】①先由正方形的性质和旋转的性质得出AB=AD′,再根据HL得出Rt△ABO≌Rt△AD′O即可;②先判断出∴△APE≌△AOE′,再判断出Rt△AEM≌Rt△ABN,再判断出Rt△APM≌Rt△AON,依此计算即可;③先判断出△APF≌△AE′F′,再用旋转角为60°,从而得出△PAO是等边三角形;④用②的方法求出正n边形的“叠弦角”的度数即可.【解答】解:①∵四边形ABCD是正方形,∴AB=AD,∠D=∠B=90°,由旋转的性质得,AD=AD′,∠D=∠D′=90°,∴AB=AD′,在Rt△ABO与Rt△AD′O中,,∴Rt△ABO≌Rt△AD′O,故①正确;②如图2,作AM⊥DE于M,作AN⊥CB于N.∵五边形ABCDE是正五边形,由旋转知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60°,∴∠EAP=∠E'AO,在△APE与△AOE'中,,∴△APE≌△AOE′(ASA),∴∠OAE′=∠PAE.在Rt△AEM和Rt△ABN中,,∴Rt△AEM≌Rt△ABN (AAS),∴∠EAM=∠BAN,AM=AN.在Rt△APM和Rt△AON中,,∴Rt△APM≌Rt△AON (HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB,∴∠OAE'=∠OAB==24°,故②错误;③如图3,∵六边形ABCDEF和六边形A′B′C′E′F′是正六边形,∴∠F=F′=120°,由旋转得,AF=AF′,EF=E′F′,∴△APF≌△AE′F′,∴∠PAF=∠E′AF′,由旋转得,∠FAF′=60°,AP=AO∴∠PAO=∠FAO=60°,∴△PAO是等边三角形,故③错误.④由图1中的多边形是四边形,图2中的多边形五边形,图3中的多边形是六边形,∴图n中的多边形是正(n+3)边形,同②的方法得,∠OAB=[(n+3﹣2)×180°÷(n+3)﹣60°]÷2=60°﹣,故④错误.故答案:①.二、解答题(本大题共3个小题,共30分)26.骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,某车行经营的A型车去年3月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年3月份与去年3月份卖出的A型车数量相同,则今年3月份A型车销售总额将比去年3月份销售总额增加25%.(1)求今年3月份A型车每辆销售价多少元?(2)该车行计划今年4月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,A、B两种型号车的进货和销售价格如下表,问应如何进货才能使这批车获利最多?【考点】FH:一次函数的应用;B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设去年A型车每辆的售价为x元,则今年A型车每辆的售价为(x+400)元,根据单价=总价÷数量结合去年与今年销售数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(50﹣m)辆,根据总利润=单辆利润×购进数量,即可得出w关于m的函数关系式,再根据B型车的进货数量不超过A型车数量的两倍,可求出m的取值范围,根据一次函数的性质即可解决最值问题.【解答】解:(1)设去年A型车每辆的售价为x元,则今年A型车每辆的售价为(x+400)元,根据题意得: =,解得:x=1600,经检验,x=1600是原方程的解,∴x+400=2000.答:今年3月份A型车每辆销售价为2000元.(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(50﹣m)辆,根据题意得:w=m+(50﹣m)=﹣100m+50000.又∵50﹣m≤m,∴m≥16.∵k=﹣100<0,∴当m=17时,w取最大值.答:购进A型车17两,B型车33辆,该车行获得的利润最多.27.(1)如图1,在正方形ABCD中,点O是对角线AC的中点,点E是边BC上一点,连接OE,过点O作OE的垂线交AB于点F.求证:OE=OF.(2)若将(1)中,“正方形ABCD”改为“矩形ABCD”,其他条件不变,如图2,连接EF.ⅰ)求证:∠OEF=∠BAC.ⅱ)试探究线段AF,EF,CE之间数量上满足的关系,并说明理由.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;LB:矩形的性质.【分析】(1)连接OB,更好正方形的性质得到OB=OA,∠OAB=∠OBA=∠OBC=45°,得到∠AOB=90°,根据全等三角形的判定和性质即可得到结论;(2)①根据已知条件得到O,E,F,B四点共圆,由圆周角定理得到∠OBA=∠OEF,根据矩形的性质即可得到结论;②如图,连接BD,延长EO交AD于G于是到OG=OE,根据线段的垂直平分线的性质得到FG=EF,根据勾股定理即可得到结论.【解答】证明:(1)连接OB,∵在正方形ABCD中,O是AC的中点,∴OB=OA,∠OAB=∠OBA=∠OBC=45°,∴∠AOB=90°,又∵OE⊥OF,∴∠AOF=∠BOE,在△AOF和△BOE中,,∴△AOF≌△BOE,∴OE=OF;(2)①∵∠EOF=∠FBE=90°,∴O,E,F,B四点共圆,∴∠OBA=∠OEF,∵在矩形ABCD中,O是AC的中点,∴OA=OB,∠OAB=∠OBA,∴∠OEF=∠BAC;②如图,连接BD,延长EO交AD于G,∵BD与AC交于O,则△OGD≌△DEB,∴OG=OE,∴AG=CE,∵OF⊥GE,∴FG=EF,在Rt△AGF中,GF2=AG2+AF2,即EF2=CE2+AF2.28.如图,抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣1,0),B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)连接BC,点P为抛物线上第一象限内一动点,当△BCP面积最大时,求点P的坐标;(3)设点D是抛物线的对称轴上的一点,在抛物线上是否存在点Q,使以点B,C,D,Q为顶点的四边形为平行四边形?若存在,求出点Q的坐标;若不存在,说明理由.【考点】HF :二次函数综合题.【分析】(1)设交点式y=a (x+1)(x ﹣3),然后把C 点坐标代入求出a 的值即可得到抛物线的解析式; (2)先利用待定系数法求出直线BC 的解析式为y=﹣x+3,作PM ∥y 轴交BC 于M ,如图1,设P (x ,﹣x 2+2x+3),(0<x <3),则M (x ,﹣x+3),利用三角形面积公式得到∴S △PCB =•3•PM=﹣x 2+,然后根据二次函数的性质求解;(3)如图2,分类讨论:当四边形BCDQ 为平行四边形,设D (1,a ),利用点平移的坐标规律得到Q (4,a ﹣3),然后把Q (4,a ﹣3)代入y=﹣x 2+2x+3中求出a 即可得到Q 点坐标;当四边形BCQD 为平行四边形或四边形BQCD 为平行四边形时,利用同样方法可求出对应Q 点坐标. 【解答】解:(1)设抛物线解析式为y=a (x+1)(x ﹣3), 把C (0,3)代入得a•1•(﹣3)=3,解得a=﹣1,所以抛物线解析式为y=﹣(x+1)(x ﹣3),即y=﹣x 2+2x+3; (2)设直线BC 的解析式为y=kx+m ,把B (3,0),C (0,3)代入得,解得,所以直线BC 的解析式为y=﹣x+3, 作PM ∥y 轴交BC 于M ,如图1,设P (x ,﹣x 2+2x+3),(0<x <3),则M (x ,﹣x+3), ∴PM=﹣x 2+2x+3﹣(﹣x+3)=﹣x 2+3x ,∴S △PCB =•3•PM=﹣x 2+=﹣(x ﹣)2+,当x=时,△BCP 的面积最大,此时P 点坐标为(,);(3)如图2,抛物线的对称轴为直线x=1,当四边形BCDQ 为平行四边形,设D (1,a ),则Q (4,a ﹣3), 把Q (4,a ﹣3)代入y=﹣x 2+2x+3得a ﹣3=﹣16+8+3,解得a=﹣2, ∴Q (4,﹣5);当四边形BCQD 为平行四边形时,设D (1,a ),则Q (﹣2,3+a ),把Q(﹣2,3+a)代入y=﹣x2+2x+3得3+a=﹣4﹣4+3,解得a=﹣8,∴Q(﹣2,﹣5);当四边形BQCD为平行四边形时,设D(1,a),则Q(2,3﹣a),把Q(2,3﹣a)代入y=﹣x2+2x+3得3﹣a=﹣4+4+3,解得a=0,∴Q(2,3),综上所述,满足条件的Q点坐标为(4,﹣5)或(﹣2,﹣5)或(2,3).中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上.) 1.下列数据中,无理数是A .πB .3-C .0D .722 2.新阜宁大桥某一周的日均车流量分别为13,14,11,10,12,12,15(单位:千辆),则这组数据的中位数与众数分别为A .10 ,12B .12 ,10C .12 ,12D .13 ,12 3.据报道2018年前4月,50城市土地出让金合计达到11882亿,比2017年同期的7984亿上涨幅度达到48.8%.其中数值11882亿可用科学计数法表示为A .12101882.1⨯B .1210882.11⨯C .13101882.1⨯D .1310882.11⨯4. 在△ABC 中,∠C =90°,21cos =A ,那么∠B 的度数为 A .60° B .45°C .30°D .30°或60°5.已知方程x 2-x -2=0的两个实数根为x 1、x 2,则代数式x 1+x 2+x 1x 2的值为A .3-B .1C .3D .-16.“人之初性本善”这六个字分别写在某个正方体纸盒的六个面上,将这个正方体展开成如图所示的平面图,那么在原正方体中,和“善”相对的字是A .人B .性C .之D .初 7.如图,已知A 点是反比例函数(0)kyx x=≠ 的图像上一点,AB⊥y 轴于点B ,且△ABO 的面积为3,则k 的值为A .-3B .3C .-6D .68.如图,将半径为2,圆心角为120A 逆时针旋转60︒,点O 、B 的对应点分别为'O ,'B ,连接'BBA .23πB .23π D .23π二、填空题(本大题共有8分.不需写出解答过程,请将答案直接写在答题纸相应位置上.) 9.二次根式x -有意义,则x 的取值范围是 ▲ . 10.若3,2=+=-b a b a ,则=-22b a ▲ .11.要使平行四边形ABCD 是矩形,还需添加的条件是 ▲ (写出一种即可).12.如图,⊙O 内接四边形ABCD 中,点E 在BC 延长线上,∠BOD=160°则∠DCE= ▲ . 13.若点),(b a 在一次函数32-=x y 的图像上,则代数式324--b a 的值是 ▲ .14.如图,边长为2的等边△ABC 中,DE 为中位线,则四边形BCED 15.如图,在4×4正方形格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是 ▲ .16.如图△ABC 中,AB=AC ,∠BAC=120°,∠DAE=60°,BE=4,CD=6,则DE 的长为 ▲ . (第12题图) (第14题图) (第15题图) (第16题图)三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)计算:3127)31(29-++---18.(本题满分6分)解不等式组 ⎪⎩⎪⎨⎧≥-->133252x x x19.(本题满分8分)先化简,再求值:)11(22xy y x y x -÷-+,其中,.20.(本题满分8分)甲、乙两人进行射击训练,两人分别射击12次,下表分别统计了两人的射击成绩.经计算甲射击的平均成绩=8.5x 甲,方差27=12S 甲. (1)求乙射击的平均成绩;(2)你认为甲、乙两人成绩哪个更稳定,并说明理由. 21.(本题满分8分)某小区为了促进生活垃圾的分类处理,将生活垃圾分为:可回收垃圾、厨余垃圾、其他垃圾三类,分别记为A ,B ,C ,并且设置了相应的垃圾箱,依次记为a ,b ,c .(1)若将三类垃圾随机投入三个垃圾箱,请你用树形图的方法求垃圾投放正确的概率: (2)为了调查小区垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总重500kg 生活垃圾,数据如下(单位:kg )22.(本题满分10分)如图,△ABC 与△DEF 边BC 、EF 在同一直线上,AC 与DE 相交于点G ,且∠ABC=∠DEF=90°,AC =DF ,BE =CF.(1)求证:△ABC≌△DEF;(2)若AB =3,DF -EF =1,求EF 的长.23.(本题满分10分)如图,△ABC 中,AB =BC.(1)用直尺和圆规作△ABC 的中线BD ;(不要求写作法,保留作图痕迹);(2)在(1)的条件下,若BC =6,BD =4,求A cos 的值. 24.(本题满分10分)某厂制作甲、乙两种环保包装盒。

四川成都市2018年中考数学模拟试卷一(无答案)-学习文档

成都市2019年中考数学模拟试卷一A 卷一、选择题(每小题3分,共30分)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数。

若气温为零上8℃记作℃+8,则℃2-表示气温为( )A. 零上2℃B. 零下2℃C. 零上8℃D. 零下8℃2.下列各式计算正确的是( )A. x x x 632=∙B. x x x =-23C. x x 4)2(2=D. x x x 326=÷3.下图是一个螺母零件的立体图形,它的左视图是( )4.函数51-=x y 中,自变量x 的取值范围是( )A. 5≥xB. 5>xC. 5<xD. 5≤x5.已知点()1,a A 与点()b B ,4-关于原点对称,则b a +的值为( )A. 5B. 5-C. 3D. 3-6.如图,把一块含有30°的直角三角形的一个锐角顶点放在直尺的一边上。

若︒=∠451,则2∠的度数为( )A. 115°B. 105°C. 125°D. 135°7.如图,直径AB 与弦CD 互相垂直,交于点E ,若82==EB AE ,,则CD 的长为( )A. 3B. 4C. 8D. 68.一次函数b ax y +=的图象如图所示,则不等式0≥+b ax 的解集是( )A. 2≥xB. 2≤xC. 4≥xD. 4≤x9.“连城读书月”活动结束后,对八年级(三)班45人所阅读书籍数量情况的统计结果如下表所)A.平均数B.中位数C.众数D.方差10.如图,四边形ABCD 和四边形D C B A ''''是以点O 为位似中心的位似图形。

若32∶∶='A O OA ,则四边形ABCD 和四边形D C B A ''''的面积比为( )A. 4∶9B. 2∶5C. 2∶3D. 32∶ 二、填空题(每小题4分,共16分)11.如图,在ABC Rt △中,B ∠的度数是 .12.计算:=---1112x x x .13.一次函数m x y +-=2的图象经过点()32,-P ,且与x 轴,y 轴分别交于点A ,B ,则△AOB 的面积是 .14.在△ABC 中,b AC BC AB ===,,232,且关于x 的方程042=+-b x x 有两个相等的实数根,则AC 边上的中位线长为 .三、解答题15.(每小题6分,共12分)(1)计算:()102123360sin 2-⎪⎭⎫ ⎝⎛--+-+︒π (2)解不等式组:()⎪⎩⎪⎨⎧-≤+-<-②①x x x x 3213341372 16.(本题满分6分) 先化简,再求值:y y x y x y x -+∙⎪⎪⎭⎫ ⎝⎛-2,其中32==y x ,. 17.(本题8分)如图,甲、乙两数学兴趣小组测量山CD 的高度。

2019 年(成都)中考押题卷 数学一

(- 2)2★绝密★2019 年(成都)中考押题卷初中数学(一)(考试时间 120 分钟,满分 150 分)A 卷(100 分)一.选择题(共 10 小题,每小题 3 分)1. 绝对值为 1 的实数共有()A .0 个B .1 个C .2 个D .4 个2. 我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg 的煤所产生的能量.把130000000kg 用科学记数法可表示为( )A .13⨯107kgB . 0.13⨯108kg C .1.3⨯107kgD .1.3⨯108kg3. 下列计算正确的是()A . (x + y ) = x 2+ y2B . ⎛- 1 ⎝ 2⎫3xy 2 ⎪ ⎭= - 1 6x 3 y6 C . x 6÷ x 3= x2D . = 24. 下列立体图形中,主视图是三角形的是()A .B .C .D .5.如图, AB // CD , ∠1 = 45︒, ∠3 = 80︒,A B ∥C D ,则∠2 的度数为()A .30°B .35°C .40°D .45°6. 下列命题为真命题的是()A. 两条直线被一组平行线所截,所得的对应线段成比例B. 相似三角形面积之比等于相似比C. 对角线互相垂直的四边形是菱形D. 顺次连接矩形各边的中点所得的四边形是正方形7. 如图所示, AB 是⊙ O 的直径,PA 切⊙ O 于点 A ,线段 PO 交⊙ O 于点C ,连结 BC ,若∠P = 36︒ ,则∠B 等于()A .27°B .32°C .36°D .54°8. 若关于 x 的一元二次方程(m - 2)x 2 - 2x +1 = 0 有实根,则 m 的取值范围是()A.m < 3B.m ≤ 3C.m < 3且m ≠ 2D.m ≤ 3且m ≠ 29. 已知一次函数 y = kx - m - 2x 的图象与 y 轴的负半轴相交,且函数值 y 随自变量 x 的增大而减小,则下列结论正确的是( )A . k < 2, m > 0B . k < 2, m < 0C . k > 2, m > 0D . k < 0, m < 010. 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )A.(4 + 5 )cmB. 9cm二.填空题(共 4 小题,每小题 4 分,共 16 分)11. 因式分解: x 2y - 4 y 3 =.12. 已知点 A(x 1 , y 1 )、B (x 2 , y 2 ) 在直线 y = kx + b 上,且直线经过第一、二、四象限,当x 1 < x 2 时, y 1 与 y 2 的大小关系为.D. 6 2cm C. 4 5cm甲 乙 ⎪ 13. 甲、乙两名运动员进行了 5 次百米赛跑测试,两人的平均成绩都是 13.3 秒,而 S 2=3.7,S 2=6.25,则两人中成绩较稳定的是.14.已知关于 x 的分式方程三.解答题(共 6 小题)x x - 3 - 2 = k x - 3有一个正数解,则 k 的取值范围为 .15.(1)计算:(-1)2018+ ⎛- ⎝ 1 ⎫-2⎪ 2 ⎭- 2 - + 4 sin 60︒(2)解方程: 3x (x - 2) = x - 216.化简代数式: ⎛ 3x - x ⎫ x ⎧x - 2(x -1) ≥ 1 2,再从不等式组⎨的解集中取一 ⎝ x -1 x +1⎭ x -1 ⎩6x +10 > 3x +1个合适的整数值代入,求出代数式的值.12 ÷17.一艘轮船位于灯塔P 南偏西 60°方向的A 处,它向东航行 20 海里到达灯塔P 南偏西45°方向上的B 处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P 的最短距离.(结果保留根号)18.在一个不透明的盒子中装有大小和形状相同的 3 个红球和 2 个白球,把它们充分搅匀.(1)“从中任意抽取1 个球不是红球就是白球”是事件,“从中任意抽取1 个球是黑球”是事件;(2)从中任意抽取1 个球恰好是红球的概率是;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.19.如图,一次函数y =-1x +5的图象与反比例函数y =k (k > 0)的图象交于A ,B 两2 2 x点,过A 点作x 轴的垂线,垂足为M ,△ AOM 面积为 1.(1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA +PB 的值最小,并求出其最小值和P 点坐标.20.如图,在直角三角形ABC 中,∠ACB = 90︒,点H 是△ ABC 的内心,AH 的延长线和三角形ABC 的外接圆O 相交于点D ,连结BD .(1)求证:DH =DB ;(2)过点D 作BC 的平行线交AC 、AB 的延长线分别于点E 、F ,已知CE =1,圆O 的直径为5 .①求证:EF 为圆O 的切线;②求DF 的长.7 B 卷(50 分)一.填空题(共 5 小题,每小题 4 分,共 20 分)21. 关于 x 的一元二次方程 x2- 2kx - k 2 = 0 的两个实数根分别是 x 、x ,且 x 2 + x 2 = 4 ,1212则 x 2 - x x + x 2的值是.11 2222. 如图,正六边形内接于⊙O ,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率 是.第 22 题图23. 如图,菱形 OABC 的一边 OA 在 x 轴的负半轴上,O 是坐标原点,A 点坐标为(﹣10,0),对角线 AC 和 OB 相交于点 D 且 AC •OB =160.若反比例函数 y = k(x < 0)的图象x经过点 D ,并与 BC 的延长线交于点 E ,则 S △OCE :S △OAB =.第 23 题图24. 如图,△ABC 是等边三角形,AB =,点 D 是边 BC 上一点,点 H 是线段 AD 上一点,连接 BH 、CH .当∠BHD =60°,∠AHC =90°时,DH =.第 24 题图25. 如图,抛物线 y = ax2+ bx + c (a ,b ,c 是常数,a ≠0)与 x 轴交于 A ,B 两点,顶点P (m ,n ).给出下列结论:①2a +c <0;②若( - 3 , y ),( - 1 , y ),( 1, y )在抛物线上,则 y > y > y ;2122231 2 3③关于 x 的方程 ax 2+bx +k =0 有实数解,则 k >c ﹣n ; ④当 n = - 1 时,△ABP 为等腰直角三角形.a其中正确结论是(填写序号).二.解答题(共 3 小题)26. “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为 30 元/件,每天销售 y (件)与销售单价 x (元)之间存在一次函数关系,如图所示.(1) 求 y 与 x 之间的函数关系式;(2) 如果规定每天漆器笔筒的销售量不低于 240 件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3) 该网店店主热心公益事业,决定从每天的销售利润中捐出 150 元给希望工程,为了保证捐款后每天剩余利润不低于 3600 元,试确定该漆器笔筒销售单价的范围.2 27. 如图(1),已知点 G 在正方形 ABCD 的对角线 AC 上,GE ⊥BC ,垂足为点 E ,GF ⊥CD ,垂足为点 F .(1) 证明与推断:①求证:四边形 CEGF 是正方形; ②推断:AG 的值为 :BE(2) 探究与证明:将正方形 CEGF 绕点 C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段 AG 与 BE 之间的数量关系,并说明理由;(3) 拓展与运用:正方形 CEGF 在旋转过程中,当 B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交 AD 于点 H .若 AG =6,GH = 2 ,则 BC =.2 28. 如图,抛物线 y =﹣x 2+bx +c 和直线 y =x +1 交于 A ,B 两点,点 A 在 x 轴上,点 B 在直线 x =3 上,直线 x =3 与 x 轴交于点 C .(1) 求抛物线的解析式;(2) 点 P 从点 A 出发,以每秒个单位长度的速度沿线段 AB 向点 B 运动,点 Q 从点C 出发,以每秒 2 个单位长度的速度沿线段 CA 向点 A 运动,点 P ,Q 同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为 t 秒(t >0).以 PQ 为边作矩形 PQNM ,使点 N 在直线 x =3 上.①当 t 为何值时,矩形 PQNM 的面积最小?并求出最小面积; ②直接写出当 t 为何值时,恰好有矩形 PQNM 的顶点落在抛物线上.。

四川省成都市数学中考押题卷

四川省成都市数学中考押题卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m,数字0.00000156用科学记数法表示为()A . 0.156×10-5B . 1.56×10-6C . 1.56×10-7D . 15.6×10-72. (2分)某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为()A .B .C .D .3. (2分) (2017八下·永春期末) 下列二次根式中与是同类二次根式的是()A .B .C .D .4. (2分) (2018八上·抚顺期末) 如图,△ABC≌△ADE,∠DAC=60 ,∠BAE=100 ,BC,DE相交于点F,则∠DFB度数是()A . 15B . 20C . 25D . 305. (2分) (2020九上·孝南开学考) 一次函数y=-5x+3的图象经过()A . 一、二、三象限B . 二、三、四象限C . 一、二、四象限D . 一、三、四象限6. (2分)等腰三角形的两条边长分别为3,6,那么它的周长为()A . 15B . 12C . 12或15D . 不能确定二、填空题 (共10题;共10分)7. (1分)估算比较大小:(填“>”、“<”或“=” ) ________8. (1分) (2016七上·青山期中) 多项式 x4﹣ x2﹣x﹣1的次数、项数、常数项分别为________.9. (1分)(2018·井研模拟) 分解因式: =________10. (1分) (2020八下·滨海期末) 当x=﹣1时,代数式x2+2x+1的值是________.11. (1分)在平面坐标系中,第1个正方形ABCD的位置如图所示,点A的坐标为(3,0),点D的坐标为(0,4),延长CB交x轴于点A1 ,作第2个正方形A1B1C1C,延长C1B1交x轴于点A2;作第3个正方形A2B2C2C1 ,…按这样的规律进行下去,第5个正方形的边长为________.12. (1分) (2019七下·苍南期末) 甲、乙两人匀速骑车从相距60千米的AB两地同时出发若两人相向而行,则两人在出发2小时后相遇;若两人同向而行,则甲在他们出发后6小时追上乙,则甲的速度为________千米/小时。

成都市九年级下学期初中毕业生学业考试押题卷数学试卷

成都市九年级下学期初中毕业生学业考试押题卷数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)有下列说法,其中正确说法的个数是()(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数是无限不循环小数.A . 0B . 1C . 2D . 32. (2分)(2017·台湾) 下列哪一个选项中的等式成立()A . =2B . =3C . =4D . =53. (2分) (2020七下·高新期中) 已知二元一次方程组,则x-y=()A . 5B . 4C . 3D . 14. (2分)一元二次方程2x2﹣3x+1=0的根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 只有一个实数根D . 没有实数根5. (2分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A . 70分,70分B . 80分,80分C . 70分,80分D . 80分,70分6. (2分) (2018九下·广东模拟) 如图,BE平分∠DBC,点A是BD上一点,过点A作AE∥BC交BE于点E,∠DAE=56°,则∠E的度数为()A . 56°B . 36°C . 26°D . 28°7. (2分) (2018九下·广东模拟) 一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2 ,则x的取值范围是()A . -2<x<0或x>1B . -2<x<1C . x<-2或x>1D . x<-2或0<x<18. (2分) (2018九下·广东模拟) 如图所示的圆锥体的三视图中,是中心对称图形的是()A . 主视图B . 左视图C . 俯视图D . 以上答案都不对9. (2分) (2018九下·广东模拟) 如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧 AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为点D,E;在点C的运动过程中,下列说法正确的是()A . 扇形AOB的面积为B . 弧BC的长为C . ∠DOE=45°D . 线段DE的长是10. (2分) (2017九下·启东开学考) 已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=()A . a+bB . a﹣2bC . a﹣bD . 3a二、填空题 (共6题;共6分)11. (1分)已知a+b=6,a﹣b=2,则a2﹣b2=________12. (1分) (2018九下·广东模拟) 如果,则m-n的值是________.13. (1分) (2018九下·广东模拟) 如图,在△ABC中,若DE∥BC,,DE=2,则BC的长是________.14. (1分) (2018九下·广东模拟) 分别写有数字0,-1,-2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是________.15. (1分) (2018九下·广东模拟) 若“!”是一种数学运算符号,并且1!= 1; 2!= 2×1= 2; 3!= 3×2×1= 6;4!= 4×3×2×1= 24…………;则的值为________.16. (1分) (2018九下·广东模拟) 如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为________.三、解答题 (共9题;共95分)17. (5分) (2017八上·衡阳期末) 先化简,再求值:,其中 .18. (5分) (2018九下·广东模拟) 先化简,再求值:,其中19. (10分) (2018九下·广东模拟) 如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(保留作图痕迹,不写作法);(2)若(1)中的射线CM交AB于点D,∠A=60º,∠B=40º,求∠BDC.20. (13分) (2018九下·广东模拟) 随着科技的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了________名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为________;(2)将条形统计图补充完整;(3)该校共有2500名学生,请估计该校最喜欢用“微信”进行沟通的学生数有________名;(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.21. (10分) (2018九下·广东模拟) 为了丰富学生的体育生活,学校准备购进一些篮球和足球,已知用900元购买篮球的个数比购买足球的个数少1个,足球的单价为篮球单价的0.9倍.(1)求篮球、足球的单价分别为多少元?(2)如果计划用5000元购买篮球、足球共52个,那么至少要购买多少个足球?22. (10分) (2018九下·广东模拟) 为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23. (15分) (2018九下·广东模拟) 已知抛物线:y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).(1)求证:不论a与m为何值,该抛物线与x轴总有两个公共点;(2)设该抛物线与x轴相交于A、B两点,则线段AB的长度是否与a、m的大小有关系?若无关系,求出它的长度;若有关系,请说明理由;(3)在(2)的条件下,若抛物线的顶点为C,当△ABC的面积等于1时,求a的值.24. (15分) (2018九下·广东模拟) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG = ,AH=3 ,求EM的值.25. (12分) (2018九下·广东模拟) 如图1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90°,EF=3,PF=6,△PEF(点F和点A重合)的边EF和矩形的边AB在同一直线上.现将Rt△PEF从A以每秒1个单位的速度向射线AB方向匀速平移,当点F与点B重合时停止运动,设运动时间为t秒,解答下列问题:(1)如图1,连接PD,填空:∠PFD=________,四边形PEAD的面积是________;(2)如图2,当PF经过点D时,求△PEF运动时间t的值;(3)在运动的过程中,设△PEF与△ABD重叠部分面积为S,请求出S与t的函数关系式.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4、答案:略5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共95分)17-1、18-1、19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档