传热三种方式

合集下载

传热的三种方式

传热的三种方式

第6章传热1、传热过程有哪三种基本方式?答:(1)间接换热,(2)直接换热,(3)蓄热式换热。

2、传热按机理分为哪几种?答:(1)热传导,(2)热对流,(3)热辐射。

3、物体的导热系数与哪些主要因素有关?答:与物体材料的组成、结构、温度、湿度、压强及聚集状态等因素有关。

4、流体流动对传热的贡献主要表现在哪儿?答:流体在垂直于传热方向上的流动,可以增加传热方向上的温度梯度,尤其是湍流时,使得传热方向上的温度梯度仅存在于流动边界层内,故温度梯度数值有很大的增加,根据傅立叶热传导定律可知,在温度梯度方向上的传热速率有了很大增加。

流体在平行于传热方向上的同向流动对于传热的作用是明显的,流体的质点运动携带了热量,使得传热速率可有很大增加。

5、自然对流中的加热面与冷却面的位置应如何放才有利于充分传热?答:将加热面水平方向置于底部,加热面水平方向置于顶部,有利于自然环流。

6、液体沸腾的必要条件有哪两个?答:(1)达到一定的过热度,(2)有利于形成较多的气泡核心。

7、工业沸腾装置应在什么沸腾状态下操作?为什么?答:应在什么核状沸腾状态下操作,因为此状态下,对流传热系数大,操作状态安全稳定。

8、沸腾给热的强化可以从哪两方面着手?答:(1)加热表面,易于形成更多的汽化核心,(2)沸腾液体,在液体中加入少量的添加剂改变沸腾液体的表面张力。

9、蒸汽冷凝时为什么要定期排放不凝性气体?答:在冷凝液膜表面上的不凝性气体膜,导热系数很小,热阻值大,直接影响蒸汽冷凝传热速率,故应定期排放不凝性气体。

10、为什么低温时热辐射往往可以忽略,而高温时热辐射则往往成为主要的传热方式?答:根据斯蒂芬-波尔茨曼定律,物体对外辐射能量的总能力E与其绝对温度的4次方成正比,故在物体处于低温时热辐射往往可以忽略,而高温时热辐射则往往成为主要的传热方式。

11、影响辐射传热的主要因素有哪些?答:(1)高温物体绝对温度的4次方与低温物体绝对温度的4次方之差,(2)高温物体的黑度值及低温物体的黑度值,(3)高温物体与低温物体的位置关系。

传热的三种基本方式

传热的三种基本方式
返回
式中
q Q A
A──总传热面积
二、定态与非定态传热
非定态传热 Q,q, t f x, y, z,
定态传热 Q,q, t f x, y, z
t 0

返回
三、冷、热流体通过间壁的传热过程
T1
t2
(1)热流体 Q1(对 流) 管壁内侧
对流 导 对流
返回
4.1.3 冷、热流体的接触方式
一、直接接触式
板式塔
返回
填料塔
返回
凉水塔
返回
二、蓄热式
低温流体
优点: • 结构较简单 • 耐高温
高温流体
缺点: • 设备体积大 • 有一定程度的混合
t2
冷流体t1
T2
传热面为内管的表面积
返回
(2)列管换热器
热流体T1
返回
二、对流 流体内部质点发生相对位移的热量传递过程。 • 自然对流:由于流体内温度不同造成的浮升力
引起的流动。 • 强制对流:流体受外力作用而引起的流动。
对流传热:流体与固体壁面之间的传热过程。
三、热辐射 物体因热的原因发出辐射能的过程称为热辐射。
• 能量转移、能量形式的转化 • 不需要任何物质作媒介
返回
4.1.2 传热的三种基本方式
一、热传导 热量从物体内温度较高的部分传递到温度较低的部
分,或传递到与之接触的另一物体的过程称为热传导。 特点:没有物质的宏观位移
• 气体 分子做不规则热运动时相互碰撞的结果 • 固体 导电体:自由电子在晶格间的运动
非导电体:通过晶格结构的振动实现 • 液体 机理复杂
Q

(2)管壁内侧Q2( 热传导) 管壁外侧

传热与传质最全的计算

传热与传质最全的计算

传热与传质最全的计算一、传热传热是能量从一个物体或系统传递到另一个物体或系统的过程。

根据传热方式的不同,传热可以分为三种形式:传导、对流和辐射。

1.传导:传热的方式通过物质的直接接触和分子的碰撞来进行。

传导传热的计算主要依靠温度差、传热面积和传热材料的热导率来计算。

传导传热的计算公式为:Q=-k*A*(ΔT/d)其中Q表示传热的热量,k表示热导率,A表示传热面积,ΔT表示温度差,d表示热传导长度。

2.对流:对流是通过流体(气体或液体)传递热量的过程。

对流传热的计算需要考虑传热系数、传热面积和温度差。

对于自然对流,传热系数可以通过科里奥利数来估算。

对于强制对流,传热系数可以通过雷诺数和普朗特数来估算。

对流传热的计算公式为:Q=h*A*ΔT其中Q表示传热的热量,h表示传热系数,A表示传热面积,ΔT表示温度差。

3.辐射:辐射是通过电磁辐射传递热量的过程。

辐射传热的计算需要考虑黑体辐射能量和辐射系数。

辐射传热的计算公式为:Q=ε*σ*A*(T1^4-T2^4)其中Q表示传热的热量,ε表示发射率,σ表示斯特藩-玻尔兹曼常数,A表示传热面积,T1和T2表示两个物体的温度。

二、传质传质是物质在空间中通过扩散机制传递的过程。

传质过程主要包括质量传递和扩散传递。

1.质量传递:质量传递是涉及物质从一个相向另一个相传递的过程。

质量传递的计算需要考虑浓度差、传质系数和表面积。

质量传递的计算公式为:Q=k*A*(C1-C2)其中Q表示传递的质量,k表示传质系数,A表示传质面积,C1和C2表示两个相之间的浓度差。

2.扩散传递:扩散传递是涉及物质通过浓度梯度向更低浓度的方向传递的过程。

扩散传递的计算需要考虑扩散系数、浓度梯度和距离。

扩散传递的计算公式为:J = -D * (dC / dx)其中J表示扩散通量,D表示扩散系数,C表示浓度,x表示距离。

以上是传热和传质的基本概念和常见的计算方法。

当然,实际的传热和传质过程常常是复杂和多变的,需要根据具体情况进行更为详细和精确的计算和分析。

热量传递的三种方式

热量传递的三种方式

热量传递的三种方式热量传递是物体之间通过热量而产生的能量交换过程。

这个过程对于地球上的一切生命都至关重要,它决定了物体的温度以及热量的分布。

热量传递可以通过三种方式实现:传导、对流和辐射。

首先,我们来介绍传导。

传导是指热量通过直接物质接触来传递的过程。

当两个物体处于不同的温度时,它们之间会发生热量流动。

传导的速度取决于物体的性质,以及温度差异的大小。

传导速度较慢的物体被称为热传导性良好的物体,如金属。

这是因为金属内部的电子能够自由移动,从而更好地传递热量。

相比之下,非金属物体的传导速度较慢,如木材和塑料。

其次是对流。

对流是指热量通过流体(气体或液体)的流动来传递的过程。

当流体的温度变化时,流体的密度也会变化,从而引起流体的运动。

这种运动导致了热量的传递。

对流的速度取决于流体的性质以及温度差异的大小。

对流的一个常见例子是水的对流。

当在一个锅中加热水时,底层的水会变热并向上升,而上层的冷水则下沉。

这种对流现象导致了锅中的水被均匀加热。

最后是辐射。

辐射是指热量通过电磁辐射来传递的过程。

电磁辐射是一种以光速传播的电磁波。

当热物体发射辐射时,会向周围的物体传递热量。

和传导或者对流不同,辐射不需要介质来传播热量。

辐射的速度不受物质性质或者温度差异的影响。

因此,辐射是唯一一种可以在真空中传递热量的方式。

太阳能就是通过辐射传递到地球上的热量的一个重要例子。

虽然传导、对流和辐射是热量传递的三种方式,但它们常常同时存在于真实的物体中。

例如,当我们触摸到热的金属物体时,传导是最主要的传热方式。

金属通过对我们的手进行热传导,使我们感受到热量。

而当我们游泳时,热量通过对流传递到水中。

水中的热量通过对流扩散到我们的身体,使我们感到温暖。

另外,当我们暴露在太阳光下时,辐射是主要的传热方式。

太阳的光线以辐射的形式传递到地球,从而感受到热量。

总结起来,热量可以通过传导、对流和辐射这三种方式来传递。

这些方式各具特点,应用广泛,对于维持地球上的物质的温度分布以及生命的存在都起到了至关重要的作用。

传热三种方式

传热三种方式

1•传导传热是指温度不同的物体直接接触,由于自由电子的运动或分子的运动而 发生的热交换现象。

温度不同的接触物体间或一物体中各部分之间热能的传递过程,称为传导传热。

传热过程中,物体的微观粒子不发生宏观的相对移动,而在其热运动相互振动或 碰撞中发生动能的传递,宏观上表现为热量从高温部分传至低温部分。

微观粒子 热能的传递方式随物质结构而异,在气体和液体中靠分子的热运动和彼此相撞, 在金属中靠电子自由运动和原子振动。

⑴对流传热是热传递的一种基本方式。

热能在液体或气体中从一处传递到另一处的过程。

主要计算分类对于宅瘟畀捲T 特担黑举为聲疑*ao2、多层平面壁的计算1、单层平壁的计算⑴序+购珅子连嘉荐挑扯ft qg 醴円畀…是由于质点位置的移动,使温度趋于均匀。

是液体和气体中热传递的主要方式。

但也往往伴有热传导。

通常由于产生的原因不同,有自然对流和强制对流两种。

根据流动状态,又可分为层流传热和湍流传热。

化学工业中所常遇到的对流传热,是将热由流体传至固体壁面(如靠近热流体一面的容器壁或导管壁等),或由固体壁传入周围的流体(如靠近冷流体一面的导管壁等)。

这种由壁面传给流体或相反的过程,通常称作给热。

定义对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位弯管中的对流传热⑴由于流体间各部分是相互接触的,除了流体的整体运动所带来的热对流之外,还伴生有由于流体的微观粒子运动造成的热传导。

在工程上,常见的是流体流经固体表面时的热量传递过程,称之为对流传热。

[2]对流传热通常用牛顿冷却定律来描述,即当主体温度为tf的流体被温度为tw 的热壁加热时,单位面积上的加热量可以表示为q=a(tw-tf),当主体温度为tf的流体被温度为tw的冷壁冷却时,有q=a(tf-tw)式中q为对流传热的热通量,W/m2 a 为比例系数,称为对流传热系数,W/(m2「C)。

牛顿冷却公式表明,单位面积上的对流传热速率与温差成正比关系。

热量传递的三种方式

热量传递的三种方式

热量传递的三种方式热量传递是指物体之间传递热能的过程,它可以通过三种方式进行:导热、对流和辐射。

本文将详细介绍这三种方式,并探讨它们在不同场景下的应用。

一、导热导热是指热量通过直接接触传递的方式。

在导热过程中,高温物体的分子具有更大的能量,它们与低温物体的分子发生碰撞并传递热能,使得低温物体的分子动能增加,温度升高。

导热是固体物体最常见的热量传递方式。

它的传输速度与物体的导热系数和温度差有关,即温度差越大、导热系数越大,导热速率越快。

导热也存在于液体和气体中,但其传输速度相对较慢。

在我们生活中,导热被广泛应用于热传导、散热和保温等领域。

例如,热传导在烹饪中起到重要作用,当我们用锅加热食物时,锅底受热后,热量通过导热方式传递给食物。

另外,导热也是保温材料的分析基础,一些绝缘材料通过减缓导热速度来实现保温的效果。

二、对流对流是指热量通过流体运动传递的方式。

流体(包括气体和液体)中的分子具有自由度,它们可以通过运动来传递能量。

当流体受热时,其分子热运动增强,流体密度减小,由此产生的浮力使得流体发生对流运动。

对流分为自然对流和强迫对流两种形式。

自然对流是指由温度差引起的自发流动,如烟囱里的烟气上升。

强迫对流是通过外力施加来引起的,如风扇吹动空气。

对流在许多领域中起到重要作用,如空气和水的循环系统、热交换器和气候调节。

例如,冷气机通过强迫对流使室内热量散发到室外,实现室内温度的调节。

另外,风扇通过对流传热来提高材料表面的散热效果,常用于电脑散热系统。

三、辐射辐射是指热能以电磁波的形式传播的方式。

热辐射不需要介质,可以在真空中传播,而且传输速度非常快。

辐射的强度与物体的温度和表面特性有关,温度越高、表面越黑,辐射强度越大。

热辐射广泛应用于能源利用、光照和生物医学等领域。

例如,我们常常用太阳能电池板将太阳辐射转化为电能。

此外,在医学中,热辐射被应用于肿瘤治疗,高能量的辐射能够破坏肿瘤细胞,起到治疗作用。

综上所述,热量传递的三种方式:导热、对流和辐射,在我们的日常生活中扮演着重要角色。

传热方式有哪三种

传热方式有哪三种

传热有三种基本方式,分别是热传导;热辐射;热对流。

特点如下:
1、热传导:有温度不同的质点在热运动中引起的,在固体,液体,气体中均能产生。

单纯的导热仅能在密实的固体中发生。

2、热对流:对流式由于温度不同的各部分流体之间发生相对运动,互相掺和而传地热能。

包括自然对流换热,受迫对流换热。

3、热辐射:过程中伴随形式能量转化;传播不需要任何中间介质;凡是温度高于绝对零度的一切物体,不论他们的温度高低都在不间断地向外辐射不同波长的电磁波。

传热学知识点

传热学知识点

传热学知识点2篇传热学是研究热量在物体之间传递的科学,它对于我们理解自然界中的许多现象至关重要。

本文将为您介绍传热学的两个重要知识点。

一、传热方式的分类热在物体之间传递的方式可以分为三种,分别是热传导、热辐射和热对流。

1. 热传导:热传导是物质内部的热量传递方式。

它是由物体内部的分子或原子之间的碰撞引起的。

热传导的速率取决于物体的导热系数、温度差和物体之间的距离。

一般来说,导热系数高的物质(如金属)在单位温度差下传热的速率会更快。

而导热系数低的物质(如木材、塑料等)则传热速率较慢。

传热学中,我们常用傅里叶定律来描述热传导的过程。

傅里叶定律表明热的传导速率与温度梯度成正比。

具体的计算方法是根据物质的导热系数和温度梯度计算热通量。

2. 热辐射:热辐射是指物体通过电磁波辐射热量的过程。

不同于热传导需要通过物质传递热量,热辐射是在真空和空气中也能传热的方式。

热辐射是因为物体的温度高于绝对零度时,物体上的原子和分子会产生辐射。

热辐射的速率取决于物体的温度和表面的发射系数。

发射系数高的物体会以较快的速率辐射热量。

根据斯特藩-玻尔兹曼定律,热辐射的速率与物体的温度的四次方成正比,具体计算方法是根据物体的表面发射系数和温度的四次方计算热通量。

3. 热对流:热对流是指热量通过流体运动传递的方式。

在自然界中,流体受到温差的驱动而产生对流运动。

热对流分为自然对流和强制对流两种方式。

自然对流是指由密度差异引起的流体运动,没有外部驱动力。

比如,热空气上升形成的对流气流。

强制对流是指由外部力驱动的流体运动,如风、泵或风扇等。

热对流通过流体的循环来传递热量,流体的流速和传热面积对热对流速率有影响。

二、传热学的应用传热学的研究具有广泛的应用价值,我们经常可以在生活和工业中见到传热学的应用。

1. 工业制冷与加热:在许多工业过程中,需要通过传热来实现制冷和加热。

比如,制造业中的冷冻食品、空调以及热处理设备等。

通过掌握传热学知识,可以合理设计和改进制冷和加热系统,提高其效率和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1•传导传热是指温度不同的物体直接接触,由于自由电子的运动或分子的运动而 发生的热交换现象。

温度不同的接触物体间或一物体中各部分之间热能的传递过程,称为传导传热。

传热过程中,物体的微观粒子不发生宏观的相对移动,而在其热运动相互振动或 碰撞中发生动能的传递,宏观上表现为热量从高温部分传至低温部分。

微观粒子 热能的传递方式随物质结构而异,在气体和液体中靠分子的热运动和彼此相撞, 在金属中靠电子自由运动和原子振动。


对流传热是热传递的一种基本方式。

热能在液体或气体中从一处传递到另一处的过程。

主要
计算分类
对于宅瘟畀捲T 特担黑举为聲疑*
ao
2、多层平面壁的计算
1、单层平壁的计算⑴
序+购珅子连嘉荐挑扯ft qg 醴円畀…
是由于质点位置的移动,使温度趋于均匀。

是液体和气体中热传递的主要方式。

但也往往伴
有热传导。

通常由于产生的原因不同,有自然对流和强制对流两种。

根据流动状态,又可分为层流传热和湍流传热。

化学工业中所常遇到的对流传热,是将热由流体传至固体壁面(如
靠近热流体一面的容器壁或导管壁等),或由固体壁传入周围的流体(如靠近冷流体一面的
导管壁等)。

这种由壁面传给流体或相反的过程,通常称作给热。

定义
对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位
弯管中的对流传热⑴
由于流体间各部分是相互接触的,除了流体的整体运动所带来的热对流之外,还伴生有由于流体的微观粒子运动造成的热传导。

在工程上,常见的是流体流经固体表面时的热量传递过程,称之为对流传热。

[2]
对流传热通常用牛顿冷却定律来描述,即当主体温度为tf的流体被温度为tw 的热壁加热时,单位面积上的加热量可以表示为q=a(tw-tf),当主体温度为tf
的流体被温度为tw的冷壁冷却时,有q=a(tf-tw)式中q为对流传热的热通量,W/m2 a 为比例系数,称为对流传热系数,W/(m2「C)。

牛顿冷却公式表明,单
位面积上的对流传热速率与温差成正比关系。

[2]基本原理
原理
在工程上,对流传热是指流体固体壁面的传热过程,它是依靠流体质点的移动进行热量传递的。

因此与流体的流动情况密切相关。

热流体将热量传给固体壁面,再由壁面传给冷流体。

由流体力学知,流体流经圆体壁面时,在靠近壁面处总有一薄层流体顺着壁面做层流流动,即层流底层。

当流体做层流流动时,在垂直于流动方向的热量传递,主要以热传导方式进行。

由于大多数流体的导热系数较小,故传热热阻主要集中在层流底层中,温差也主要集中在该层中。

而在湍流主体中,由于流体质点剧烈混合,可近似的认为无传热热阻,即湍流主体中基本上没有温差。

在层流底层与湍流主体之间存在着一个过渡区,在过渡区内,热传导与热对流均起作用使该区的温度发生缓慢变化。

[3]
所以,层流底层的温度梯度较大,传热的主要热阻即在此层中,因此,减薄层流底层的厚度S是强化对流传热的重要途径。

在传热学中,该层又称为传热边界层(Thermal
Boundary Layer )。

⑶ 速率方程式从对流传热过程的分析可知这一个复杂的传热过程影响对流传热速率的因素很多,为了方便起见,工程上采用一种简化的方法,即将流体的全部温差集中在厚度为S的一层薄膜内,但薄膜厚度9难以测定,所以用a代替入/ S将对流
传热速率写成如下形式:
[3]
此式称为对流传热速率方程式,亦称牛顿冷却定律。

式中:①—对流传热速率。

(热流量rw)
A—传热面积,m
△ T—对流传热温度差「C /K)
Tw-与流体接触的壁面温度,C
T—流体的平均温度
a -对流传热系数
R—对流传热热阻,C /W
并非理论推导,而是一种推论。

即假设单位面积传热量与温度差△T成正比。

- 将所有复杂的因素都转移到对流传热系数a中去了。


影响因素
①流体在传热过程中有无相变、汽化、冷凝。

②流体的流动状态和起因。

③流体流动的原因:强制对流、自然对流。

④物体的物理性质:p、Cp、入、卩、体积膨胀系数等。

⑤传热表面的形状、位置及大小等。

[3]沸腾传热
液体和高于其饱和温度的壁面接触时就会产生沸腾,此时,壁面向流体放热的现 象称为沸腾传热。

对液体加热时,在液体内部伴有由液相变成汽相而产生气泡的进程称为沸腾。

沸腾产生的方法:
将加热壁面浸没在液体中,液体在壁面处受热沸腾,称为大容器沸腾。

液体在管内流动时受热沸腾,称为管内沸腾。


冷凝传热
当饱和蒸气与低于饱和温度的壁面相接触时,蒸气将放出潜热,并冷凝成液体。

蒸汽冷凝的方式:膜状冷凝(film-type condensation )和滴状冷凝(dropwise condensation)。

若冷凝液能润湿壁面并能形成一层完整的液滴,
称膜状冷凝由于表面张力的作用, 冷凝在壁面上形成许多液滴最终会形成膜状冷凝。

⑻ 特点分析
右图表示了壁面一侧流体的流动情况以及和流动方向垂直的某一截面上流体的
温度分布情况。

[4] 在湍流主体内,由于流体质点湍动剧烈,所以在传热方向上,流体的温度差极小, 各处的温度基本相同,热量传递主要依靠对流进行,传导所起作用很小。

在过渡 层内,流体的温度发生缓慢变化,传导和对流同时起作用。

在滞流内层中,流体 仅沿壁面平行流动,在传热方向上没有质点位移,所以热量传递主要依靠传导进 行,由于流体的导热系数很小,使滞流内层中的导热热阻很大,因此在该层内流 体温度差较大。

[4]
由以上分析可知,在对流传热(或称给热)时,热阻主要集中在滞流内层,因此, 减薄滞流
内层的厚度或破坏滞流内层是强化对流传热的重要途径。

⑷ 当流体沿壁面作湍流流动时,
在靠近壁面处总有一滞流内层存在 在滞流内层和
[4] 湍流主体之间有一过渡层。

截面上流体的温度分布
对流类型
对流传热是指不同温度的流体质点在运动中的热量传递。

和强制对流。

若由于运动是因流体内部各处温度不同引起局部密度差异所致, 则 称为自然对流。

若由于水泵、风机或其它外力作用引起流体运动, 则称为强制对 流。

但实际上,热对流的同时,流体各部分之间还存在着导热, 而形成一种复杂 的热量传递过程。

[5] 由于引起流体运动的原
自然对流[1]。

相关文档
最新文档