高一数学专题辅导讲义8平面向量中的重要定理、结论及其应用
平面向量复习基本知识点及结论总结

平面向量复习基本知识点及结论总结平面向量是指在平面上具有大小和方向的量,用箭头表示。
平面向量有两个重要的基本运算:向量的加法和数乘。
1.平面向量的加法:-向量的加法满足交换律:A+B=B+A-向量的加法满足结合律:(A+B)+C=A+(B+C)-零向量的性质:对于任意向量A,有A+0=0+A=A-负向量的性质:对于任意向量A,有A+(-A)=02.平面向量的数乘:-数乘的分配律:k(A+B)=kA+kB-数乘的结合律:(k+m)A=kA+mA- 数乘的分配律:k(lmA)= (klm)A-零向量的数乘:0A=03.平面向量的基本性质和结论:-平行向量:若存在非零实数k,使得A=kB,称向量A与向量B平行。
-相等向量:若AB,CD是向量,则A=C,B=D,则称向量AB和CD相等。
-相反向量:若AB是向量,则存在一个向量BA,满足AB+BA=0,称向量BA是向量AB的相反向量。
-向量共线:若有两个不共线的向量AB和CD,如果存在非零实数k,使得CD=kAB,则称向量CD与向量AB共线。
-平移:若向量u等于向量a加上向量b,即u=a+b,则向量u和向量a平行。
4.向量的模:-向量的模表示向量的长度,通常用,A,表示,它的计算公式为,A,=√(x²+y²),其中(x,y)是向量A的坐标。
5.向量的共线与垂直:-向量共线:若向量A与向量B不为零向量且存在非零实数k,使得A=kB,则称向量A与向量B共线。
-向量垂直:若点A的坐标(x₁,y₁)和点B的坐标(x₂,y₂)满足x₁x₂+y₁y₂=0,则称向量AB垂直。
6.单位向量与方向角:-单位向量:向量长度为1的向量称为单位向量。
-方向角:向量与x轴的夹角称为它的方向角,用θ表示。
以上是平面向量的基本知识点和结论的总结,掌握这些知识可以帮助我们进行平面向量的运算、证明和推断。
为了更好地理解和应用平面向量,需要进行大量的练习和实践。
高一数学平面向量知识点复习ppt公开课获奖课件

∴ λ= 5 ,μ=-12 2
第8页
三、两个重要定理
1、向量共线充要条件
向量b 与非零向量 a 共线充要条件是有且只有
一个实数λ,使得 b a
注意:这是判断两个向量共线(平行)重要措施。
2、平面向量基本定理
假如 e1, e2 是同一个平面内两个不共线向量,
(2)函数 y cos(x ) 2图象通过怎样
平移,可以得到函数 y 3cos x图象?
第14页
六、正弦定理及其变形公式
a b c 2R sin A sin B sin C
S ABC
1 bc sin 2
A
1 ca sin 2
B
1 2
ab sin C
a 2R sin A,b 2R sin B, c 2R sin C
使 k a b=λ (a 3b,) 由(k-3,2k+2)= λ(10,-4)
k 3 10 2k 2 4
解得 k 1 , 1
3
3
反向
第12页
五、两个重要公式
1、定比分点坐标公式
设P(x,y),P1(x1,y1),P2(x2,y2),且
P1P PP2,则
x
x1 x2 1
(3)(a b) a b
2、平面向量数量积运算律
思索:你能将此 运算律用坐标表 达出来吗?
(1)a b b a
(2)(a) b (a b) a ( b)
(3)(a b) c a c b c
第6页
例1 判断如下命题及其逆命题真假:
1、若| a|= | b| ,则 a 与 b是共线向量; 2、若 a∥b ,则 a在 b方向上投影是 ;a 3、若 | a || b | 1 ,则 a b 1 ; 4、若a 0,则 0且a 0
【例题讲解】平面向量基本定理的应用完整版课件

a 表示 CD , EF b
CDEF 0 CD⊥EF
解 因为E,F分别是AC,BC的中点
所以 ,EF 1 AB1a , 22
因为 AD1 AB , 所以 AD1 AB ,
4
4
CDCA ADAC 1 AB1ab , 44
由∠A=60°知 AB 与 AC 的夹角为60°
又AB=2AC,即
b 1a 2
,
,
谢谢观看
Thanks
平面向量基本定理的应用
典例讲解
例 如图,已知 OA , OB 不共线,点P在 直线AB上,若
OP1OA2OB ,
证
OA
APt AB
OP
OB OA
证明 因为P,A,B三点共线, 所以 AP 与 AB 共线,设 APt AB ,
则
OPOA APOAt AB
所以 ab|a||b|cos60 |a|1|a|1 1|a|2 ,
2 24
则 CDEF (1ab)1a 1a2 1ab 1a2 11|a|2 0 .
4 2 8 2 8 24
所以 CD EF , 则 CD⊥EF.
平面向量基本定理的应用
知识小结
向量的数量积是否为零,是判断相应的两条线段(直线)是否垂直的重要 方法之一. 用向量方法证明垂直的一般过程为: (1)选取合适的基底,运用平面向量基本定理表示目标向量; (2)求两向量的数量积,代入相应向量模和夹角所满足的关系; (3)证明数量积为零,得到垂直的结论.
则点P在直线,AB上的充要条件是λ1+λ2=1.
总结 若 OA , OB 不共线 OP1OA2OB ,
本题给出了点P在直,线AB上的必要条件, 即λ1+λ2=1.
高一平面向量讲义

平面向量讲义§2.1平面向量的实际背景及基本概念1.向量:既有,又有的量叫向量.2.向量的几何表示:以A为起点,B为终点的向量记作.3.向量的有关概念:(1)零向量:长度为的向量叫做零向量,记作.(2)单位向量:长度为的向量叫做单位向量.(3)相等向量:且的向量叫做相等向量.(4)平行向量(共线向量):方向的向量叫做平行向量,也叫共线向量.①记法:向量a平行于b,记作.②规定:零向量与平行.考点一向量的有关概念例1判断下列命题是否正确,并说明理由.①若a≠b,则a一定不与b共线;②若=,则A、B、C、D四点是平行四边形的四个顶点;③在平行四边形中,一定有=;④若向量a与任一向量b 平行,则a=0;⑤若a=b,b=c,则a=c;⑥若a∥b,b∥c,则a∥c.变式训练1判断下列命题是否正确,并说明理由.(1)若向量a与b同向,且>,则a>b;(2)若向量=,则a与b 的长度相等且方向相同或相反;(3)对于任意=,且a与b的方向相同,则a=b;(4)向量a与向量b平行,则向量a与b方向相同或相反.考点二向量的表示方法例2一辆汽车从A点出发向西行驶了100到达B点,然后又改变方向向西偏北50°走了200到达C点,最后又改变方向,向东行驶了100到达D点.(1)作出向量、、;(2)求|.考点三相等向量与共线向量例3如图所示,O是正六边形的中心,且=a,=b,=c.(1)与a的模相等的向量有多少个?(2)与a的长度相等,方向相反的向量有哪些?(3)与a共线的向量有哪些?(4)请一一列出与a,b,c相等的向量.§2.2平面向量的线性运算1.向量的加法法则(1)三角形法则如图所示,已知非零向量a,b,在平面内任取一点A,作=a,=b,则向量叫做a与b的和(或和向量),记作,即a+b=+=.上述求两个向量和的作图法则,叫做向量求和的三角形法则.对于零向量与任一向量a的和有a+0=+=.(2)平行四边形法则如图所示,已知两个不共线向量a,b,作=a,=b,则O、A、B 三点不共线,以,为邻边作,则对角线上的向量=a+b,这个法则叫做两个向量求和的平行四边形法则.2.向量加法的运算律(1)交换律:a+b=.(2)结合律:(a+b)+c=.3.相反向量(1)定义:如果两个向量长度,而方向,那么称这两个向量是相反向量.(2)性质:①对于相反向量有:a+(-a)=.②若a,b互为相反向量,则a=,a+b=.③零向量的相反向量仍是.4.向量的减法(1)定义:a-b=a+(-b),即减去一个向量相当于加上这个向量的.(2)作法:在平面内任取一点 O ,作=a ,=b ,则向量 a -b =.如图所示.(3)几何意义:如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点 为,被减向量的终点为的向量.例如:-=.5.向量数乘运算实数 λ 与向量 a 的积是一个,这种运算叫做向量的,记作,其长度与方向规定如下: (1)|λ=.(2)λa (a ≠0)的方向错误!;特别地,当 λ=0 或 a =0 时,0a =或 λ0=.6.向量数乘的运算律 (1)λ(a μ)=.(1)(λ+μ)a =. (3)λ(a +b )=.特别地,有(-λ)a ==; λ(a -b )=.7.共线向量定理向量 a (a ≠0)与 b 共线,当且仅当有唯一一个实数 λ,使.8.向量的线性运算向量的、 运算统称为向量的线性运算,对于任意向量 a 、b ,以及任意实数 λ、μ 、μ ,恒 有λ(μ a ±μ b )=.考点一 运用向量加法法则作和向量例 1如图所示,已知向量 a 、b ,求作向量 a +b .变式训练 1 如图所示,已知向量 a 、b 、c ,试作和向量 a +b +c .考点二 运用向量加减法法则化简向量 例 2 化简:(1)+;(2)++;(3)++++. (4)(-)-(-).(5)(-)-(-); (6)(++)-(--).1 212变式训练2如图,在平行四边形中,O是和的交点.(1)+=;(2)++=;(3)++=;(4)++=.变式训练3如图所示,O是平行四边形的对角线、的交点,设=a,=b,=c,求证:b+c-a=.考点三向量的共线例3设e,e是两个不共线的向量,若向量m=-e+(k∈R)与向量n=e-2e共线,则121221()A.k=0B.k=1C.k=2D.k=变式训练4已知△的三个顶点A,B,C及平面内一点P,且++=,则( )A.P在△内部B.P在△外部C.P在边上或其延长线上D.P在边上考点四:三点共线例4两个非零向量a、b不共线.(1)若=a+b,=2a+8b,=3(a-b),求证:A、B、D三点共线;(2)求实数k使+b与2a+共线.变式训练5已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,则一定共线的三点是( ) A.B、C、D B.A、B、C C.A、B、D D.A、C、D变式训练 6 已知平面内 O ,A ,B ,C 四点,其中 A ,B ,C 三点共线,且=+,则 x +y =.§2.3 平面向量的基本定理及坐标表示1.平面向量基本定理 (1)定理:如果 e ,e 是同一平面内的两个向量,那么对于这一平面内的向量 a ,实数 λ ,λ , 使 a =.(2)基底:把的向量 e ,e 叫做表示这一平面内向量的一组基底.2.两向量的夹角与垂直(1)夹角:已知两个和 b ,作=a ,=b ,则=θ (0°≤θ≤180°),叫做向量 a 与 b 的夹角. ①范围:向量 a 与 b 的夹角的范围是. ②当 θ=0°时,a 与. ③当 θ=180°时,a 与.(2)垂直:如果 a 与 b 的夹角是,则称 a 与 b 垂直,记作.3.平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个的向量,叫作把向量正交分解.(2)向量的坐标表示:在平面直角坐标系中,分别取与 x 轴、y 轴方向相同的两个,j 作为基 底,对于平面内的一个向量 a ,有且只有一对实数 x ,y 使得 a =,则叫作向量 a 的坐标,叫 作向量的坐标表示.(3)向量坐标的求法:在平面直角坐标系中,若 A (x ,y ),则=,若 A (x ,y ),B (x ,y ),则=. 4.平面向量的坐标运算(1)若 a =(x ,y ),b =(x ,y ),则 a +b =,即两个向量和的坐标等于这两个向量相应坐标 的和.(2)若 a =(x ,y ),b =(x ,y ),则 a -b =,即两个向量差的坐标等于这两个向量相应坐标 的差.(2)若 a =(x ,y ),λ∈R ,则 λa =,即实数与向量的积的坐标等于用这个实数乘原来向量的相 应坐标.5.两向量共线的坐标表示 设 a =(x ,y ),b =(x ,y ). (1)当 a ∥b 时,有. (2)当 a ∥b 且 x y ≠0 时,有.即两向量的相应坐标成比例.6.若=λ,则 P 与 P 、P 三点共线. 当 λ∈时,P 位于线段 P P 的内部,特别地 λ=1 时,P 为线段 P P 的中点; 当 λ∈时,P 位于线段 P P 的延长线上; 当 λ∈时,P 位于线段 P P 的反向延长线上.考点一 对基底概念的理解1 2 1 2 1 21 12 2 1 1 2 2 1 1 2 2 1 1 2 2 2 21 2 1 2 1 2 1 2 1 2例 1 如果 e ,e 是平面 α 内两个不共线的向量,那么下列说法中不正确的是( ) ①λe +μe (λ、μ∈R )可以表示平面 α 内的所有向量;②对于平面 α 内任一向量 a ,使 a =λe +μe 的实数对(λ,μ)有无穷多个; ③若向量 λ e +μ e 与 λ e +μ e 共线,则有且只有一个实数 λ,使得 λ e +μ e =λ(λ e +μ e );④若存在实数 λ,μ 使得 λe +μe =0,则 λ=μ=0. A .①②B .②③C .③④D .②变式训练 1 设 e 、e 是不共线的两个向量,给出下列四组向量:①e 与 e +e ;②e -2e 与 e -2e ; ③e -2e 与 4e -2e ;④e +e 与 e -e . 其中能作为平面内所有向量的一组基底的序号是.(写出所有满足条件的序号)考点二 用基底表示向量例 2 .如图,梯形中,∥,且=2,M 、N 分别是和的中点,若=a ,=b 试用 a ,b 表示、、变式训练 2 如图,已知△中△ ,D 为的中点,E ,F 为的三等分点,若=a ,=b ,用 a ,b 表 示,,.考点三 平面向量基本定理的应用例 3 如图所示, △在中,点 M 是的中点,点 N 在边上,且=2,与相交于点 P ,求证:∶ =4∶1.变式训练 3 如图所示,已知△中,点 C 是以 A 为中点的点 B 的对称点,=2,和交于点 E , 设=a ,=b .(1)用 a 和 b 表示向量、; (2)若=λ,求实数 λ 的值.1 212 1 2 1 1 1 2 2 1 2 2 1 1 1 22 12 21 2 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2 1 2考点四平面向量的坐标运算例4已知平面上三点A(2,-4),B(0,6),C(-8,10),求(1)-;(2)+2;(3)-.变式训练4已知a=(-1,2),b=(2,1),求:(1)2a+3b;(2)a-3b;(3)a-b.考点五平面向量的坐标表示例5已知a=(-2,3),b=(3,1),c=(10,-4),试用a,b表示c.变式训练5设i、j分别是与x轴、y轴方向相同的两个单位向量,a=i-(2m-1)j,b=2i+(m∈R),已知a∥b,求向量a、b的坐标.考点六平面向量坐标的应用例6已知的顶点A(-1,-2),B(3,-1),C(5,6),求顶点D的坐标.变式训练6已知平行四边形的三个顶点的坐标分别为(3,7),(4,6),(1,-2),求第四个顶点的坐标.考点七平面向量共线的坐标运算例7已知a=(1,2),b=(-3,2),当k为何值时,+b与a-3b平行?平行时它们是同向还是反向?变式训练7已知A(2,1),B(0,4),C(1,3),D(5,-3).判断与是否共线?如果共线,它们的方向相同还是相反?考点八平面向量的坐标运算例8已知点A(3,-4)与点B(-1,2),点P在直线上,且|=2|,求点P的坐标.变式训练8已知点A(1,-2),若向量与a=(2,3)同向,|=2,求点B的坐标.考点九利用共线向量求直线的交点例9如图,已知点A(4,0),B(4,4),C(2,6),求与的交点P 的坐标.变式训练9平面上有A(-2,1),B(1,4),D(4,-3)三点,点C在直线上,且=,连接,点E在上,且=,求E点坐标.§2.4 平面向量的数量积1.平面向量数量积(1)定义:已知两个非零向量 a 与 b ,我们把数量叫做 a 与 b 的数量积(或内积),记作 a · b , 即 a · b = θ,其中 θ 是 a 与 b 的夹角.(2)规定:零向量与任一向量的数量积为.(3)投影:设两个非零向量 a 、b 的夹角为 θ,则向量 a 在 b 方向的投影是,向量 b 在 a 方向 上的投影是.2.数量积的几何意义a ·b 的几何意义是数量积 a · b 等于 a 的长度与 b 在 a 的方向上的投影的乘积.3.向量数量积的运算律 (1)a·b =(交换律); (2)(λa )· b ==(结合律); (3)(a +b )· c =(分配律).4.平面向量数量积的坐标表示 若 a =(x ,y ),b =(x ,y ),则 a·b =. 即两个向量的数量积等于.5.两个向量垂直的坐标表示 设两个非零向量 a =(x ,y ),b =(x ,y ), 则 a ⊥ b .6.平面向量的模(1)向量模公式:设 a =(x ,y ),则=. (2)两点间距离公式:若 A (x ,y ),B (x ,y ),则|=.7.向量的夹角公式 设两非零向量 a =(x ,y ),b =(x ,y ),a 与 b 的夹角为 θ,则 θ==.考点一 求两向量的数量积例 1 已知=4,=5,当(1)a ∥b ;(2)a ⊥b ;(3)a 与 b 的夹角为 30°时,分别求 a 与 b 的数 量积.变式训练 1 已知正三角形的边长为 1,求: (1)· ;(2)· ;(3)·.考点二 求向量的模长1 12 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2例2已知==5,向量a与b的夹角为,求+,-.变式训练2已知==1,|3a-2=3,求|3a+.考点三向量的夹角或垂直问题例3设n和m是两个单位向量,其夹角是60°,求向量a=2m+n与b=2n-3m 的夹角.变式训练3已知=5,=4,且a与b的夹角为60°,则当k为何值时,向量-b与a+2b垂直?考点四向量的坐标运算例4已知a与b同向,b=(1,2),a·b=10.(1)求a的坐标;(2)若c=(2,-1),求a(b·c)及(a·b)c.变式训练4若a=(2,3),b=(-1,-2),c=(2,1),则(a·b)·c=;a·(b·c)=.考点五向量的夹角问题例5已知a=(1,2),b=(1,λ),分别确定实数λ的取值范围,使得:(1)a与b的夹角为直角;(2)a与b的夹角为钝角;(3)a与b的夹角为锐角.变式训练5已知a=(1,-1),b=(λ,1),若a与b的夹角α为钝角,求λ的取值范围.考点六向量数量积坐标运算的应用例6已知在△中,A(2,-1)、B(3,2)、C(-3,-1),为边上的高,求|与点D的坐标.变式训练6以原点和A(5,2)为两个顶点作等腰直△角,∠B=90°,求点B和的坐标.§2.5平面向量应用举例1.向量方法在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a∥b(b≠0)⇔⇔.(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:a⊥b⇔⇔.(3)求夹角问题,往往利用向量的夹角公式θ==.(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:=.2.力向量力向量与前面学过的自由向量有区别.(1)相同点:力和向量都既要考虑又要考虑.(2)不同点:向量与无关,力和有关,大小和方向相同的两个力,如果不同,那么它们是不相等的.3.向量方法在物理中的应用(1)力、速度、加速度、位移都是.(2)力、速度、加速度、位移的合成与分解就是向量的运算,运动的叠加亦用到向量的合成.(3)动量mν是.(4)功即是力F与所产生位移s的.考点一三角形问题例1点O是三角形所在平面内的一点,满足·=·=·,则点O是△的()A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点变式训练1在△中,已知A(4,1)、B(7,5)、C(-4,7),则边的中线的长是()A.2C.3变式训练2若O是△所在平面内一点,且满足-|=+-2|,△则的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形变式训练3设平面上有四个互异的点A、B、C、D,已知(+-2)·(-)=0,△则的形状一定是.考点二向量的计算例2已知平面上三点A、B、C满足|=3,|=4,|=5.则·+·+·=.变式训练4如图,在△中,点O是的中点,过点O的直线分别交直线、于不同的两点M、N,若=,=,则m+n的值为.考点三向量的应用例3两个大小相等的共点力F,F,当它们夹角为90°时,合力大小为20N,则当它们的12夹角为120°时,合力大小为()A.40N B.10N C.20N D.10N变式训练5在水流速度为4千米/小时的河流中,有一艘船沿与水流垂直的方向以8千米/小时的速度航行,则船实际航行的速度的大小为.。
高中数学教学备课教案平面向量的基本定理与应用方法总结

高中数学教学备课教案平面向量的基本定理与应用方法总结高中数学教学备课教案平面向量的基本定理与应用方法总结Ⅰ、引言在高中数学教学中,平面向量是一个重要的概念,它不仅在几何和代数中有广泛的应用,还是学生理解向量概念和解决相关问题的基础。
本文将总结平面向量的基本定理与应用方法,帮助老师们在备课过程中更好地教授这一内容。
Ⅱ、平面向量的基本概念回顾平面向量是空间中平面上的一个有向线段,具有大小和方向两个重要属性。
通常用符号a表示。
平面向量既可以用有向线段表示,也可以用坐标表示,其坐标形式为(a1,a2)。
Ⅲ、平面向量的基本定理(一)向量相等的判定若两个向量a和b的对应坐标相等,则向量a等于向量b,即(a1,a2) = (b1,b2)。
(二)向量加法的性质向量加法满足交换律、结合律和零向量的存在性质。
即对于任意向量a,b和c,有以下等式成立:- 交换律:a + b = b + a- 结合律:(a + b) + c = a + (b + c)- 零向量:存在向量0,使得a + 0 = a(三)数与向量的乘法向量与数的乘法遵循分配律,即对于任意向量a和实数k,有以下等式成立:- k(a1,a2) = (ka1,ka2)Ⅳ、平面向量的应用方法平面向量不仅在几何中有广泛的应用,还可以用于解决代数问题。
以下是其中的两个应用方法的总结:1. 平面向量的数量积(一)定义平面向量a和b的数量积(内积)定义为:a·b = |a| |b| cosθ,其中|a|和|b|分别表示向量a和b的模,θ为它们之间的夹角。
(二)性质- 若a与b垂直,则a·b=0;- 若a与b平行,则a·b=|a| |b|。
(三)应用举例- 判断两个向量的夹角是否为直角;- 判断两个向量的平行性。
2. 平面向量的向量积(一)定义平面向量a和b的向量积(叉积)定义为:a×b = |a| |b| sinθ n,其中|a|和|b|分别表示向量a和b的模,θ为它们之间的夹角,n为垂直于a、b所在平面的单位向量,满足右手法则。
第8讲:平面向量的基本定理及坐标表示 讲义-高一下学期数学人教A版(2019)必修第二册

第八讲:平面向量的基本定理及坐标表示1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2), 则a +b =(x 1+x 2,y 1+y 2), a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点精讲经典例题题型一 平面向量基本定理及其应用【例1】设e 1、e 2是同一平面内的两个向量,则有( ) A. e 1、e 2一定平行 B .e 1、e 2的模相等C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R )【例2】(1)如图,OA ,OB 不共线,AP =t AB (t ∈R)用OA ,OB 表示OP .(2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且(1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线.【例3】已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数,d a b λμλμ=+、使与c 共线.【变式一】在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB―→=a ,AC ―→=b ,则P Q ―→=( )A.13a +13b B .-13a +13b C.13a -13b D .-13a -13b 题型二 平面向量的坐标运算【例4】已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b ,(1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.变1.本例4条件不变,若a =m b +n c ,则m =________,n =________.变2.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________. 【例5】已知a =(2,1), b =(-3,4),求a +b ,a -b ,3a +4b 的坐标.【例6】已知三个力()431,=F , ()5-22,=F , ()y x F ,3=的合力1F +2F +3F =0,求3F 的坐标.题型三 平面向量共线的坐标表示【例7】已知(4,2)a =,(6,)b y =,且//a b ,求y .【例8】已知向量a =(1,1-cos θ),b =11cos ,2θ⎛⎫+ ⎪⎝⎭,且a ∥b ,则锐角θ等于( ) A .30° B .45° C .60° D .75°【例9】已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值.【例10】已知(1,1)A --,(1,3)B ,(2,5)C ,求证:A 、B 、C 三点共线.【例11】已知向量a =(1,2),b =(x ,1),1e =a +2b ,2e =2a -b 且1e ∥2e ,求x .【例12】设点P 是线段P 1P 2上的一点, P 1、P 2的坐标分别是(x 1,y 1),(x 2,y 2). (1)当点P 是线段P 1P 2的中点时,求点P 的坐标; (2)当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标.题型四 平面向量共线与平面几何【例13】(1)已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1(2)在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.【例14】在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限的点,且∠AOC =π4,|OC |=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=( )A .22 B.2 C .2 D .42【例15】如图,在正方形ABCD 中,M 是BC 的中点,若AC ―→=λAM ―→+μBD ―→,则λ+μ=( )A.43 B.53C.158 D .2【A 类】1.已知向量a =(-1,2),b =(1,3),则|2a -b |=( )A.2 B .2 C.10 D .102.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( )A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0) 3、已知a =(2,3),b =(4,y),且a ∥b ,则y 的值为( )A .6B .-6C .83 D .83课后巩固4、已知向量a =(1,2),b =(-2,x ),若(3a +b )∥(3a -b ),则实数x 的值为( )A .-2B .-3C .-4D .-15、已知两点A (2,-1),B (3,1),与AB 平行且方向相反的向量a 可能是( )A .(1,-2)B .(9,3)C .(-1,2)D .(-4,-8) 6、已知MA =(-2,4),MB =(2,6),则21AB = ( ) A .(0,5) B .(0,1) C .(2,5) D .(2,1) 7、若向量a = (1,1), b = (1,-1), c =(-1,2),则c 等于( )A .-21a +23b B .21a - 23b C .23a - 21bD .-23a + 21b8、已知向量a =(-2,4),b =(1,-2),则a 与b 的关系是 ( )A .不共线B .相等C .同向D .反向 9、已知()4,2M 、()3,2-N ,那么=MN ;=NM .【B 类】1、设k ∈R ,下列向量中,与向量a =(1,-1)一定不平行的向量是( )A .(k ,k)B .(-k ,-k)C .(k 2+1,k 2+1)D .(k 2-1,k 2-1)2、已知点()5,1--A 和向量()3,2=a ,若a AB 3=,则点B 的坐标是 .3、已知向量a =(3,-2),b =(-2,1),c =(7,-4),且c =λa +μb , 则λ= ,μ= .4、设点A(-1,2)、B(2,3)、C(3,-1),且AD =2AB -3BC ,则点D 的坐标为 .5、知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.。
平面向量中的定理
平面向量中重要定理总结(非常经典)1、共线向量定理向量a (a ≠0)与b 共线,当且仅当存在唯一一个实数λ,使b =λa .2、三点共线的证明方法若存在非零实数λ,使得AB →=λAC →或AB →=λBC →或AC →=λBC →,则A ,B ,C 三点共线.3、平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ1e 1+λ2e 2.4、奔驰定理:已知O 是ABC ∆内一点,则0=⋅+⋅+⋅∆∆∆OC S OB S OA S AOB AOC BOC推论:已知O 是ABC ∆内一点,若=⋅+⋅+⋅z y x ,则z y x S S S AOB AOC BOC ::::=∆∆∆5、极化恒等式定理:平行四边形的对角线的平方和等于相邻两边平方和的两倍. 即:)|||(|2|AD ||AB |2222BO AO +=+ 设.,b AD a AB == 则,,b a DB b a AC -=+= 极化恒等式:[]22)()(41b a b a b a --+=⋅,即:=⋅6、三点共线定理:已知OB y OA x OC +=,且1=+y x ,则C B A ,,三点共线 OABC向量等和线: 平面内一组基底,及任意向量,21λλ+=,若点P 在直线AB 上或在与AB 平行的直线上,则k =+21λλ(||OC k =反之也成立,我们把直线AB 以及与AB 平行的直线称为基底系数等和线7、三角形各“心”的概念介绍重心:三角形的三条中线的交点,重心将中线长度分成2∶1;垂心:三角形的三条高线的交点,垂线与对应边垂直;内心:三角形的三个内角角平分线的交点(三角形内切圆的圆心),内心到三角形三边的距离相等;外心:三角形的三条边的垂直平分线的交点(三角形外接圆的圆心),外心到三角形各顶点的距离相等.三角形各“心”的向量表示(1)O 是△ABC 的重心⇔OA →+OB →+OC →=0.(2)O 是△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(3)O 是△ABC 的外心⇔|OA →|=|OB →|=|OC →|(或OA →2=OB →2=OC →2).(4)O 是△ABC 的内心⇔OA →·⎝ ⎛⎭⎪⎪⎫AB →|AB →|-AC →|AC →|=OB →·⎝ ⎛⎭⎪⎪⎫BA →|BA →|-BC →|BC →|=OC →·⎝ ⎛⎭⎪⎪⎫CA →|CA →|-CB →|CB →|=0.注意:向量λ((AB →|AB →|+AC →|AC →|)(λ≠0)所在直线过△ABC 的内心(是∠BAC 的角平分线所在直线).。
高一数学必修件平面向量基本定理
加强对向量基本概念和性质的理解,多做相关练习题,注意总结归纳 易错点和难点。
拓展延伸:空间向量简介
空间向量的概念
空间向量是三维空间中的有向线段,具有大小和 方向两个要素。
空间向量的运算
空间向量的运算包括加法、减法、数乘等线性运 算,以及数量积、向量积等运算。这些运算与平 面向量的运算类似,但需要注意三维空间的特性 。
空间向量的表示
空间向量可以用有向线段表示,也可以用坐标表 示。在直角坐标系中,一个空间向量可以表示为 $vec{a} = (x, y, z)$,其中$x, y, z$分别为向量在 $x$轴、$y$轴、$z$轴上的投影长度。
空间向量的应用
空间向量在三维几何、物理等领域有广泛应用, 如计算点到平面的距离、判断两直线是否异面等 。
要点一
向量的线性运算与多边形
通过平面向量基本定理,可以将多边形的各边表示为向量 ,利用向量的线性运算(加法、减法、数乘)求解多边形 的周长、面积等问题。
要点二
向量的共线、垂直与多边形的性 质
根据平面向量基本定理,可以判断多边形的各边是否共线 或垂直。利用这些性质可以分析多边形的形状、角度等特 征。
典型案例分析
06
总结回顾与拓展延伸
关键知识点总结回顾
平面向量基本定 理
如果$vec{e_1}$和 $vec{e_2}$是同一平面内的 两个不共线向量,那么对于 这一平面内的任一向量 $vec{a}$,有且只有一对实 数$lambda_1$和 $lambda_2$,使得$vec{a} = lambda_1 vec{e_1} + lambda_2 vec{e_2}$。
向量数乘运算律
实数与向量的乘法满足交换律、结合律和分配律。即对于任意实数$lambda$、$mu$和向量$vec{a}$、 $vec{b}$,有$lambda(muvec{a}) = (lambdamu)vec{a}$,$(lambda + mu)vec{a} = lambdavec{a} + muvec{a}$,$lambda(vec{a} + vec{b}) = lambdavec{a} + lambdavec{b}$。
平面向量基本定理-完整版课件
中不能作为基底的是
()
A.{e1,e2}
B.{e1+e2,3e1+3e2}
C.{e1,5e2}
D.{e1,e1+e2}
[名师点津]
1.平面向量基本定理包括两个方面的内容:一是存在性,即 存在实数λ1,λ2,使a =λ1e1+λ2e2;二是唯一性,即对任意 向量a ,存在唯一实数对λ1,λ2,使a =λ1e1+λ2e2.
[问题探究] 1.如图所示,OM∥AB,点P在由射线
OM、线段OB及AB的延长线围成的阴影 区域内(不含边界)运动,且―O→P =-12―O→A +m―O→B ,求实数m的取值范围.
[迁移应用] 如图所示,在边长为 2 的正六边形 ABCDEF 中,动圆 Q 的半径为 1,圆心在线段 CD(含 端点)上运动,P 是圆 Q 上及其内部的动点, 设向量―A→P =m―A→B +n―A→F (m,n∈R ),则
提示:都能. 2.基底是否是固定不变的?
提示:不是.
[做一做]
1.判断正误(正确的打“√”,错误的打“×”)
(1)平面内不共线的任意两个向量都可作为一组基底.( )
(2)基底中的向量可以是零向量.
()
(3)平面内的基底一旦确定,该平面内的向量关于基底的线
性分解形式也是唯一确定的.
()
2.设e1,e2是同一平面内的两个不共线向量,则以下各组向量
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否 共线.若共线,则不能作基底,反之,则可作基底; (2)一个平面的基底一旦确定,那么平面上任意一个向量都 可以由这组基底唯一线性表示出来.设向量a与b是平面内两个
不共线的向量,若x1a +y1b =x2a +y2b ,则x1=x2且y1=y2. [提醒] 一个平面的基底不是唯一的,同一个向量用不同
(完整版)高中数学平面向量讲义
平面向量 (学生专用 )专题六平面向量一. 基本知识【1】向量的基本看法与基本运算(1)向量的基本看法:①向量:既有大小又有方向的量向量不能够比较大小,但向量的模能够比较大小.②零向量:长度为0 的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为 1 个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量uuur r uuur r r uuur uuur uuur(2)向量的加法:设AB a, BC b ,则a+ b = AB BC = AC① 0 a a 0 a ;②向量加法满足交换律与结合律;uuur uuur uuur uuur uuur uuurAB BC CD L PQ QR AR ,但这时必定“首尾相连”.(3)向量的减法:①相反向量:与 a 长度相等、方向相反的向量,叫做 a 的相反向量②向量减法:向量 a 加上b的相反向量叫做 a 与b的差,③作图法: a b 能够表示为从 b 的终点指向a的终点的向量( a 、b有共同起点)(4)实数与向量的积:实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定以下:(Ⅰ)a a ;(Ⅱ)当0 时,λ a 的方向与 a 的方向相同;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是任意的(5)两个向量共线定理:向量b与非零向量 a 共线有且只有一个实数,使得b= a (6)平面向量的基本定理:若是e1, e2是一个平面内的两个不共线向量,那么对这一平面内的任向来量 a ,有且只有一对实数 1 ,2使:a1e12e2,其中不共线的向量e1 , e2叫做表示这一平面内所有向量的一组基底【2】平面向量的坐标表示第1页(1) 平面向量的坐标表示 :平面内的任向来量rr r rr 。
a 可表示成 axi yj ,记作 a =(x,y) (2)平面向量的坐标运算:rrr rx 1 x 2 , y 1 y 2①若 ax 1 , y 1 , bx 2 , y 2 ,则 a buuur②若 A x 1 , y 1 , B x 2 , y 2 ,则 AB x 2 x 1 , y 2 y 1r =(x,y) ,则 r x, y)③若 a a =(r r r r x 1 y 2 x 2 y 1 0④若 ax 1 , y 1 , b x 2 , y 2 ,则 a // b r r r r y 1 y 2⑤若 a x 1 , y 1 , b x 2 , y 2 ,则 a b x 1 x 2r r y 1 y 2⑥若 a b ,则 x 1 x 2【3】平面向量的数量积(1)两个向量的数量积:已知两个非零向量r rr r r rr ra 与b ,它们的夹角为 ,则 a · b =︱ a ︱·︱ b ︱ cos 叫做 a 与 b 的数量积(或内积)r r规定 0 arr rrr= a b(2)向量的投影: ︱ b ︱ cosr ∈ R ,称为向量 b 在 a 方向上的投影 投影的绝对值称| a |为射影(3)数量积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积(4)向量的模与平方的关系:r r r 2 r 2 a a a | a |(5)乘法公式成立:r r rrr 2 r 2 r 2 r 2 r r 2 r 2r r r 2r 2 r r r 2a b a ba b ab ; a ba 2ab ba2a b b(6)平面向量数量积的运算律:①交换律成立:rrr r a bb a②对实数的结合律成立: r r r r r r Ra ba b a b③分配律成立:r r r r r r r r r r a b c a cb c c a b第 2页特别注意:( 1)结合律不成立:r r r r r r ab c a b c ;r rrrr r ( 2)消去律不成立 a ba c 不能够获取b c(rr=0r r r r3) a b 不能够获取 a =0 或 b=0(7)两个向量的数量积的坐标运算:rrrry 1 y 2已知两个向量 a ( x 1, y 1), b ( x 2 , y 2 ) ,则 a · b= x 1 x 2r r uuur r uuur r ( 8 ) 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB= (0 0180 0 ) 叫做 向量r 与 r 的夹角abr r r rx 1 x 2 y 1 y 2a ? bcos= cosa ,br r = 2222a ? bx 1y 1x 2y 2当且仅当两个非零向量rrr rra 与b 同方向时, θ =0 ,当且仅当 a 与 b 反方向时θ=180 ,同时 0 与其他任何非零向量之间不谈夹角这一问题r r 0则称 r r r r (9)垂直 :若是 a 与 b 的夹角为 90 a 与 b 垂直,记作 a ⊥ b( 10)两个非零向量垂直的充要条件: a ⊥ ba ·b = Ox xy y20 平面向量1 21数量积的性质二. 例题解析【模块一】向量的基本运算【例 1】给出以下六个命题:①两个向量相等,则它们的起点相同,终点相同;rr r r ②若 a b ,则 ab ③在平行四边形 ABCD 中必然有uuur uuurAB DC ;ur r r ur ur ur r r r r r r④若 m n, n p ,则 m p ; ⑤若 a // b , b // c , 则 a // cr r r r r r r⑥任向来量与它的相反以下不相等. ⑦已知向量 a 0 ,且 a b 0 ,则 b 0r r r r r r r r r r r r⑧ a b 的充要条件是 a b 且 a // b ;⑨若 a 与 b 方向相同,且 a b ,则 ab ;⑩由于零向量的方向不确定,故零向量不与任意向量平行; 其中正确的命题的序号是第 3页r rr r ruur【例 2】已知向量 a, b 夹角为 45 ,且 a 1, 2a b10 ;求 b 的值 .uur uur r rr r【变式 1】若 a 2 , b 3 , a b3 求 a b 的值 .【变式 2】设向量 a , b 满足 | a|=|b |=1 及 | 3a-2 b|=3 ,求 | 3a+b| 的值r r r rrr r r【例 3】已知向量 a 、 b 的夹角为 60o , |a| 3, | b |2 ,若 (3a 5b) (ma b) ,求 m 的值.rrr r r r【例 4】若向量 a1,2 , b1, 1 求 2a b 与 a b 的夹角 .【 变 式】 设 x, y R, 向 量 a x,1 ,b 1, y , c2, 4 , 且 a c,b // c, 则 a b_______()A . 5B . 10C . 2 5D . 10【例 5】已知两个非零向量r rr r rra,b 满足 a ba b ,则以下结论必然正确的选项是( )r r r rr r DA a // bB a b Ca br r r r a b a b【变式 1】设 a , b 是两个非零向量 . ()A .若 | a +b |=| a |-| b |, 则 a ⊥ bB .若 a ⊥b , 则| a +b |=| a |-| b |C .若 | a +b |=| a |-| b |, 则存在实数 λ, 使得 a =λbD .若存在实数 λ, 使得 a =λb , 则| a +b |=| a |-| b |第 4页r r r r r r【变式 2】若平面向量a, b满足 : 2a b 3 ;则 agb 的最小值是_____【例 6】设0,rcosr13 2, a,sin ,b,22r r r r (1)证明 a b a b ;(2)r r r r的值 .当 2a b a2b时求角r rr ra b)【例 7】设a、b都是非零向量 , 以下四个条件中 , 使r r成立的充足条件是(| a ||b |r r r r r r r rr r A.a b B.a // b C.a 2b D.a // b且| a | | b |【模块二】向量与平面几何【例 1】在△ ABC中, A 90o AB 1, ACuuur uuur 2 ,设P、Q满足 AP AB ,uuur1uuurRuuur uuur2 ,则AQ AC ,BQ CP=()A 1B2C4D2 333第5页AB2uuur uuur uuur uuur 【变式 1】已知△ ABC为等边三角形,设 P、Q满足AP AB AQ 1AC,,uuur uuur 3,则R BQ CP=()2A 1B12C 1 10D 3 2 2222uuur uuur【例 2】在△ ABC中 ,AB=2,AC=3,ABgBC = 1则 BC ___ .()A.3B.7C.2 2D.23uuur uuur uuur【变式 1】若向量BA2,3 , CA4,7 ,则 BC()A.2, 4B.2,4C.6,10D.6, 10【例 3 】若等边ABC 的边长为2 3 ,平面内一点M 满足CM 1CB2CA ,则63MA? MB________.第6页平面向量 (学生专用 )uuur r uuur r r r r r2 ,则【例 4】ABC 中, AB 边上的高为 CD ,若CB a,CA b, a b0,| a |1,|b | uuurAD()A.1r1rB.2r2rC.3r3rD.4r4r a b a b a b5a b 3333555uuur3【例5】在平面直角坐标系中,O (0,0), P(6,8) ,将向量 OP按逆时针旋转后 , 得向量4 uuurOQ ,则点 Q 的坐标是()A.( 7 2,2) B. (72,2)C.( 4 6, 2)D.( 46, 2)uuur uuur【例 6】在ABC中, M是 BC的中点, AM=3, BC=10,则AB AC =______________.【例 7】在平行四边形中, ∠A= 3, 边、的长分别为2、1.若、分别是边、ABCD AB AD M N BC CD上的点,且满足| BM|| CN | ,则AM AN 的取值范围是_________ .| BC || CD |,【例 8】如图 ,在矩形 ABCD 中, AB 2 ,BC2,点E为 BC 的中点,点F在边 CD uuur uuur uuur uuur上, 若AB g AF 2 ,则 AE g BF 的值是____.第7页平面向量 (学生专用 )9 】已知正方形ABCD 的边长为1, 点 E 是 AB 边上的动点uuur uuur【例, 则DE CB的值为uuur uuur________; DE DC 的最大值为________.【例 10】已知直角梯形ABCD 中,AD// BC ,ADC 900, AD2, BC 1 , P 是腰uuur uuurDC 上的动点,则PA3PB 的最小值为___________uuur uuur uuur【例 11】如图,在VABC中,AD AB , BC 3 BD ,AD 1 ,uuur uuur3.则 AC gAD【例 12】 (15)uuur uuur1uuur1uuur3uuur 在四边形 ABCD中,AB = DC =( 1,1),uuur BA uuur BC uuur BD ,BA BC BD则四边形ABCD的面积是第8页平面向量 (学生专用 ) uuur uuur【例 13】在VABC中,若AB2,3 , AC 6, 4 ,则 VABC 面积为【例 14】( 2012 年河北二模)在VABC中,AB 边上的中线CD=6 ,点 P 为 CD 上(与 C,D )uuur uuur uuur不重合的一个动点,则PA PB .PC的最小值是A 2B 0C -9D -18第9页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
C
高一数学补充讲义8:平面向量中的重要定理、常用结论
及其应用
一.二个定理
1.平面向量共线定理:向量a (0a ≠)与b 共线,当且仅当有唯一一个实数λ,使b a λ=.
2.平面向量基本定理:如果12,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且
只有一对实数12,λλ,使1122a e e λλ=+.
二.常用结论
1.若,,OA OB OC 不共线,且OA OB OC λμ=+,则,,A B C 三点共线⇔1λμ+=.
2.ABC ∆中,D 为BC 中点,G 为ABC ∆的重心,H 为ABC ∆的垂心,O 为∆ABC 的外心, 则:(1)1
()2
AD AB AC =
+; (2)2AG GD =,0GA GB GC ++=,1
()3
AG AB AC =+; (3)则0AH BC ⋅=; (4)则21
2
AO AC AC ⋅=.
3、极化恒等式:221
()()4a b a b a b ⎡⎤⋅=
+--⎣
⎦
B
B
三角形中的极化恒等式:
ABC ∆中,D 为BC 中点,则222211
()()44
AB AC AB AC AB AC AD BC ⎡⎤⋅=
+--=-⎣⎦
4、若,M N 是ABC ∆内部两点,且AM mAB nAC =+,AN p AB q AC =+, 则::1ABM ABC S S n ∆∆=,::1ABN ABC S S q ∆∆=,::ABM ABN S S n q ∆∆=
三.应用
1.求证:三角形三条中线交于一点.
2.如图,在ABC ∆中,13AN NC =,P 是BN 上一点,若2
11
AP mAB AC =+,则实数m 的值为 .
3.如图,过OAB ∆的重心M 的直线与OA 、OB 分别相交于C 、D ,设,OC hOA OD kOB ==, 则11
h k
+= .
C
4.已知点O 是ABC ∆的外心,5,4AB AC ==,求AO BC ⋅的值.
5.在ABC ∆中,M 是BC 的中点,3AM =,10BC =,则AB AC ⋅=
6.在OAB ∆中,11
,,42
OC OA OD OB AD =
=与BC 交于点M ,设,OA a OB b ==, (1)用,a b 表示OM ;
(2)过M 的直线交AC 于点E ,交BD 于点F ,设,OE pOA OF qOB ==,求证:13
177p q
+=.。