热传递的方式
热是怎样传递的

热传递:热量从温度高的物体传到温度 低的物体,或者从物体的高温部分传 到低温部分,这种现象叫做热传递。
热传递的实质:内能从高温物体向低温 物体转移的过程,能量转移的一种方式。 发生热传递的条件:发生热传递的唯一 条件是存在温度差 。
4
3 21
4
3
2
1
1、不同物体的传热(速度)不一样,容易传热的物体 叫(热的良导体 ),一般是(金属 )材料制成的。比 如(铁 )、(铜 ) 等,不容易传热的材料叫热的不良 导体 ,有(塑料、木头 )等。 2、热传递主要通过(热传导)、(对流 )和(热辐射 ) 三种方式来实现的。太阳的热是通过着物体传递,从温度( 高 ) 的部分传向 温度( 低 )的部分,直到(温度相同 ),这种传热方 法叫( 热传递 )。 2、在热传递过程中,传递内能的多少叫(热量 ),高 温物体内能减小了,叫做( 放出了热量),低温物体内 能增加了,叫做( 吸收了热量 )。 3、热传递有三种方式:(传导)、(对流 )和(辐射)。
热总是从较热的一 端传向较冷的一端。
通过直接接触,将热从一个 物体传递给另一个物体,或从物 体的一部分传递到另一部分的传 热方法叫热传导。
人们都知道热传导有三种形式

人们都知道热传导有三种形式:辐射、传导、对流。
①热传导:热量从系统的一部分传到另一部分或由一个系统传到另一系统的现象叫做热传导。
热传导是固体中热传递的主要方式。
在气体或液体中,热传导过程往往和对流同时发生。
各种物质的热传导性能不同,一般金属都是热的良导体,玻璃、木材、棉毛制品、羽毛、毛皮以及液体和气体都是热的不良导体,石棉的热传导性能极差,常作为绝热材料。
热从物体温度较高的一部分沿着物体传到温度较低的部分的方式叫做热传导。
②对流:液体或气体中较热部分和较冷部分之间通过循环流动使温度趋于均匀的过程。
对流是液体和气体中热传递的主要方式,气体的对流现象比液体明显。
对流可分自然对流和强迫对流两种。
自然对流往往自然发生,是由于温度不均匀而引起的。
强迫对流是由于外界的影响对流体搅拌而形成的。
靠气体或液体的流动来传热的方式叫做对流。
③热辐射:物体因自身的温度而具有向外发射能量的本领,这种热传递的方式叫做热辐射。
热辐射虽然也是热传递的一种方式,但它和热传导、对流不同。
它能不依靠媒质把热量直接从一个系统传给另一系统。
热辐射以电磁辐射的形式发出能量,温度越高,辐射越强。
辐射的波长分布情况也随温度而变,如温度较低时,主要以不可见的红外光进行辐射,在500摄氏度以至更高的温度时,则顺次发射可见光以至紫外辐射。
热辐射是远距离传热的主要方式,如太阳的热量就是以热辐射的形式,经过宇宙空间再传给地球的。
高温物体直接向外发射热的现象叫做热辐射。
热的导体各种物体都能够传热,但是不同物质的传热本领不同.容易传热的物体叫做热的良导体,不容易传热的物体叫做热的不良导体。
金属都是热的良导体。
瓷、木头和竹子、皮革、水都是不良导体。
金属中最善于传热的是银,其次是铜和铝.最不善于传热的是羊毛、羽毛、毛皮、棉花,石棉、软木和其他松软的物质。
液体,除了水银外,都不善于传热,气体比液体更不善于传热.散热器材料的选择散热片的制造材料是影响效能的重要因素,选择时必须加以注意!目前加工散热片所采用的金属材料与常见金属材料的热传导系数:金 317 W/mK银429 W/mK铝401 W/mK铁237 W/mK铜 48 W/mKAA6061型铝合金155 W/mKAA6063型铝合金201 W/mKADC12型铝合金96 W/mKAA1070型铝合金226 W/mKAA1050型铝合金209 W/mK热传导系数的单位为W/mK,即截面积为1平方米的柱体沿轴向1米距离的温差为1开尔文(1K=1℃)时的热传导功率.热传导系数自然是越高越好,但同时还需要兼顾到材料的机械性能与价格.热传导系数很高的金、银,由于质地柔软、密度过大、及价格过于昂贵而无法广泛采用;铁则由于热传导率过低,无法满足高热密度场合的性能需要,不适合用于制作计算机空冷散热片.铜的热传导系数同样很高,可碍于硬度不足、密度较大、成本稍高、加工难度大等不利条件,在计算机相关散热片中使用较少,但近两年随着对散热设备性能要求的提高,越来越多的散热器产品部分甚至全部采用了铜质材料.铝作为地壳中含量最高的金属,因热传导系数较高、密度小、价格低而受到青睐;但由于纯铝硬度较小,在各种应用领域中通常会掺加各种配方材料制成铝合金,寄此获得许多纯铝所不具备的特性,而成为了散热片加工材料的理想选择.各种铝合金材料根据不同的需要,通过调整配方材料的成分与比例,可以获得各种不同的特性,适合于不同的成形、加工方式,应用于不同的领域.上表中列出的5种不同铝合金中:AA6061与AA6063具有不错的热传导能力与加工性,适合于挤压成形工艺,在散热片加工中被广为采用.ADC12适合于压铸成形,但热传导系数较低,因此散热片加工中通常采用AA1070铝合金代替,可惜加工机械性能方面不及ADC12.AA1050则具有较好的延展性,适合于冲压工艺,多用于制造细薄的鳍片.如何判断芯片是否需要增加散热措施如何判断芯片是否需要增加散热措施【铝合金散热器】第一步:搜集芯片的散热参数.主要有:P、Rja、Rjc、Tj等第二步:计算T c-max:Tc-max=Tj- Rjc*P第三步:计算要达到目标需要的Rca:Rca=(Tc-max-Ta)/P第四步:计算芯片本身的Rca’:Rca’=Rja-Rjc如果Rca大于Rca’,说明不需要增加额外的散热措施.如果Rca小于Rca’,说明需要增加额外的散热措施.比如增加散热器、增加风扇等等.如前所述,Rja不能用于准确的计算芯片的温度,所以这种方法只能用于简单的判断.而不能用于最终的依据.下面举一个简单的例子:例:某芯片功耗——1.7W;Rja——53℃/W;Tj——125℃;Rjc——25℃/W,芯片工作的最大环境温度是50℃.判断该芯片是否需要加散热器,散热器热阻是多少.Tc-max=Tj- Rjc*P=125℃-25℃/W*1.7W=℃Rca=(Tc-max-Ta)/P=(82.5-50)1.7=℃/WRca’=Rja-Rjc=53-25=28℃/WRca小于Rca’,所以需要增加散热器.散热器的热阻假设为Rs,则有:Rs//Rca’小于RcaRs*28/(Rs+28)小于19.12Rs小于℃/W所以选用的散热器热阻必须小于℃/W.在普通的数字电路设计中,我们很少考虑到集成电路的散热,因为低速芯片的功耗一般很小,在正常的自然散热条件下,芯片的温升不会太大.随着芯片速率的不断提高,单个芯片的功耗也逐渐变大,例如:Intel的奔腾CPU的功耗可达到25W.当自然条件的散热已经不能使芯片的温升控制在要求的指标之下时,就需要使用适当的散热措施来加快芯片表面热的释放,使芯片工作在正常温度范围之内.通常条件下,热量的传递包括三种方式:传导、对流和辐射.传导是指直接接触的物体之间热量由温度高的一方向温度较低的一方的传递,对流是借助流体的流动传递热量,而辐射无需借助任何媒介,是发热体直接向周围空间释放热量.在实际应用中,散热的措施有散热器和风扇两种方式或者二者的同时使用.散热器通过和芯片表面的紧密接触使芯片的热量传导到散热器,散热器通常是一块带有很多叶片的热的良导体,℃/W.选择散热器时,除了机械尺寸的考虑之外,最重要的参数就是散热器的热阻.热阻越小,散热器的散热能力越强.散热设计的一些基本原则业裕铝合金散热器散热设计的一些基本原则从有利于散热的角度出发,印制版最好是直立安装,板与板之间的距离一般不应小于2cm,而且器件在印制版上的排列方式应遵循一定的规则:·对于采用自由对流空气冷却的设备,最好是将集成电路(或其它器件)按纵长方式排列,如图3示;对于采用强制空气冷却的设备,最好是将集成电路(或其它器件)按横长方式排列.·同一块印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集成电路、电解电容等)放在冷却气流的最上流(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却气流最下游.·在水平方向上,大功率器件尽量靠近印制板边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印制板上方布置,以便减少这些器件工作时对其它器件温度的影响.·对温度比较敏感的器件最好安置在温度最低的区域(如设备的底部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局.·设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动路径,合理配置器件或印制电路板.空气流动时总是趋向于阻力小的地方流动,所以在印制电路板上配置器件时,要避免在某个区域留有较大的空域.整机中多块印制电路板的配置也应注意同样的问题.业裕铝合金散热器-功率器件的散热计算及散热器选择功率器件的散热计算及散热器选择目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。
简述三种传热基本方式及其传热基本原理

简述三种传热基本方式及其传热基本原理
三种传热基本方式及其传热基本原理如下:
一、热传导。
热传导是介质内无宏观运动时的传热现象,其在固体、液体和气体中均可发生,但严格而言,只有在固体中才是纯粹的热传导,而流体即使处于静止状态,其中也会由于温度梯度所造成的密度差而产生自然对流,因此,在流体中热对流与热传导同时发生。
二、热辐射。
热辐射,物体由于具有温度而辐射电磁波的现象。
热量传递的3种方式之一。
一切温度高于绝对零度的物体都能产生热辐射,温度愈高,辐射出的总能量就愈大,短波成分也愈多。
热辐射的光谱是连续谱,波长覆盖范围理论上可从0直至∞,一般的热辐射主要靠波长较长的可见光和红外线传播。
由于电磁波的传播无需任何介质,所以热辐射是在真空中唯一的传热方式。
三、热对流。
热对流是热传递的重要形式,它是影响火灾发展的主要因素:
1、高温热气流能加热在它流经途中的可燃物,引起新的燃烧。
2、热气流能够往任何方向传递热量,特别是向上传播,能引起上层楼板、天花板燃烧。
3、通过通风口进行热对流,使新鲜空气不断流进燃烧区,供应持续燃烧。
热的传递方式有哪三种

热的传递方式有哪三种
热的传递方式有三种:传导、对流和辐射。
1. 传导:传导是指热量通过物质中分子之间的直接碰撞传递的过程。
当一个物体的一部分受热时,其分子开始振动,这种振动通过与相邻分子的碰撞而传递热量。
金属是一个很好的热导体,因为其分子之间的结构能够有效地传递热量。
2. 对流:对流是指热量通过流体(液体或气体)的运动传递的过程。
当液体或气体受热时,其密度减小,会形成密度较低的上升流,同时密度较高的冷流下沉。
这种对流流动使热量更快地传递到液体或气体中。
3. 辐射:辐射是指热量通过电磁辐射的形式传递的过程,不需要介质来传递。
热辐射是由热物体发出的电磁波,可以在真空中传播。
太阳向地球传递热量就是通过辐射的方式进行的。
这三种热传递方式通常同时存在,它们在不同条件下起着不同重要性的作用。
1/ 1。
热能的传递热能在不同介质中的传递方式

热能的传递热能在不同介质中的传递方式热能是指物体内部粒子的热运动,其传递方式是通过物质间的相互作用,使热从高温处传递到低温处。
在不同的介质中,热能的传递方式也会有所不同。
本文将从固体、液体和气体三个方面,来探讨热能在不同介质中的传递方式。
一、固体中热能的传递方式在固体中,热能主要通过导热、对流和辐射三种方式传递。
1. 导热传递导热是指热能通过固体物质的直接接触传递的过程。
当一个物体的一部分受热时,由于物体内部的分子间存在相互作用力,热能会从热的区域(高温区域)通过固体的导热过程传递到冷的区域(低温区域)。
导热传递的速度与物体的导热性能有关,导热性能好的物体,其传热速度较快;导热性能差的物体,其传热速度较慢。
2. 对流传递对流是指热能通过固体内部的流体(如液体或气体)的运动而传递的过程。
当固体物体内部发生温度梯度时,低温处的流体会被加热,从而密度减小,使其上升;而高温处的流体会被冷却,密度增加,使其下降。
这种流体的对流运动会带走热能,从而实现热的传递。
3. 辐射传递辐射是指热能以电磁波的形式传递的过程。
当固体物体处于高温状态时,它会向四周辐射出电磁波,这些电磁波会在空间中传播。
当这些电磁波遇到另一个固体时,会被吸收或反射,从而使热能传递到另一个物体中。
辐射传递的特点是不需要介质传递,可以在真空中进行,因此在太空或真空条件下,辐射成为热传递的主要方式。
二、液体中热能的传递方式液体中热能的传递方式主要是通过对流传递为主。
1. 对流传递液体的对流传递与固体不同的是,液体具有流动性,不同温度的液体会发生流动。
当液体的一部分受热时,被加热的液体密度减小,从而上升,而冷却的液体密度增加,从而下降。
通过这种密度差引起的流动,可以有效地传递热能。
2. 导热传递液体中的导热传递主要体现在液体内部分子的碰撞和振动上。
当液体的一部分受热时,分子会获得更大的动能,并将这部分动能传递给相邻的分子,从而传递热能。
导热传递的速度与液体的导热性能有关,导热性能好的液体,其传热速度较快。
热传递的方式与机制

热传递的方式与机制热传递是指热量从高温区域向低温区域传递的过程。
在我们的日常生活和工业生产中,热传递起着至关重要的作用。
了解热传递的方式和机制,有助于我们更好地管理和应用热能。
本文将介绍热传递的三种基本方式和相应的传热机制。
一、传导传热传导传热是指通过固体或液体传递热量的过程。
在传导过程中,热量是通过物质内部的分子、原子之间的碰撞和相互作用传递的。
传导传热可以通过热传导方程来描述,其数学形式为:q = -kA(dT/dx)其中,q是单位时间内传导的热量,k是物质的热导率,A是传热截面积,dT/dx是温度梯度。
传导传热的机制主要有以下两种:1. 热传导热传导是指通过固体物质中分子或原子之间的碰撞和传递能量的过程。
固体的热导率通常与其晶体结构、原子间作用力和温度有关。
常见的导热物质如铜和铝等具有良好的热导率。
2. 对流传热对流传热是指热量通过流体(如气体或液体)的流动而传递的过程。
对流传热通常包括自然对流和强制对流两种方式。
自然对流是指流体由于温差而产生的自发流动,如热气球中的热气上升。
强制对流是指通过外部力推动流体的流动,如风扇使空气流动。
二、辐射传热辐射传热是指热量通过电磁波辐射传递的过程,不需要通过物质来传递。
辐射传热可以在真空和各种介质中传递。
辐射传热主要依赖于发射体和吸收体之间的热辐射。
辐射传热的机制可以用斯特藩—玻尔兹曼定律来描述,该定律表明热辐射的功率和温度的四次方成正比。
辐射传热通常有以下特点:- 不受介质的存在与否的影响,可以在真空中进行传热。
- 热辐射强度与物体的温度的四次方成正比,因此辐射传热可在相同温度下远距离传递热量。
三、传热方式的应用不同的传热方式和机制在实际应用中具有不同的作用。
传导传热广泛应用于导热材料、隔热材料和散热器等技术领域。
例如,高热导率的金属材料可用于制造散热器,从而有效地将热量传导到空气中。
对流传热常见于液体和气体之间的热交换过程,例如冷却塔的工作原理就是通过自然或强制对流来散热。
热能的传递了解传导辐射和对流的热传递方式

热能的传递了解传导辐射和对流的热传递方式热能的传递:了解传导、辐射和对流的热传递方式热传递是热能从高温物体传递到低温物体的过程。
在热传递过程中,有三种主要的传热方式,分别是传导、辐射和对流。
本文将详细介绍这三种热传递方式,帮助我们更好地理解热传递的基本原理。
一、传导热传递传导是热能在固体或液体中通过分子之间的碰撞传递的方式。
当物体的一部分受热时,分子会增加其振动,然后通过与相邻分子的碰撞将热传递到相邻部分。
传导热传递的速度取决于物体的导热性能和温度差异。
导热性能是物质传导热量的能力,一般使用导热系数来表示。
不同的物质具有不同的导热系数,导热系数越大,该物质导热性能越好。
二、辐射热传递辐射是指热量通过电磁辐射的方式传递。
无论是在真空中还是在空气中,辐射热传递都能够发生。
任何物体只要有温度,都会发射电磁波,这些电磁波能够携带热能。
辐射热传递的速度与物体的温度的四次方成正比。
辐射传热的特点是它能在真空中传热,热辐射可以从高温物体发出、穿过真空媒介,到达低温物体,实现热量的传递。
这在太空中的传热过程中起到了重要作用。
三、对流热传递对流热传递是通过流体介质(液体或气体)的对流运动进行热量传递的方式。
对流传热的过程需要涉及到物体表面与流体之间的传递和流体的流动。
对流传热有两种基本形式:自然对流和强制对流。
自然对流是指由温差引起的流体密度差异,产生自然流动的现象。
而强制对流是通过外界力驱动流体的流动,比如风扇或泵等。
对流热传递的速度取决于温度差异、流体的性质以及流体流动的速度。
流体的流动会带走物体表面的热量,加速热能的传递。
综上所述,传导、辐射和对流是三种不同的热传递方式。
传导是通过分子之间的碰撞传递热能;辐射是通过电磁辐射传递热能;对流是通过流体介质的对流运动传递热量。
不同的热传递方式在不同的条件下起到不同的作用,我们可以根据具体情况选择合适的方式来实现热量的传递。
通过对热传递方式的了解,我们可以更好地应用于实际生活中的问题。
热传递方式及热传导热辐射和热对流

热传递方式及热传导热辐射和热对流热传递方式及热传导、热辐射和热对流热是能量的一种,它可以通过多种方式传递,其中最常见的三种方式是热传导、热辐射和热对流。
在本文中,我们将详细介绍这三种热传递方式的原理和特点。
一、热传导热传导是指通过物质内部的分子间碰撞传递能量的过程。
在固体、液体和气体中,分子之间存在作用力,当分子受到热运动的激发时,会传递给周围的分子,从而使热量传导。
热传导的速率与物体的导热系数密切相关,导热系数越大,热传导的速率越快。
此外,温度梯度的存在也会影响热传导速率,温度梯度越大,热传导速率越高。
热传导主要适用于固体和液体,其中固体的热传导能力较高,而液体的热传导能力较差。
热传导的实际应用包括导热材料的选择、导热设备的设计和热保护措施的实施等。
二、热辐射热辐射是指物体由于发热而产生的电磁辐射。
所有物体在一定温度下都会发射热辐射,其发射能力与温度的四次方成正比。
热辐射的机制是物体内部不断发生的电子跃迁和分子振动引起的辐射过程。
这种辐射通常在真空中传播,不需要介质的支持。
热辐射的特点是它的能量可以在很远的距离内传播,不受热传导和热对流的限制。
此外,热辐射对物体的表面颜色和光泽度等特性也有影响,不同物体的辐射能力不同。
热辐射在许多领域得到了广泛应用,例如太阳能利用、红外线测温和红外热成像等。
三、热对流热对流是指物质内部的流体通过对流传热。
在气体和液体中,由于分子之间的间隙较大,分子可以随着热运动形成流动,这种流动可以带走或传递热量。
热对流的速率与流体的热导率、密度差和温度差有关。
密度差越大,热对流的速率越快。
而温度差越大,热对流的速率越高。
热对流主要适用于气体和液体,其中气体的热对流能力较高。
热对流的实际应用包括自然对流和强迫对流的热传输,如空气循环、风扇散热和水循环散热等。
综上所述,热传递方式主要包括热传导、热辐射和热对流。
它们分别适用于不同的物质和条件,并在许多领域发挥着重要的作用。
理解和应用这些热传递方式,有助于我们更好地设计和优化能量传递和热管理系统。