基4FFT 原理及MATLAB 算法实现

合集下载

matlab 快速傅里叶变换

matlab 快速傅里叶变换

快速傅里叶变换(Fast Fourier Transform,FFT)是一种在数字信号处理和数值分析中广泛应用的算法,它能够高效地计算离散傅里叶变换(Discrete Fourier Transform,DFT),从而在频域中分析信号的频谱特性。

而在matlab中,使用FFT函数可以方便地进行快速傅里叶变换的计算和处理。

1. FFT的基本原理在介绍matlab中的FFT函数之前,我们先来了解一下FFT的基本原理。

FFT算法是一种分治法的思想,在计算傅里叶变换时通过将原始信号分解为奇偶部分,然后递归地进行计算,最终得到傅里叶变换的结果。

这种分治的思想使得FFT算法的计算复杂度降低到了O(n log n),比直接计算DFT的O(n^2)复杂度要低很多,因此在实际应用中得到了广泛的应用。

2. matlab中的FFT函数在matlab中,可以使用fft函数来进行快速傅里叶变换的计算。

fft函数的基本语法如下:```Y = fft(X)```其中,X表示输入的信号序列,可以是实数或复数序列;Y表示经过FFT变换后得到的频谱结果。

在使用fft函数时,最常见的是对时域信号进行FFT变换,然后得到其频谱特性。

3. FFT在信号处理中的应用FFT算法在信号处理中有着广泛的应用,其中最常见的就是对信号的频谱特性进行分析。

通过对信号进行FFT变换,可以得到其频谱图,从而可以直观地了解信号的频域特性,包括频率成分、幅度特性等。

这对于音频处理、振动分析、通信系统等领域都是非常重要的。

4. FFT在图像处理中的应用除了在信号处理中的应用,FFT算法也在图像处理中有着重要的地位。

在图像处理中,FFT可以用来进行频域滤波,包括低通滤波、高通滤波、带通滤波等操作。

通过FFT变换,我们可以将图像从空域转换到频域,在频域中进行滤波操作,然后再通过逆FFT变换将图像恢复到空域,从而达到图像增强、去噪等效果。

5. FFT在数学建模中的应用除了在信号处理和图像处理中的应用外,FFT算法还在数学建模和仿真计算中有着重要的作用。

matlab自行编写fft傅里叶变换

matlab自行编写fft傅里叶变换

傅里叶变换(Fourier Transform)是信号处理中的重要数学工具,它可以将一个信号从时域转换到频域。

在数字信号处理领域中,傅里叶变换被广泛应用于频谱分析、滤波、频谱估计等方面。

MATLAB作为一个功能强大的数学软件,自带了丰富的信号处理工具箱,可以用于实现傅里叶变换。

在MATLAB中,自行编写FFT(Fast Fourier Transform)的过程需要以下几个步骤:1. 确定输入信号我们首先需要确定输入信号,可以是任意时间序列数据,例如声音信号、振动信号、光学信号等。

假设我们有一个长度为N的信号x,即x = [x[0], x[1], ..., x[N-1]]。

2. 生成频率向量在进行傅里叶变换之前,我们需要生成一个频率向量f,用于表示频域中的频率范围。

频率向量的长度为N,且频率范围为[0, Fs),其中Fs 为输入信号的采样频率。

3. 实现FFT算法FFT算法是一种高效的离散傅里叶变换算法,它可以快速计算出输入信号的频域表示。

在MATLAB中,我们可以使用fft函数来实现FFT 算法,其调用方式为X = fft(x)。

其中X为输入信号x的频域表示。

4. 计算频谱通过FFT算法得到的频域表示X是一个复数数组,我们可以计算其幅度谱和相位谱。

幅度谱表示频率成分的强弱,可以通过abs(X)得到;相位谱表示不同频率成分之间的相位差,可以通过angle(X)得到。

5. 绘制结果我们可以将输入信号的时域波形和频域表示进行可视化。

在MATLAB 中,我们可以使用plot函数来绘制时域波形或频谱图。

通过以上几个步骤,我们就可以在MATLAB中自行编写FFT傅里叶变换的算法。

通过对信号的时域和频域表示进行分析,我们可以更好地理解信号的特性,从而在实际应用中进行更精确的信号处理和分析。

6. 频谱分析借助自行编写的FFT傅里叶变换算法,我们可以对信号进行频谱分析。

频谱分析是一种非常重要的信号处理技术,可以帮助我们了解信号中所包含的各种频率成分以及它们在信号中的能量分布情况。

无线通信原理-基于matlab的ofdm系统设计与仿真

无线通信原理-基于matlab的ofdm系统设计与仿真

无线通信原理-基于matlab的ofdm系统设计与仿真基于matlab的ofdm系统设计与仿真摘要OFDM即正交频分复用技术,实际上是多载波调制中的一种。

其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。

该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。

本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。

重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。

在仿真过程中对OFDM信号使用QPSK 调制,并在AWGN信道下传输,最后解调后得出误码率。

整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

- 1 -第一章 ODMF系统基本原理1.1多载波传输系统多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。

用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。

在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。

图1,1中给出了多载波系统的基本结构示意图。

图1-1多载波系统的基本结构多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM中,各子载波必须保持相互正交,而在MCM则不一定。

1.2正交频分复用OFDM就是在FDM的原理的基础上,子载波集采用两两正交的正弦或余弦函sinm,tcosn,t数集。

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序实验三中使用FFT对信号进行频谱分析的目的是通过将时域信号转换为频域信号,来获取信号的频谱信息。

MATLAB提供了方便易用的函数来实现FFT。

首先,我们需要了解FFT的原理。

FFT(快速傅里叶变换)是一种快速计算离散傅里叶变换(DFT)的算法,用于将离散的时间域信号转换为连续的频域信号。

FFT算法的主要思想是将问题划分为多个规模较小的子问题,并利用DFT的对称性质进行递归计算。

FFT算法能够帮助我们高效地进行频谱分析。

下面是一个使用MATLAB进行频谱分析的示例程序:```matlab%生成一个10秒钟的正弦波信号,频率为1Hz,采样率为100Hzfs = 100; % 采样率t = 0:1/fs:10-1/fs; % 时间范围f=1;%正弦波频率x = sin(2*pi*f*t);%进行FFT计算N = length(x); % 信号长度X = fft(x); % FFT计算magX = abs(X)/N; % 幅值谱frequencies = (0:N-1)*(fs/N); % 频率范围%绘制频谱图figure;plot(frequencies, magX);xlabel('频率(Hz)');ylabel('振幅');title('信号频谱');```上述代码生成了一个10秒钟的正弦波信号,频率为1 Hz,采样率为100 Hz。

通过调用MATLAB的fft函数计算信号的FFT,然后计算每个频率分量的幅值谱,并绘制出信号频谱图。

在频谱图中,横轴表示频率,纵轴表示振幅。

该实验需要注意以下几点:1.信号的采样率要与信号中最高频率成一定比例,以避免采样率不足导致的伪频谱。

2.FFT计算结果是一个复数数组,我们一般只关注其幅值谱。

3.频率范围是0到采样率之间的频率。

实验三的报告可以包含以下内容:1.实验目的和背景介绍。

matlab如何做傅里叶变换

matlab如何做傅里叶变换

matlab如何做傅里叶变换Matlab是一款高级的计算机可视化程序,具有强大的图形和数据处理功能。

它可以帮助你快速处理大量数据,并进行准确的分析。

Matlab中的傅里叶变换(FFT)是用于分析数字信号(如声音或图像)的有用工具,它将时域信号转换为频域信号。

FFT可以显示出信号中每一段的频率、幅度和相位,从而可以反映出信号的构成成分。

在Matlab中,可以使用fft()函数来计算信号的傅里叶变换。

假设要对一段持续时间为T的实信号X(t)做FFT变换,首先要定义变换的采样频率fs,然后构造一个长度为N(N>T*fs)的数组x,填充X(t)的采样点,其中x[k] = X(k/fs)。

在Matlab中,可以使用linspace()函数快速生成x。

之后使用fft()来计算X(t)的FFT:y = fft(x);在此调用后,y数组就会保存有X(t)的FFT结果,它的长度为N,其中y[k]表示X(t)在频率为k/T的Fourier系数。

对于对称的实信号,Matlab还提供了一种快速的FFT实现——fftshift()函数,它可以快速计算一维实信号的FFT,省去了上述步骤所需的构造数组和调用fft()函数的时间。

要使用fftshift(),只需要调用函数fftshift(X)即可,其中X是X(t)的采样点。

总之,Matlab中的FFT工具可用于快速分析信号,方法简单便捷。

可以通过fft()和fftshift()函数快速获得信号的频谱,其结果可以反映出信号的频率、幅度和相位。

Matlab中的FFT功能可以为你的信号处理工作带来很大的方便。

利用MATLAB编写FFT快速傅里叶变换

利用MATLAB编写FFT快速傅里叶变换

一、实验目的1.利用MATLAB 编写FFT 快速傅里叶变换。

2.比较编写的myfft 程序运算结果与MATLAB 中的FFT 的有无误差。

二、实验条件PC 机,MATLAB7.0三、实验原理1. FFT (快速傅里叶变换)原理:将一个N 点的计算分解为两个N/2点的计算,每个N/2点的计算再进一步分解为N/4点的计算,以此类推。

根据DFT 的定义式,将信号x[n]根据采样号n 分解为偶采样点和奇采样点。

设偶采样序列为y[n]=x[2n],奇采样序列为z[n]=x[2n+1]。

上式中的k N W -为旋转因子N k j e /2π-。

下式则为y[n]与z[n]的表达式:2.蝶形变换的原理:下图给出了蝶形变换的运算流图,可由两个N/2点的FFT(Y[k]和Z[k]得出N点FFT X[k])。

同理,每个N/2点的FFT可以由两个N/4点的FFT求得。

按这种方法,该过程可延迟后推到2点的FFT。

下图为N=8的分解过程。

图中最右边的为8个时域采样点的8点FFTX[k],由偶编号采样点的4点FFT和奇编号采样点的4点得到。

这4点偶编号又由偶编号的偶采样点的2点FFT和奇编号的偶采样点的2点FFT产生。

相同的4点奇编号也是如此。

依次往左都可以用相同的方法算出,最后由偶编号的奇采样点和奇编号的偶采样点的2点FFT算出。

图中没2点FFT成为蝶形,第一级需要每组一个蝶形的4组,第二级有每组两个蝶形的两组,最后一级需要一组4个蝶形。

四、实验内容1.定义函数disbutterfly ,程序根据FFT 的定义:]2[][][N n x n x n y ++=、n N W N n x n x n z -+-=])2[][(][,将序列x 分解为偶采样点y 和奇采样点z 。

function [y,z]=disbutterfly(x)N=length(x);n=0:N/2-1;w=exp(-2*1i*pi/N).^n;x1=x(n+1);x2=x(n+1+N/2);y=x1+x2;z=(x1-x2).*w;2.定义函数rader ,纠正输出序列的输出顺序。

数字信号处理实验 matlab版 快速傅里叶变换(FFT)

数字信号处理实验 matlab版 快速傅里叶变换(FFT)

实验14 快速傅里叶变换(FFT)(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word 格式会让很多部分格式错误,谢谢)XXXX 学号姓名处XXXX一、实验目的1、加深对双线性变换法设计IIR 数字滤波器基本方法的了解。

2、掌握用双线性变换法设计数字低通、高通、带通、带阻滤波器的方法。

3、了解MA TLAB 有关双线性变换法的子函数。

二、实验内容1、双线性变换法的基本知识2、用双线性变换法设计IIR 数字低通滤波器3、用双线性变换法设计IIR 数字高通滤波器4、用双线性变换法设计IIR 数字带通滤波器三、实验环境MA TLAB7.0四、实验原理1、实验涉及的MATLAB 子函数(1)fft功能:一维快速傅里叶变换(FFT)。

调用格式:)(x fft y =;利用FFT 算法计算矢量x 的离散傅里叶变换,当x 为矩阵时,y 为矩阵x每一列的FFT 。

当x 的长度为2的幂次方时,则fft 函数采用基2的FFT 算法,否则采用稍慢的混合基算法。

),(n x fft y =;采用n 点FFT 。

当x 的长度小于n 时,fft 函数在x 的尾部补零,以构成n点数据;当x 的长度大于n 时,fft 函数会截断序列x 。

当x 为矩阵时,fft 函数按类似的方式处理列长度。

(2)ifft功能:一维快速傅里叶逆变换(IFFT)。

调用格式:)(x ifft y =;用于计算矢量x 的IFFT 。

当x 为矩阵时,计算所得的y 为矩阵x 中每一列的IFFT 。

),(n x ifft y =;采用n 点IFFT 。

当length(x)<n 时,在x 中补零;当length(x)>n 时,将x 截断,使length(x)=n 。

(3)fftshift功能:对fft 的输出进行重新排列,将零频分量移到频谱的中心。

调用格式:)(x fftshift y =;对fft 的输出进行重新排列,将零频分量移到频谱的中心。

fft函数matlab的用法

fft函数matlab的用法

fft函数matlab的用法FFT函数(快速傅立叶变换)是一种强大的、高效的信号处理中常用的数字信号处理技术,具有快速、准确、高效率的优点,在频域变换中常常使用,FFT函数是一种常用的离散数字信号处理技术,具有快速、准确、高效率的优点。

在信号处理中,FFT函数用于进行实数信号的频域变换,通过实现相应的傅立叶频谱分析和频率特性分析,了解并分析信号的特征,FFT函数的优点在于其实现的多项式插值及仿真,特别是在信号及电路模拟方面具有很高的效率,因而在信号处理中FFT函数得到了广泛应用。

FFT函数原理:FFT函数是基于复变换(Fourier Transformation)理论的实现,复变换可以将实数信号从时域中变换到频域,即将相应的时域信号的振幅-时间关系表达转变为频率-振幅关系表达,从而显示出实数信号在频率领域的信息内容。

FFT函数可以通过离散傅里叶变换的概念来实现,将实数信号的时域信息以离散频率的正弦正切振荡波组成的序列输出到频域,从而获得实数信号在频域中的表达式,并便于多项式插值拟合、仿真,以及实现其他功能。

Matlab中的FFT函数可以帮助用户快速、准确地实现实数信号的频域变换,常用指令有fft和ifft,其中,fft函数用于对输入信号进行快速傅里叶变换,ifft函数用于快速傅里叶逆变换,实现实数信号时间域与频域的相互转换。

使用Matlab的fft函数的步骤如下:(1)定义输入信号利用Matlab中的函数绘制信号,记录下相应的时间和振幅值,定义输入信号。

(2)调用FFT函数在Matlab中调用fft函数实现对定义的输入信号的快速傅里叶变换,并输出变换得到的频域序列。

(3)可视化频域序列利用Matlab中绘图功能来可视化变换得到的序列,显示实数信号在频域中的频率分布特征,根据得到的频率及相应振幅进行分析,从而获取实数信号的信息内容。

综上所述,Matlab中的FFT函数具有快速、准确,高效率的特点,是实现实数信号的频域变换的有效手段,在时域与频域信号特征分析中,可以利用Matlab中的FFT函数进行多项式插值拟合、仿真,实现电路模拟等复杂应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 5 运算时间测量
使用 tic,toc 命令对自定义基 4FFT 和系统 FFT 进行测量发现, 系统 FFT 远远快于自
6
定义基 4FFT。如图 5 所示,每次运行程序,第一行为系统 FFT 运算时间,第二行为自定义 基 4FFT 运算时间。 分析认为,这是由于两方面原因造成的。一是 matlab 本身是解释性的高级语言,与 vb 属于同一种类型,运行时,要先对语句命令进行解释,翻译成计算机可识别的机器语言,然 后再执行。这就大大增加了自定义基 4FFT 运算时间。而系统自带的 FFT 显然是预先编译好 的内部代码,因此执行效率非常高。二是程序本身未最大限度的优化。例如本程序中,将递 推公式中重复计算的部分用变量代换: 令 X1=x(k1);X2=Wn^m*x(k2);X3=Wn^(2*m)*x(k3);X4=Wn^(3*m)*x(k4); 递推公式化简为: temp(k1)=X1+X2+X3+X4; temp(k2)=X1-1j*X2-X3+1j*X4; temp(k3)=X1-X2+X3-X4; temp(k4)=X1+1j*X2-X3-1j*X4; 从而避免了 X2,X3,X4 表达式中的乘法在 4 个递推表达式中各被重复计算 4 次。如 未作这样的处理,显然效率很低。由于个人能力原因,本程序仍有很大优化空间。 3.进一步提高运算速度的方法 1)采用 c 语言编程,编译成机器代码,大大提高执行效率。 2)事先建立旋转因子表,以空间换取时间的方法,提高运算速度。计算过程中,通过 查表的方式,获取旋转因子值,避免实时乘法运算增加的运算时间。 四、总结 本文在分析基 2FFT,参考借鉴多篇文章的基础上,对基 4FFT 的原理进行了分析,推 导出 4 点迭代运算公式,运用 matlab 实现该算法。所编程序可以对 4L 点采样数据进行 4L 点基 4FFT (L=1~8) 。在此基础上,对比了系统自带 FFT 与自定义基 4FFT 的运算效率。 提出了进一步提高运算效率的方法。
N
4
L l
,第 g 组对应的序号为 k k0 g
N
令 k1 k, k2 k1 如下信号流图
N
4
Ll
, k3 k2
N
4
Ll
, k4 k3
N
4Ll
,则可将公式(5)进一步简化,并得到
Xl‐1(

Xl(

Xl‐1(

Xl(

Xl‐1(

Xl(

k1=k;k2=k1+group_interval_1;k3=k2+group_interval_1;k4=k3+group_interval_1; X1=x(k1);X2=Wn^m*x(k2);X3=Wn^(2*m)*x(k3);X4=Wn^(3*m)*x(k4); 式中重复计算部分用变量代换,减少运算次数 %根据递推公式计算,结果存储到临时数组 temp temp(k1)=X1+X2+X3+X4; temp(k2)=X1-1j*X2-X3+1j*X4; temp(k3)=X1-X2+X3-X4; temp(k4)=X1+1j*X2-X3-1j*X4; end end x=temp; end subplot(2,2,4),plot(abs(x)); axis([0 4096 0 2500]),title('自定义基 4FFT 计算出的频谱'); %将 temp 中临时存储的第 l 级结果赋值给 x,作为次级运算的输入
2N 4
L l 1
(5.2)
X l(k
2N 4
L l 1
) X l 1(k ) W Nm X l 1(k
N
4
L l 1
) W N2m X l 1(k
) W N3m X l 1(k
3N 4L l 1 3N 4
L l 1
)
(5.3)
X l(k
0
0 0 0
3
K 1
(4n n 0 )
,N
K 4
(3)
X(M )
n0 0
W Kmn )] W 4m 0n0 , M m Km 0 [W Nmn0( x[4n n0 ]
n 0
3
K 1
(4)
由上式可得如下矩阵变换过程:
0 1 2 3
, 乘以 , , ,
4 5 6 7

WN x[n ] n
0
N
mn
(1)
当 N 等于 4 时的四点 DFT 运算为: 1 1 = 1 1 1 1 1 1 1 1 1 1 ∙ (2)

可以看到,类似 2 点 DFT,4 点 DFT 运算也无需乘法,可以简少运算量。 对(1)式进行分解:
X (M )
x[4n n ] W NM n n
∙ ∙ ∙ ∙
… … … … … … … …
, , , ,
4 3 2 1 ∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
, 行 , , ,
, , , ,
… … … …
, , , ,
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
, , , ,
∙ ∙ ∙ ∙
0

1 2 3 1 1 1
2 3
… … … …
2 3
1 1 1 1
可以看到,第一步先对最开始的采样点矩阵每一行进行 K 点 DFT,然后第二步每项对 应乘以旋转因子 ,n0 为行(0 到 3 行) ,m 为列(0 到 K-1 列),最后按列做 4 点 DFT, 得到一个按行顺序排列的最终结果。 显然,第一步中的行 DFT 可以进一步分解成两步,即第一步进行 K/4 点 DFT,第二步 乘以对应旋转因子 ,即 ∙ ,n0 为行(0 到 3 行) ,m 为列(0 到 K/4-1 列), 按列
3N 4
L l 1
) X l 1(k ) jWNm X l 1(k
N
4
L l 1
) W N2m X l 1(k
2N 4
L l 1
) jWN3m X l 1(k
)
(5.4)
k k0 g
N
4
L l
, ( k0 0, 1, 2, …,
N
4
Ll1
%分组上限 %组内数据上限
%每一级中包含的组循环,遍历每一组,计算各组中的数据
for k0=0:K %遍历每一组中的所有数据,计算次级数据 4
k=k0+g*group_interval_2+1; m=group_cont_2*k0; 数据中每一级所乘旋转因子的指数因子
基 4FFT 原理及 MATLAB 算法实现
FFT( 快速傅里叶变换 ) 算法与 DFT( 离散傅里叶变换 ) 算法比较 , 其运算量显著减少 , 用计算机实现时速度大为提高。其思想是利用 2 点 DFT 运算无需乘法的特点,以减少过程 在乘法运算上的时间开销。考虑到 4 点 DFT 也无需乘法,可以减少过程中的乘法次数,且 运算级数减少,无疑能加快 DFT 的实现。 通常的FFT幂法都是“基2分解法”,即长度为N的D FT序列由两个长度为N / 2的DFT 列的组合表示;而这两个长度为N / 2的DFT序列各自又分别由两个长度为N / 4的D F T序列 的组合表示;⋯⋯,按照这一做法对序列进行反复分解,直到每个序列的长度等于2为止。 这个分解、 组合过程如同一棵标准二叉树。 按分解的逆过程进行组合运算便得到所要求的频 谱序列X( n),(n =0,l,⋯,N一1)整个变换过程共需要进行N/2log2N次复数乘法运算。 参考上述的分解、组合方法,对序列进行“基4分解” ,即长度为N的DFT序列由四个长 度为N/4的DFT序列组合表示。 一、基本原理 N 点 DFT 公式为: X ( m )
1),(g=0, 1, 2, …, 4Ll 1),( l =1, 2, 3, ..., L )
m 4Llk0
。 4L l 可以验证,对于第一级 4 点行 DFT,递推公式仍适用。因此可以通过递推公式(5)反 复迭代 L 次得到最终 N 点 DFT 结果。 每一级中分为 g= 4L l 组,组与组间距为
数据计算循环:for
0:

利用当前级数据 X, 利用递推公式计算出次级数据并存入临时 数组 temp,最后用临时数组中的次级数据覆盖 X
最终得到 N 点 DFT 结果 X
图 2 程序流程图 3
2.matlab 程序
clear; a=0:4095;x=sin(2*pi/3*a)+sin(2*pi/4*a)+sin(2*pi/5*a); subplot(2,1,1),plot(x); axis([0 4096 -3 3]),title('时域信号波形'); subplot(2,2,3),plot(abs(fft(x))); axis([0 4096 0 2500]),title('系统 FFT 计算出的频谱'); N=4096; %N 点 DFT,N 为 4 的整数次幂 L=log(N)/log(4); Wn=exp(-2j*pi/N); temp=zeros(1,N); %4 点 DFT 分解级数 %旋转因子 %定义中间临时数组 %输入三频率信号
N
4
L l 1
) W N2m X l 1(k
L l 1
) W N3m X l 1(k
3N 4
L l 1
)
(5.1)
X l(k
N
4
L l 1
) X l 1(k ) jWNm X l 1(k
N
4
L l 1
) WN2m X l 1(k
相关文档
最新文档