初一数学《认识一元一次方程》知识点总结

合集下载

七年级上册数学一元一次方程的总结

七年级上册数学一元一次方程的总结

七年级上册数学一元一次方程的总结一元一次方程是数学中的基础内容,它由一个未知数和一次方程组成。

在七年级上册的数学课程中,我们学习了一元一次方程的基本概念、求解方法和应用。

一、基本概念一元一次方程是指只有一个未知数,并且未知数的最高次数为1的等式。

一元一次方程的一般形式可以表示为ax + b = 0,其中a和b是已知数,a≠0,x是未知数。

二、解方程的基本方法1.同加同减法:通过同加同减法可以将含有未知数的项移至方程的一边,使得另一边变为0,从而简化求解过程。

2.同乘同除法:通过同乘同除法可以将方程中的系数约分或整理,使得未知数的系数变为1,从而简化求解过程。

三、解方程的步骤1.将方程移项,即将含有未知数x的项移到方程等式的一边,使得另一边为0。

2.化简方程,通过同加同减法和同乘同除法化简方程,使得未知数的系数变为1。

3.求解方程,从化简后的方程中可以直接得到未知数的解。

4.验证解,将得到的解代入原方程中,检验是否满足原方程。

四、方程的应用1.问题的建立:将问题中的已知条件和未知数用代数符号表示,建立一元一次方程。

2.方程的求解:通过解一元一次方程,得到未知数的解。

3.解的验证:将得到的解代入原问题中,检验是否满足原问题。

4.问题的回答:根据解的意义,给出问题的答案,并进行必要的分析和总结。

五、方程的解的分类1.有解方程:经过化简后能得到一个明确的解。

2.无解方程:经过化简后不会得到解。

3.恒等方程:对于所有的x,方程都成立。

六、解方程时的常见错误1.漏解:没有找到全部的解。

2.冗余解:方程与原问题不相符,解不满足。

3.解不符合题意:解与原问题不相符,无法解决问题。

4.算式错误:在计算过程中出现错误。

七、练习题技巧1.注意思维导图的绘制,即将已知条件和未知数用图形方式呈现,更清晰地理解问题。

2.细心审题,注意问题中的关键词和要求。

3.巩固基本运算,特别是消去法和整理运算的基础知识。

4.多做例题,加深对一元一次方程的理解和掌握。

7年级-上册-数学-第5章《一元一次方程》分节知识点

7年级-上册-数学-第5章《一元一次方程》分节知识点

浙教版-7年级-上册-数学-第5章《一元一次方程》分节知识点一、方程及等式1、定义:含有未知数的等式叫做方程.要点诠释:(1)判断一个式子是不是方程,只需看两点:一是等式;二是含有未知数.2、方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:(1)判断一个数(或一组数)是否是某方程的解,只需看两点:①它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它(或它们)是方程的解,否则不是.3、解方程:求方程的解的过程叫做解方程.4、方程的两个特征:(1)方程是等式;(2)方程中必须含有字母(或未知数).5、建立方程:把所要求的量用字母x(或y,…)表示,根据问题中的等量关系列出方程,这一过程叫做建立方程。

要点二、一元一次方程的有关概念1、定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①是一个方程;②必须只含有一个未知数;③含有未知数的项的最高次数是1;④分母中不含有未知数.(2)一元一次方程的标准形式是:ax+b=0(其中a≠0,a,b是常数).(3)一元一次方程的最简形式是:ax=b(其中a≠0,a,b是常数).要点三、等式的性质1、等式的概念:用符号“=”来表示相等关系的式子叫做等式.2、等式的性质:(1)等式的性质1:等式两边加(或减)同一个数(或式子),所得结果仍是等式.即:如果,那么(c为一个数或一个式子).(2)等式的性质2:等式两边都乘(或除以)同一个数(或式子),(除数或除式不能为0),所得结果仍是等式.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2)等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3)等式的性质2中等式两边都除以同一个数时,这个除数不能为零.二、一元一次方程的解法要点一、解一元一次方程的一般步骤变形名称具体做法注意事项去分母在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项(2)不要弄错符号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)(2)移项要变号(2)不要丢项合并同类项把方程化成ax=b(a≠0)的形式字母及其指数不变两边同除以未知数的系数(系数化成1)在方程两边都除以未知数的系数a,得到方程的解.不要把分子、分母写颠倒要点诠释:(1)移项的定义:把方程中的项改变符合后,从方程的一边移到另一边,这种变形叫做移项.(2)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(3)去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.(4)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1、含绝对值的一元一次方程(1)解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为的形式,然后分类讨论:(1)当时,无解;(2)当时,原方程化为:;(3)当时,原方程可化为:或.2、含字母的一元一次方程:此类方程一般先化为一元一次方程的最简形式ax=b,再分三种情况分类讨论:(1)当a≠0时,;(2)当a=0,b=0时,x为任意有理数;(3)当a=0,b≠0时,方程无解.三、实际问题与一元一次方程(一)知识点一、用一元一次方程解决实际问题的一般步骤1、列方程解应用题的基本思路为:问题方程解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型1、和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2、行程问题(1)三个基本量间的关系:路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ、基本量及关系:相遇路程=速度和×相遇时间;Ⅱ、寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ、基本量及关系:追及路程=速度差×追及时间;Ⅱ、寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ、基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ、寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3、工程问题:如果题目没有明确指明总工作量,一般把总工作量设为1。

七年级数学一元一次方程知识点总结

七年级数学一元一次方程知识点总结

七年级数学一元一次方程知识点总结
七年级数学一元一次方程知识点总结
2.1从算式到方程
方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linearequationwithoneunknown)。

解方程就是求出使方程中等号左右两边相等的未知数的'值,这个值就是方程的解(solution)。

等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。

2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。

初一数学知识点归纳总结

初一数学知识点归纳总结

初一数学知识点归纳总结一元一次方程1.方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。

2.一元一次方程一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。

求出方程中未知数的值叫做方程式的解。

(3)等式的性质①等式两边同时加上(或减去)同一个整式,等式仍然成立。

若a=b那么a+c=b+c②等式两边同时乘或除以同一个不为0的整式,等式仍然成立。

若a=b那么有a·c=b·c或a÷c=b÷c(c≠0)③等式具有传递性。

若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an3.解方程式的步骤解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。

①去分母:把系数化成整数。

②去括号③移项:把等式一边的某项变号后移到另一边。

④合并同类项⑤系数化为1。

有理数知识点1.大于0的数叫做正数。

2.在正数前面加上负号“-”的数叫做负数。

3.整数和分数统称为有理数。

4.人们通常用一条直线上的点表示数,这条直线叫做数轴。

5.在直线上任取一个点表示数0,这个点叫做原点。

6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

7.由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8.正数大于0,0大于负数,正数大于负数。

9.两个负数,绝对值大的反而小。

10.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

11.有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13.有理数减法法则:减去一个数,等于加上这个数的相反数。

七年级上册数学《一元一次方程》-知识点整理

七年级上册数学《一元一次方程》-知识点整理

一元一次方程知识要点解析一、一元一次方程构成要素:1、是等式;2、含有未知数,且只能是一个;3、未知数的次数有且为“1”(一次整式),且次数不为“0”;二、一元一次方程的基本形式:ax = b三、一元方程的解:使方程中等号左右两边相等的未知数的值四、解方程的理论依据:等式的基本性质:性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c;性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用式子形式表示为:如果a=b那么a×c=b×c,a÷c=b÷c(c≠0);五、解一元一次方程的基本步骤:注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤) 地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果。

对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。

解一元一次方程常用的技巧有:1)有多重括号,去括号与合并同类项可交替进行 2)当括号内含有分数时,常由外向内先去括号,再去分母 3)当分母中含有小数时,可用分数的基本性质化成整数 4)运用整体思想,即把含有未知数的代数式看作整体进行变形六、实际问题与一元一次方程1、用一元一次方程解决实际问题的一般步骤是:1)审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系) 2)根据数量关系与解题需要设出未知数,建立方程; 3)解方程;4) 检查和反思解题过程,检验答案的正确性以及是否符合题意.并作答2、用一元一次方程解决实际问题的典型类型1)数字问题:①:数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c则这个三位数表示为:abc , 10010abc a b c =++(其中a、b 、c 均为整数,且1≤a ≤9,0≤b ≤9,0≤c ≤9)②:用一个字母表示连续的自然数、奇数、偶数等规律数2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”3)工程问题:工作总量=工作效率×工作时间,注意产品配套问题; 4)行程问题:路程=速度×时间5)利润问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价商品售价=商品成本价×(1+利润率)6)利息问题:①顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的单位时间数叫做期数,利息与本金的比叫做利率.利息的20%付利息税.②利息=本金×利率×期数,本息和=本金+利息,利息税=利息×税率(20%).7)几何问题:必须掌握几何图形的性质、周长、面积等计算公式,注意等积变形; 8)优化方案问题9)浓度问题:溶液×浓度=溶质10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量 11)年龄问题:抓住人与人的岁数是同时增长的12)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量七、、思想方法(本单元常用到的数学思想方法小结)1)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立方程的思想2)方程思想:用方程解决实际问题的思想就是方程思想.3)化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.4)数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.5)分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.一元一次方程一、本节学习指导本节我们要掌握一元一次方程的解法,需要多做一些练习题,本节有配套学习视频。

初一上册数学一元一次方程知识点讲解

初一上册数学一元一次方程知识点讲解

初一上册数学一元一次方程知识点讲解数学是被很多人称之拦路虎的一门科目,同学们在掌握数学知识点方面还很欠缺,为此小编为大家整理了初一上册数学一元一次方程知识点讲解,希望能够帮助到大家。

1.等式:用=号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:方程的解就能代入!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前)合并同类项--------合并后符号系数化为1---------除前面10.列一元一次方程解应用题:(1)读题分析法:多用于和,差,倍,分问题仔细读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,增加,减少,配套-----,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于行程问题利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度时间 ;(2)工程问题:工作量=工效工时 ;工程问题常用等量关系:先做的+后做的=完成量(3)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;水流速度=(顺水速度-逆水速度)2顺水逆水问题常用等量关系:顺水路程=逆水路程(4)商品利润问题:售价=定价, ;利润问题常用等量关系:售价-进价=利润(5)配套问题:(6)分配问题:以上内容由查字典数学网独家专供,希望这篇初一上册数学一元一次方程知识点讲解能够帮助到大家。

初中一元一次方程知识点归纳

初中一元一次方程知识点归纳

初中一元一次方程知识点归纳
初中一元一次方程知识点归纳如下:
1. 一元一次方程的定义:一元一次方程是指方程中只有一个变量,且变量的最高次数为1的方程。

2. 方程的基本形式:一元一次方程的基本形式为ax+b=0,其
中a和b是已知实数,且a≠0。

3. 解方程的步骤:解一元一次方程的步骤主要包括去括号、合并同类项、移项、合并同类项、化简等。

4. 解方程的性质:一元一次方程的解具有唯一性,即要么无解,要么有唯一解。

5. 方程的解表示形式:一元一次方程的解有三种表示形式,即唯一解、无解和无穷多解。

6. 解方程的方法:解一元一次方程的方法主要包括正向代入、逆向代入、等式交换等。

7. 使用方程解实际问题:一元一次方程可以应用于实际问题中,通过建立方程并解方程可以求解实际问题。

8. 方程的应用领域:一元一次方程在代数、几何、物理等领域中都有广泛的应用。

9. 方程的相关概念:一元一次方程与方程的根、方程的系数、方程的次数等相关概念有着密切的联系。

10. 方程的扩展:一元一次方程是一元线性方程的特殊情况,线性方程还有更高次数的形式,如二次方程、三次方程等。

七年级数学上册《一元一次方程》知识点归纳

七年级数学上册《一元一次方程》知识点归纳

七年级数学上册《一元一次方程》知识点归纳【第一部分】知识点分布、一元一次方程的解(重点)2、一元一次方程的应用(难点)3、求解一元一次方程及其在实际问题中的应用【第二部分】关于一元一次方程一、一元一次方程(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

()求出使方程左右两边的值相等的未知数的值,叫做方程的解。

(6)求方程的解的过程,叫做解方程。

二、等式的性质(1)用等号“=”表示相等关系的式子叫做等式。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±=b±(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

【第一部分】知识点分布1、一元一次方程的解(重点)2、一元一次方程的应用(难点)3、求解一元一次方程及其在实际问题中的应用【第二部分】关于一元一次方程一、一元一次方程(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

()求出使方程左右两边的值相等的未知数的值,叫做x=a(a常数)的形式。

(2)把等式一边的某项变号后移到另一边,叫做移项。

(3)移项依据:等式的性质1移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a(a是常数)的形式。

2、解一元一次方程——去括号与去分母(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学《认识一元一次方程》知识点总结
知识点总结
1.一元一次方程:
只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:
ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3.条件:一元一次方程必须同时满足4个条件:
(1)它是等式;
(2)分母中不含有未知数;
(3)未知数最高次项为1;
(4)含未知数的项的系数不为0.
4.等式的性质:
等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5.合并同类项
(1)依据:乘法分配律
(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项
(3)合并时次数不变,只是系数相加减。

6.移项
(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

(2)依据:等式的性质
(3)把方程一边某项移到另一边时,一定要变号。

7.一元一次方程解法的一般步骤:
使方程左右两边相等的未知数的值叫做方程的解。

一般解法:
(1)去分母:在方程两边都乘以各分母的最小公倍数;
(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号
(4)合并同类项:把方程化成ax=b(a≠0)的形式;
(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.
8.同解方程
如果两个方程的解相同,那么这两个方程叫做同解方程。

9.方程的同解原理:
(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

10.列一元一次方程解应用题:
(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,
配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础11.列方程解应用题的常用公式:
12.做一元一次方程应用题的重要方法:
(1)认真审题 (审题)
(2)分析已知和未知量
(3)找一个合适的等量关系
(4)设一个恰当的未知数
(5)列出合理的方程(列式)
(6)解出方程(解题)
(7)检验
(8)写出答案(作答)
一元一次方程牵涉到许多的实际问题,例如工程问题、种植面积问题、比赛比分问题、路程问题,相遇问题、逆流顺流问题、相向问题分段收费问题、盈亏、利润问题。

要点:
1、方程:含有未知数的等式叫做方程。

2、一元一次方程:含有一个未知数,并且未知数的最高次数是1的整式方程
3、判断一个方程是不是一元一次方程,主要看以下三个条件:(1)是不是含有1个未知数;(2)未知数的次数是否是1次;(3)是不是整式方程(即分母中没有未知数)
4、方程的解:使得方程左右两边相等的未知数的值叫做方程的解。

5、等式的基本性质1:等式两边同时加上或者减去同一个数,所得结果仍为等式。

6、等式的基本性质2:等式两边同时乘以一个数或者除以一个非零的数,所得结果仍为等式。

7、注意:在等式两边同时除以一个含字母的代数式时一定要考虑是否为0.如2x=5x,就不能同时除以x。

一元一次方程综合复习
1. 方程:含有未知数的等式就叫做方程。

2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

例如:1300+50x=1800, 3(x+1.5x)=15 等都是一元一次方程。

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

4. 解方程:求方程的解的过程叫做解方程。

注:⑴一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式。

⑵判断是否为一元一次方程,应看是否满足:
①只含一个未知数,未知数的次数为1;
②未知数所在的式子是整式,即分母中不含未知数。

等式的性质1.
等式两边都加上(或减去)同个数(或式子),结果仍相等。

用式子形式表示为:如果a=b,那么a±c=b±c.
等式的性质2.
等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么
a/c=b/c.
1. 合并法则:
合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变。

2. 移项法则:
把等式一边的某项变号后移到另一边,叫做移项。

3. 去括号法则:
1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变。

解方程的一般步骤
1. 去分母:方程两边同乘以各分母的最小公倍数。

2. 去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号。

3. 移项:把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号。

4. 合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(b≠0)的形式。

5. 系数化为1:方程两边同时除以未知数的系数a,得到方程的解x=b/a (a≠0).
解应用题的一般步骤
一元一次方程基本应用题型
题型一、数字问题
(1)多位数字的表示方法:
一个两位数的十位数字、个位数字分别为a、b,(其中a、b均为整数,1≤a≤9,0≤b≤9)则这个两位数可以表示为10a+b.
一个三位数的百位数字为a,十位数字为b,个位数字为c,(其中均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c.
(2)奇数与偶数的表示方法:
偶数可表示为2k,奇数可表示为2k+1(其中k表示整数).
(3)三个相邻的整数的表示方法:
可设中间一个整数为a,则这三个相邻的整数可表示为a-1,a,a+1.
题型二、日历问题
(1) 在日历问题中,横行相邻两数相差1,竖列相邻两数相差7。

(2) 日历中一个竖列上相邻3个数的和的最小值时24,最大值时72,且这个和一定是3的倍数。

(3) 一年中,每月的天数是有规律的,一、三、五、七、八、十、十二这七个月每月都是31天,四、六、九、十一这四个月每月都是30天,二月平年28天,闰年29天,所以,日历表中日期的取值是有范围的。

题型三、和差倍分问题
和、差、倍问题关键要分清是几倍多几和几倍少几。

(1)当较大量是较小量的几倍多几时;
(2)当较大量是较小量的几倍少几时。

题型四、行程问题
1.行程问题
路程=速度×时间
相遇路程=速度和×相遇时间
追及路程=速度差×追及时间
2.流水行船问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
水流速度=×(顺流速度-逆流速度)
3.火车过桥问题
火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的基本数量关系为:
车速×过桥时间=车长+桥长.
题型五、工程问题
工作总量=工作时间×工作效率
各部分工作量之和=1
题型六、商品销售问题
在现实生活中,购买商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,在了解这些基本概念的基础上,还必须掌握以下几个等量关系:
利润=售价-进价
利润=进价×利润率
实际售价=标价×打折率
题型七、方案决策问题
在实际生活中,做一件事情往往会有多种选择,这就需要从几种方案中,选择最佳方案,如网络的使用,到不同旅行社购票等,一般都要运用方程解答,把每一种方案的结果先算出来,进行比较后得出最佳方案。

题型八、积分问题
比赛场数=胜的场数+平的场数+负的场数,比赛分数=胜场得分+平场得分负场扣分。

题型九、配套问题
“配套”型应用题中有三组数据:
(1)车间工人的人数;
(2)每人每天平均能生产的不同的零件数;
(3)不同零件的配套比。

一般地说,(2)、(3)两个数据可以预先给定.例如,在给出(2)、(3)两组数据的基础上,如何确定车间工人人数,使问题有整数解。

图文导学。

相关文档
最新文档