2013届曲靖一中物理一轮复习--万有引力定律及应用
高考物理一轮复习讲义 第4章 第4讲 万有引力定律及应用

第4讲 万有引力定律及应用一、开普勒三定律定律内容图示或公式开普勒第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上开普勒第二定律(面积定律)对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等开普勒第三定律(周期定律)所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等a 3T 2=k ,k 是一个与行星无关的常量自测1 (2016·全国卷Ⅲ·14)关于行星运动的规律,下列说法符合史实的是( ) A .开普勒在牛顿定律的基础上,导出了行星运动的规律 B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律 答案 B解析 开普勒在天文观测数据的基础上总结出了行星运动的规律,但没有找出行星按照这些规律运动的原因,牛顿发现了万有引力定律. 二、万有引力定律 1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比. 2.表达式F =G m 1m 2r 2,G 为引力常量,G =6.67×10-11 N·m 2/kg 2.3.适用条件(1)公式适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r是两球心间的距离.4.天体运动问题分析(1)将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供.(2)基本公式:GMmr2=ma=⎩⎪⎨⎪⎧m v2r→v=GM rmrω2→ω=GMr3mr⎝⎛⎭⎫2πT2→T=2πr3GMm vω自测2(2019·全国卷Ⅱ·14)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆.在探测器“奔向”月球的过程中,用h表示探测器与地球表面的距离,F表示它所受的地球引力,能够描述F随h变化关系的图像是()答案D解析在嫦娥四号探测器“奔向”月球的过程中,根据万有引力定律,可知随着h的增大,探测器所受的地球引力逐渐减小,但不是均匀减小的,故能够描述F随h变化关系的图像是D.三、宇宙速度1.第一宇宙速度(1)第一宇宙速度又叫环绕速度,其数值为7.9 km/s.(2)第一宇宙速度是人造卫星在地面附近环绕地球做匀速圆周运动时具有的速度.(3)第一宇宙速度是人造卫星的最小发射速度,也是人造卫星的最大环绕速度.(4)第一宇宙速度的计算方法.由GMmR2=mv2R得v=GMR;由mg=mv2R得v=gR.2.第二宇宙速度使物体挣脱地球引力束缚的最小发射速度,其数值为11.2 km/s.3.第三宇宙速度使物体挣脱太阳引力束缚的最小发射速度,其数值为16.7 km/s.自测3(2019·北京卷·18)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星).该卫星()A .入轨后可以位于北京正上方B .入轨后的速度大于第一宇宙速度C .发射速度大于第二宇宙速度D .若发射到近地圆轨道所需能量较少 答案 D解析 同步卫星只能位于赤道正上方,A 项错误;由GMm r 2=m v 2r 知,卫星的轨道半径越大,卫星做匀速圆周运动的线速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),B 项错误;同步卫星的发射速度大于第一宇宙速度,小于第二宇宙速度,C 项错误;若发射到近地圆轨道,所需发射速度较小,所需能量较少,D 正确.1.行星绕太阳的运动通常按圆轨道处理.2.开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.3.开普勒第三定律a 3T 2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同.但该定律只能用在同一中心天体的两星体之间.例1 (多选)(2019·四川绵阳市第三次诊断)2019年1月3日10时26分,我国嫦娥四号探测器完成了“人类探测器首次实现月球背面软着陆”的壮举.嫦娥四号近月制动后环月飞行时先在月球上空半径为R 的轨道上做匀速圆周运动,后贴近月球表面做匀速圆周运动,线速度大小分别是v R 和v 0,周期分别是T R 和T 0,已知月球半径为r ,则( ) A.v R v 0=r R B.v R v 0=r RC .T R >T 0D .T R <T 0答案 BC解析 根据万有引力提供向心力有:G Mmr 2=m v 2r,所以v =GMr ,所以v R v 0=rR,A 错误,B 正确;根据开普勒第三定律可知:绕同一中心天体运动,半径越大,周期越长,所以T R >T 0,C 正确,D 错误.变式1 火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( ) A .太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 答案 C解析 由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,故A 错误.火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,故B 错误.根据开普勒第三定律(周期定律)知太阳系中所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,故C 正确.对于太阳系某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同时间内扫过的面积不相等,故D 错误.1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F向.(1)在赤道上:G MmR 2=mg 1+mω2R .(2)在两极上:G MmR2=mg 0.(3)在一般位置:万有引力G MmR2等于重力mg 与向心力F 向的矢量和.越靠近南、北两极,g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即GMmR2=mg .2.星球上空的重力加速度g ′星球上空距离星体中心r =R +h 处的重力加速度为g ′,mg ′=GMm (R +h )2,得g ′=GM(R +h )2.所以g g ′=(R +h )2R 2.3.万有引力的“两点理解”和“两个推论” (1)两点理解①两物体相互作用的万有引力是一对作用力和反作用力. ②地球上的物体(两极除外)受到的重力只是万有引力的一个分力. (2)两个推论①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0. ②推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对其的万有引力,即F =G M ′mr2.例2 若地球半径为R ,把地球看做质量分布均匀的球体.“蛟龙”号下潜深度为d ,“天宫一号”轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的重力加速度之比为( ) A.R -d R +hB.(R -d )2(R +h )2 C.(R -d )(R +h )2R 3D.(R -d )(R +h )R 2答案 C解析 设地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等,有:g =G MR 2.由于地球的质量为:M =ρ·43πR 3,所以重力加速度的表达式可写成:g =GM R 2=G ·ρ43πR 3R 2=43πGρR .根据题意有,质量分布均匀的球壳对壳内物体的引力为零,故在深度为d 的地球内部,受到地球的万有引力即为半径等于(R -d )的球体在其表面产生的万有引力,故“蛟龙”号的重力加速度g ′=43πGρ(R -d ),所以有g ′g =R -d R .根据万有引力提供向心力G Mm(R +h )2=ma ,“天宫一号”所在处的重力加速度为a =GM (R +h )2,所以a g =R 2(R +h )2,g ′a =(R -d )(R +h )2R 3,故C 正确,A 、B 、D 错误.变式2 (2020·广东东莞市调研)“神舟十一号”飞船于2016年10月17日发射,对接“天宫二号”.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( ) A .0 B.GM (R +h )2 C.GMm (R +h )2 D.GMh 2 答案 B天体质量、密度的计算使用方法已知量 利用公式 表达式 备注质量的计算利用运行天体r 、T G Mm r 2=mr 4π2T 2 M =4π2r 3GT 2只能得到中心天体的质量 r 、vG Mmr 2=m v 2r M =r v 2Gv 、TG Mmr 2=m v 2r G Mm r 2=mr 4π2T 2 M =v 3T 2πG利用天体表面重力加速度 g 、Rmg =GMm R2M =gR 2G密度的计算利用运行天体r 、T 、RG Mm r 2=mr 4π2T 2 M =ρ·43πR 3ρ=3πr 3GT 2R3 当r =R 时ρ=3πGT2利用近地卫星只需测出其运行周期利用天体表面重力加速度g 、R mg =GMm R 2M =ρ·43πR 3ρ=3g 4πGR例3 (2018·全国卷Ⅱ·16)2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T =5.19 ms.假设星体为质量均匀分布的球体,已知万有引力常量为6.67×10-11N·m 2/kg 2.以周期T 稳定自转的星体的密度最小值约为( )A .5×109 kg/m 3B .5×1012 kg/m 3C .5×1015 kg/m 3D .5×1018 kg/m 3答案 C解析 脉冲星自转,边缘物体m 恰对球体无压力时万有引力提供向心力,则有G Mm r 2=mr 4π2T 2,又知M =ρ·43πr 3整理得密度ρ=3πGT 2=3×3.146.67×10-11×(5.19×10-3)2kg/m 3≈5.2×1015 kg/m 3. 变式3 (2019·河南安阳市下学期二模)半径为R 的某均匀球形天体上,两“极点”处的重力加速度大小为g ,“赤道”处的重力加速度大小为“极点”处的1k .已知引力常量为G ,则下列说法正确的是( ) A .该天体的质量为gR 2kGB .该天体的平均密度为4g3πGRC .该天体的第一宇宙速度为gR kD .该天体的自转周期为2πkR(k -1)g答案 D解析 在两“极点”处:G Mm R 2=mg ;在赤道处:G Mm R 2-m g k =m 4π2T 2R ,解得天体的质量为M =gR 2G ,T=2πkR (k -1)g,选项A 错误,D 正确;该天体的平均密度为ρ=M V =gR 2G ·43πR 3=3g4πGR ,选项B 错误;由G MmR 2=m v 2R=mg 可知该天体的第一宇宙速度为v =gR ,选项C 错误.变式4 (2020·山东临沂市质检)2018年7月25日消息称,科学家们在火星上发现了第一个液态水湖,这表明火星上很可能存在生命.美国的“洞察”号火星探测器曾在2018年11月降落到火星表面.假设该探测器在着陆火星前贴近火星表面运行一周用时为T ,已知火星的半径为R 1,地球的半径为R 2,地球的质量为M ,地球表面的重力加速度为g ,引力常量为G ,则火星的质量为( )A.4π2R 13M gR 22T 2B.gR 22T 2M 4π2R 13C.gR 12GD.gR 22G 答案 A解析 绕地球表面运动的天体由牛顿第二定律可知: G MmR 22=mg 同理,对绕火星表面运动的天体有: GM 火m R 12=m (2πT)2R 1 结合两个公式可解得:M 火=4π2R 13M gR 22T 2,故A 对.1.线速度:G Mmr 2=m v 2r ⇒v =GMr 2.角速度:G Mmr2=mω2r ⇒ω=GMr 33.周期:G Mmr 2=m ⎝⎛⎭⎫2πT 2r ⇒T =2πr 3GM4.向心加速度:G Mm r 2=ma ⇒a =GM r 2结论:r 越大,v 、ω、a 越小,T 越大.例4 (2019·全国卷Ⅲ·15)金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a 金、a 地、a 火,它们沿轨道运行的速率分别为v 金、v 地、v 火.已知它们的轨道半径R 金<R 地<R 火,由此可以判定( ) A .a 金>a 地>a 火 B .a 火>a 地>a 金 C .v 地>v 火>v 金 D .v 火>v 地>v 金答案 A解析 金星、地球和火星绕太阳公转时万有引力提供向心力,则有G Mm R 2=ma ,解得a =G MR2,结合题中R 金<R 地<R 火,可得a 金>a 地>a 火,选项A 正确,B 错误;同理,有G MmR 2=m v 2R ,解得v =GMR,再结合题中R 金<R 地<R 火,可得v 金>v 地>v 火,选项C 、D 错误.变式5 (2019·天津卷·1)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”,如图1.已知月球的质量为M 、半径为R .探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的( )图1A .周期为4π2r 3GM B .动能为GMm2RC .角速度为Gm r 3D .向心加速度为GMR2答案 A解析 嫦娥四号探测器环绕月球做匀速圆周运动时,万有引力提供其做匀速圆周运动的向心力,由GMm r 2=mω2r =m v 2r =m 4π2T2r =ma ,解得ω=GMr 3、v =GMr、T =4π2r 3GM 、a =GMr2,则嫦娥四号探测器的动能为E k =12m v 2=GMm2r,由以上可知A 正确,B 、C 、D 错误.变式6 (2019·江苏卷·4)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图2所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则图2A .v 1>v 2,v 1=GMr B .v 1>v 2,v 1>GMr C .v 1<v 2,v 1=GMrD .v 1<v 2,v 1>GMr答案 B解析 “东方红一号”环绕地球在椭圆轨道上运动的过程中,只有万有引力做功,因而机械能守恒,其由近地点向远地点运动时,万有引力做负功,卫星的势能增加,动能减小,因此v 1>v 2;“东方红一号”离开近地点开始做离心运动,则由离心运动的条件可知G Mmr 2<m v 12r,解得v 1>GMr,B 正确,A 、C 、D 错误.1.(2018·全国卷Ⅲ·15)为了探测引力波,“天琴计划”预计发射地球卫星P ,其轨道半径约为地球半径的16倍;另一地球卫星Q 的轨道半径约为地球半径的4倍.P 与Q 的周期之比约为( ) A .2∶1 B .4∶1 C .8∶1 D .16∶1答案 C解析 由G Mm r 2=mr 4π2T 2知,T 2r 3=4π2GM ,则两卫星T P 2T Q 2=r P 3r Q 3.因为r P ∶r Q =4∶1,故T P ∶T Q =8∶1.2.(2019·陕西榆林市第三次测试)2019年3月10日我国在西昌卫星发射中心用长征三号乙运载火箭成功将“中星6C ”卫星发射升空,卫星进入预定轨道,它是一颗用于广播和通信的地球静止轨道通信卫星,假设该卫星在距地面高度为h 的同步轨道做圆周运动.已知地球的半径为R ,地球表面的重力加速度为g ,万有引力常量为G .下列说法正确的是( ) A .同步卫星运动的周期为2πRgB .同步卫星运行的线速度大小为g (R +h )C .同步轨道处的重力加速度大小为(R R +h )2gD .地球的平均密度为3g 4πGR 2答案 C解析 地球同步卫星在距地面高度为h 的同步轨道做圆周运动,万有引力提供向心力,有:GMm (R +h )2=m 4π2(R +h )T 2,在地球表面附近,重力等于万有引力,有:mg =GMmR 2,故同步卫星运动的周期为:T =2π(R +h )3gR 2,故A 错误;根据万有引力提供向心力,有:GMm(R +h )2=m v 2R +h,解得同步卫星运行的线速度大小为:v =gR 2R +h ,故B 错误;根据万有引力提供向心力,有:G Mm(R +h )2=mg ′,解得g ′=(R R +h)2g ,故C 正确;由mg =GMm R 2得:M =gR 2G ,故地球的平均密度为:ρ=M4πR 33=3g4πGR,故D 错误. 3.(2019·山东泰安市第二轮复习质量检测)2019年1月3日,嫦娥四号月球探测器成功软着陆在月球背面,成为人类历史上第一个在月球背面成功实施软着陆的人类探测器.如图1所示,已关闭动力的探月卫星在月球引力作用下沿椭圆轨道(图中只画了一部分)向月球靠近,并在B 处变轨进入半径为r 、周期为T 的环月圆轨道运行.已知引力常量为G ,下列说法正确的是( )图1A .图中探月卫星飞向B 处的过程中速度越来越小 B .图中探月卫星飞向B 处的过程中加速度越来越小C .由题中条件可以计算出探月卫星受到月球的引力大小D .由题中条件可以计算出月球的质量 答案 D解析 探月卫星飞向B 处时,万有引力增大,做正功,探月卫星动能增大,加速度增大,A 、B 选项错误;由于探月卫星质量未知,无法计算出探月卫星受到月球的引力大小,C 选项错误;由GMmr 2=m (2πT )2r 可得:M =4π2r 3GT2,D 选项正确.4.(2019·广西钦州市4月综测)2018年5月,我国成功发射首颗高光谱分辨率对地观测卫星——“高分五号”.“高分五号”轨道离地面的高度约7.0×102 km,质量约2.8×103 kg.已知地球半径约6.4×103 km,重力加速度取9.8 m/s 2.则“高分五号”卫星( ) A .运行的速度小于7.9 km/s B .运行的加速度大于9.8 m/s 2C .运行的线速度小于同步卫星的线速度D .运行的角速度小于地球自转的角速度 答案 A解析 第一宇宙速度是卫星的最大环绕速度,是发射卫星的最小速度,所以卫星的运行速度小于7.9 km/s,故A 正确;由G MmR 2=ma 可知,运行的加速度随着高度的增大而减小,故运行的加速度小于地面的重力加速度,即小于9.8 m/s 2,故B 错误;“高分五号”轨道离地面的高度约7.0×102 km,小于同步卫星的高度(同步卫星的高度约为地球半径的6倍),根据GMmR 2=m v 2R得:v=GMR,故运行的线速度大于同步卫星的线速度,故C 错误;地球的自转角速度与同步卫星相同,根据GMmR2=mω2R 解得ω=GMR 3,轨道越高,角速度越小,故“高分五号”卫星运行的角速度大于地球自转的角速度,故D 错误.5.(2019·西藏山南二中一模)为了观测地球表面的植被覆盖情况,中国发射了一颗人造卫星,卫星的轨道半径约为地球同步卫星轨道半径的14,那么这个卫星绕地球一圈需要多长时间( )A .12小时B .1小时C .6小时D .3小时答案 D解析 地球同步卫星的周期为24小时,根据开普勒第三定律:r 同3T 同2=r 卫3T 卫2,代入数据可得:T卫=3小时,故D 正确,A 、B 、C 错误.6.(2019·云南昆明市4月教学质量检测)已知地球质量为木星质量的p 倍,地球半径为木星半径的q 倍,下列说法正确的是( )A .地球表面的重力加速度为木星表面的重力加速度的pq 2倍B .地球的第一宇宙速度是木星“第一宇宙速度”的pq倍C .地球近地圆轨道卫星的角速度为木星“近木”圆轨道卫星角速度的p 3q倍 D .地球近地圆轨道卫星运行的周期为木星“近木”圆轨道卫星运行的周期的q 3p 倍答案 A解析 万有引力提供向心力,则有:G Mm r 2=m v 2r =mω2r =m 4π2T 2r =ma解得:v =GMr,T =2πr 3GM,ω=GM r 3,a =GMr2 星球表面重力加速度为:g =GM R 2;由g =GMR2可知地球表面的重力加速度为木星表面的重力加速度的pq 2,故A 正确;由v =GMr可知第一宇宙速度为:v =GMR,则地球的第一宇宙速度是木星的“第一宇宙速度”的pq,故B 错误;由ω=GMr 3可知近地卫星的角速度ω=GMR 3,地球近地卫星的角速度为木星“近木”卫星角速度的pq 3,故C 错误;由T =2πr 3GM可知近地卫星的周期T =2πR 3GM,所以地球近地卫星的周期为木星的“近木”卫星周期的q 3p,故D 错误.7.(2019·河南郑州市第一次模拟)“玉兔号”月球车与月球表面的第一次接触实现了中国人“奔月”的伟大梦想.“玉兔号”月球车在月球表面做了一个自由下落试验,测得物体从静止自由下落h 高度的时间为t ,已知月球半径为R ,自转周期为T ,引力常量为G .求:(1)月球表面重力加速度;(2)月球的质量和月球的第一宇宙速度; (3)月球同步卫星离月球表面高度. 答案 (1)2h t 2 (2)2R 2h Gt22hRt 2(3)3T 2R 2h2π2t 2-R 解析 (1)由自由落体运动规律有:h =12gt 2,所以有:g =2ht2.(2)月球的第一宇宙速度为近月卫星的运行速度,根据重力提供向心力mg =m v 12R ,所以:v 1=gR =2hRt 2在月球表面的物体受到的重力等于万有引力,则有: mg =GMm R 2所以M =2R 2hGt2.(3)月球同步卫星绕月球做匀速圆周运动,根据万有引力提供向心力有:GMm(R +h ′)2=m v 2R +h ′=m (R +h ′)4π2T 2解得h ′=3T 2R 2h2π2t 2-R .。
2013届高三总复习课件(第1轮)物理(广西专版)课件:4.4万有引力定律及其应用

•
星体表面的物体和围绕星球做匀
速圆周运动的物体两者的临界状态分析.
•
对星球赤道附近的物体,恰
能做匀速圆周运动的条件是万有引力等于
向心力,即G
Mm R2
4π2 m T2
R
•
又因为M ·4 πR3, T 故
3
,整理T 得2 π
3π . G
R3 , GM
2020/7/2
26
变式练习2
•
考虑中子星赤道的一小块物
• 此法利用了在地表的物体万有引力近似等于 物体的重力,即GMRm2 mgmvR其2,中得到的
GM=gR2很有用,俗称“黄金代换”.
2020/7/2
17
•
4.近地卫星:沿半径约为地球半径
的轨道运行的地球卫星,其发射速度与环
绕速度相等,均等于第一宇宙速度.
•
5.地球同步卫星
•
(1)特征:相对于地面静止,只能
引力常量,大小为G=6.67×10-
11N·m2/kg2.
2020/7/2
5
•
3.公式的适用条件:适用于质点
间的相互作用.当两物体的距离远远大
于物体本身的大小时,物体可视为质
点.对均匀球体,都可视为质点,且r为 两球心间的距离.
•
4.重力和万有引力:重力由万有
引力产生,由于地球的自转,重力是
万有引力的一个分力.在地球表面附近 ,可粗略认为重力等于万有引力.
火加速,由椭圆轨道变成高度为343千
米的圆轨道,在此圆轨道上飞船运行
周期约为90分钟.下列判断正确的是(
)
BC
2020/7/2
28
•
A.飞船变轨前后的机械能相等
高考物理一轮复习第五章万有引力定律5.1万有引力定律及其应用课件

迪许扭秤实验测定.
2.适用条件
两个__________ 质点之间 的相互作用.
(1) 质 量 分 布 均 匀 的 球 体 间 的 相 互 作 用 , 也 可 用 本 定 律 来 计 算 , 其 中 r 为 _________ 两球心间 的距离. (2) 一个质量分布均匀的球体和球外一个质点之间的万有引力也适用,其中 r 为 ________________ 质点到球心之间 的距离.
2.物体成为地球的卫星 物体成为地球的卫星时,物体绕地球做匀速圆周运动,三者关系:重力=万有 引力=向心力. 不过此时的重力已不是地球表面的重力mg(g取 9.8 m/s2)了.因为卫星距地面有
M 一定高度,轨道各处的重力加速度g′= G ,比地面上重力加速度小了. R+ h2
四、经典时空观和相对论时空观
即时突破
(多选)两颗小行星都绕太阳做圆周运动,其周期分别是T、 3T,则
(
) A.它们轨道半径之比为1∶ 3 B.它们轨道半径之比为1∶ 9 C.它们运动的速度之比为 3∶ 1 D.以上选项都不对 3 3
3 R3 R R1 T12 1 1 2 解析:由题知周期之比T1∶T2=1∶3,根据 2 = 2 ,所以 = = .又因为 T1 T2 R2 T23 3 9
必考部分
力学/1-7章
第五章 万有引力定律
第 1节 万有引力定律及其应用
[高考研读] 考点要求 命题视角 复习策略 重点是万有引力定律的应 用、卫星问题,学习过程 中要注意从圆周运动与牛 顿第二定律出发分析天体
万有引力定律及其应用Ⅱ
环绕速度Ⅱ 速度Ⅰ 万有引力定律及其应用和 点考查内容,主要以选择 第二宇宙速度和第三宇宙 人造地球卫星是本章的重 经典时空观和相对论时空 题的形式出现.
高考物理第一轮考点复习 (1)万有引力定律及应用学习、解析+练习

高考物理第一轮考点复习 (1)万有引力定律及应用学习、解析+练习基础知识一.开普勒运动定律(1)开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.(2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等.(3)开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等. 二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.(2)公式:F =G 221rmm ,其中2211/1067.6kg m N G ⋅⨯=-,称为为有引力恒量。
(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.三、万有引力和重力重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F 向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g 随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m 2g =G 221rm m , g=GM/r2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高度的增大而减小,即g h =GM/(r+h )2,比较得g h =(hr r +)2·g 在赤道处,物体的万有引力分解为两个分力F 向和m 2g 刚好在一条直线上,则有F =F 向+m 2g ,所以m 2g=F 一F 向=G 221rm m -m 2R ω自2因地球目转角速度很小G 221r m m » m 2R ω自2,所以m 2g= G 221rm m假设地球自转加快,即ω自变大,由m 2g =G 221r m m -m 2R ω自2知物体的重力将变小,当G 221r m m =m 2Rω自2时,m 2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=13Gm R ,比现在地球自转角速度要大得多.四.天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R ,由mg=2Mm G R 得g=2MG R,由此推得两个不同天体表面重力加速度的关系为21212212g R M g R M =*五.天体质量和密度的计算原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力. G2rmM =m224Tπr ,由此可得:M=2324GT r π;ρ=VM=334R M π=3223R GT r π(R 为行星的半径)由上式可知,只要用实验方法测出卫星做圆周运动的半径r 及运行周期T ,就可以算出天体的质量M .若知道行星的半径则可得行星的密度 规律方法1、万有引力定律的基本应用【例1】如图所示,在一个半径为R 、质量为M 的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d 的质点m 的引力是多大? 分析 把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解.解 完整的均质球体对球外质点m 的引力这个引力可以看成是:m 挖去球穴后的剩余部分对质点的引力F 1与半径为R/2的小球对质点的引力F 2之和,即F=F 1+F 2.因半径为R/2的小球质量M /为M R M R R M 8134234234333/=⋅⎪⎭⎫ ⎝⎛=⋅⎪⎭⎫ ⎝⎛=ππρπ, 则()()22/22/82/R d Mm GR d mM GF -=-=所以挖去球穴后的剩余部分对球外质点m 的引力 ()22212/8R d Mm Gd Mm GF F F --=-=()22222/8287R d d R dR d GMm-+-=说明 (1)有部分同学认为,如果先设法求出挖去球穴后的重心位置,然后把剩余部分的质量集中于这个重心上,应用万有引力公式求解.这是不正确的.万有引力存在于宇宙间任何两个物体之间,但计算万有引力的简单公式2r MmGF =却只能适用于两个质点或均匀球体,挖去球穴后的剩余部分已不再是均匀球了,不能直接使用这个公式计算引力. (2)如果题中的球穴挖在大球的正中央,根据同样道理可得剩余部分对球外质点m 的引力()()2222/221878/dMm Gd mM GdMm Gd mM GdMm GF F F =-=-=-=上式表明,一个均质球壳对球外质点的引力跟把球壳的质量(7M/8)集中于球心时对质点的引力一样.【例2】某物体在地面上受到的重力为160 N ,将它放置在卫星中,在卫星以加速度a =½g 随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为90 N 时,求此时卫星距地球表面有多远?(地球半径R =6.4×103km,g 取10m/s 2)解析:设此时火箭上升到离地球表面的高度为h ,火箭上物体受到的支持力为N,物体受到的重力为mg /,据牛顿第二定律.N -mg /=ma ……①在h 高处mg /=()2h R MmG+……② 在地球表面处mg=2R Mm G……③把②③代入①得()ma R h mgR N ++=22∴⎪⎪⎭⎫⎝⎛--=1ma N mg R h =1.92×104km. 说明:在本问题中,牢记基本思路,一是万有引力提供向心力,二是重力约等于万有引力.【例3】有人利用安装在气球载人舱内的单摆来确定气球的高度。
高考物理一轮复习 第三章 万有引力定律(第1课时)万有引力定律及应用课件(必修2)

活动二 课堂导学部分
活动一
问题1 万有引力定律
变式:已知引力常量G=6.67×10-11 N·m2/kg2,重力加速度g=9.8 m/s2,地球半径R=6.4×106 m,则可知地球质量的数量级是( )
A.1018 kg B.1020 kg C.1022 kg D.1024 kg
活动二 课堂导学部分
活动一
问题2 万有引力定律的应用
(1)天体表面重力加速度问题
活动二 课堂导学部分
活动一
问题2 万有引力定律的应用
【典型例题2-1】一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v.假 设宇航员在该行星表面上用弹簧测力计测量一质量为m的物体重力,物体静止时, 弹簧测力计的示数为N.已知引力常量为G,则这颗行星的质量为( )
活动二 课堂导学部分
活动一
问题2 万有引力定律的应用
活动二 课堂导学部分
活动一
问题2 万有引力定律的应用
【典型例题2-3】近年来,人类发射的多枚火星探测器已经相继在火星上着陆,正在 进行着激动人心的科学探究,为我们将来登上火星、开发和利用火星资源奠定了坚 实的基础.如果火星探测器环绕火星做“近地”匀速圆周运动,并测得该运动的周期 为T,则火星的平均密度ρ的表达式为(k为某个常数一 一课前预习部分
考纲考点 知识梳理 基础检测
活动二 课堂导学部分
活动一
问题1 万有引力定律
内容:宇宙间的一切物体都是相互吸引的,两个物体 间的引力大小跟它们的质量成积成正比,跟它们的距离平 方成反比,引力方向沿两个物体的连线方向。
高考物理第一轮总复习名师课件:第五章第一讲 万有引力定律及应用 (共13张PPT)

线在相等的时间内扫过的 相等.
面积
所有行星的轨道的半长轴的
跟 =k,k是一个与行
它的公转周期的
的比三值次都方相等
a3 T 2 星无关的常量二次方知识点二 万有引力定律
二、万有引力定律
1、公式
:
F
Gm1m2 R2
,
其中
G
=
6
.
6
7
×
1 0 -11
N ·m 2/
kg2,叫引力常量
2、万有引力与重力的关系
高考物理总复习
名师课件
第五章 万有引力 定律
第1讲 万有引力定律及应用
知识点一 开普勒定律
一、开普勒定律
定律
内容
图示或公式
开普勒第一定律 (轨道定律)
所有行星绕太阳运动的轨道都椭是圆 ,太阳处在 椭圆 的一个焦点上.
开普勒第二定律 对任意一个行星来说,它与太阳的连
(面积定律)
开普勒第三定律 (周期定律)
三、天体质量和密度
使用方法 已知量 利用公式
质量的 计算
密度
利用运行天体
利用天体表面重 力加速度
利用运行天体
r、T r、v v、T g、R
r、T、R
GMr2m=mr4Tπ22
G
Mm r2
m
v2 r
GMr2m=mvr2
GMr2m=mr4Tπ22
mg=GRM2m
GMr2m=mr4Tπ22 M=ρ·43πR3
表达式
M=4GπT2r23
M rv2 G
M=2vπ3TG
M=gR2 G
ρ=G3Tπ2rR3 3 当 r=R 时 ρ=G3Tπ2
利用近地卫星只需测出其运行周期
高三物理第一轮复习万有引力定律及其应用
第 5 课时 万有引力定律及其应用基础知识归纳 1.开普勒三定律(1)第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.(2)第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.(3)第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.在近似情况下,通常将行星或卫星的椭圆轨道运动处理为圆轨道运动. 2.万有引力定律(1)内容:自然界中任何两个物体都是相互吸引的,引力的大小跟两个物体的 质量的乘积 成正比,跟他们之间的 距离的二次方 成反比.(2)公式:F =221r m m G,其中G =6.67×10-11 N•m 2/kg 2,叫 引力常量 . (3)适用条件:仅仅适用于 质点 或可以看做 质点 的物体.相距较远(相对于物体自身的尺寸)的物体和质量均匀分布的球体可以看做 质点 ,此时,式中的r 指两 质点 间的距离或球心间的距离.3.万有引力定律的应用(1)由G R v m RMm 22 得v =R GM ,所以R 越大,v 越小;(2)由G2R Mm =mω2R 得ω=3R GM ,所以R 越大,ω越小;(3)由G 2RMm=m 22π4T R 得T =GM R 32π4,所以R 越大,T 越大;(4)模型总结:①当卫星稳定运行时,轨道半径R 越大,v 越 小 ;ω越 小 ;T 越 大 ;万有引力越 小 ;向心加速度越 小 .②同一圆周轨道内正常运行的所有卫星的速度、角速度、周期、向心加速度的大小均相等.③这一模型在分析卫星的轨道变换、卫星回收等问题中很有用. 重点难点突破 一、万有引力与重力1.重力:重力是指地球上的物体由于地球的吸引而使物体受到的力.通过分析地球上物体受到地球引力产生的效果,可以知道重力是引力的一个分力.引力的另一个分力是地球上的物体随同地球自转的向心力(这个向心力也可以看做是物体受到的地球引力与地面支持力的合力)如图所示.但由于向心力很小,所以在一般计算中可认为重力近似等于万有引力,重力方向竖直向下(即指向地心).2.天体表面重力加速度问题设天体表面重力加速度为g ,天体半径为R ,因为物体在天体表面受到的重力近似等于受到的万有引力,所以有mg =G2R Mm ,g =2RGm同样可以推得在天体表面上方h 处重力加速度mg′=G2)(h R Mm +,g′=2)(h R GM+重力加速度受纬度、高度、地球质量分布情况等多种因素影响,随纬度的增大而增大,随高度的增大而减小.二、估算天体的质量和密度把卫星(或行星)绕中心天体的运动看成是匀速圆周运动,由中心天体对卫星(或行星)的引力作为它绕中心天体的向心力.根据G 2rMm=ma n =m 22π4T r 得M =232π4GT r .因此,只需测出卫星(或行星)的运动半径r 和周期T ,即可算出中心天体的质量M.又由ρ=32π34R M ,可以求出中心天体的密度.典例精析 1.万有引力与重力【例1】(2009•全国Ⅱ)如图所示,P 、Q 为某地区水平地面上的两点,在P 点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向:当存在空腔时,该地区重力加速度的大小和方向会与正常情况下有微小偏离.重力加速度在原竖直方向(即PO 方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P 点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V ,球心深度为d(远小于地球半径),PQ =x ,求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【解析】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力G2rMm=mΔg ①来计算,式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量, M =ρV②而r 是球形空腔中心O 到Q 点的距离 r =22x d +③Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小.Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影.Δg′=rdΔg ④联立①②③④式得 Δg′=2322)(x d Vd G +ρ ⑤(2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为(Δg′)max =2d VG ρ ⑥(Δg′)min =2322)(L d Vd G +ρ ⑦由题设有(Δg′)m ax =kδ,(Δg′)min =δ ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为d =132-k L⑨ V =)1(322-k G k L ρδ⑩【思维提升】此题是万有引力定律实际应用的典型实例,求解的关键是综合题中所给信息,充分理解题意,采用补全法求重力加速度反常量值,并结合几何关系等求解空腔深度和体积.【拓展1】火星的质量和半径分别约为地球的101和21,地球表面的重力加速度为g ,则火星表面的重力加速度约为( B )A.0.2gB.0.4gC.2.5gD.5g【解析】考查万有引力定律.星球表面重力等于万有引力,即G2RMm=mg ,故火星表面的重力加速度与地球表面的重力加速度的比值22火地地火火R M R M g g ==0.4,故B 正确.2.天体的质量与密度的计算【例2】登月飞行器关闭发动机后在离月球表面112 km 的空中沿圆形轨道绕月球飞行,周期是120.5 min.已知月球半径是1 740 km ,根据这些数据计算月球的平均密度.(G =6.67× 10-11 N•m 2/kg 2)【解析】根据牛顿第二定律有G)(π4)(222h R Tm h R Mm +=+从上式中消去飞行器质量m 后可解得M =232)(π4GT h R +=4×3.142×(1 852×103)36.67×10-11×(7.23×103)2 kg =7.2×1022kg根据密度公式有ρ=M V =3π43R M =3×7.2×10224×3.14×(1.74×106)3 kg/m 3=3.26×103 kg/m 3【思维提升】要计算月球的平均密度,首先应求出月球的质量M.飞行器绕月球做匀速圆周运动的向心力是由月球对它的万有引力提供的.【拓展2】(2009•全国Ⅰ)天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G =6.67×10-11 N•m 2/kg 2,由此估算该行星的平均密度约为( D )A.1.8×103 kg/m 3B.5.6×103 kg/m 3C.1.1×104 kg/m 3D.2.9×104 kg/m 3【解析】由ρ=MV 知该行星的密度是地球密度的5.32倍.对近地卫星有22)π2(T mR R GMm =,再结合ρ=M V ,V =43πR 3可解得地球的密度ρ=2π3GT =5.6×103kg/m 3,故行星的密度ρ′=5.32×ρ=2.96×104 kg/m 3,D 正确.易错门诊3.万有引力定律的应用【例3】从地球上发射的两颗人造地球卫星A 和B ,绕地球做匀速圆周运动的半径之比为R A ∶R B =4∶1,求它们的线速度之比和运动周期之比.【错解】卫星绕地球做匀速圆周运动所需向心力为F 向=mg =m Rv 2设A 、B 两颗卫星的质量分别为m A 、m B ,则m A g =m A AAR v 2① m B g =m B BBR v 2②由①②式解得BA B A R Rv v 22,所以v A v B =R AR B=2 又T =vRπ2,所以T A T B =R A R B ·v B v A =4×12=2【错因】这里错在没有考虑重力加速度与高度有关.根据万有引力定律知 m A g A =G 2A AR m M 地 ③ m B g B =G2BBR m M 地④由③④式解得g A g B =22A B R R =116所以g A =116g B 可见,在“错解”中把A 、B 两卫星的重力加速度g A 、g B 当做相同的g 来处理是不对的.【正解】卫星绕地球做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有A :F A 向=G 2A A R m M 地=m AA AR v 2⑤ B :F B 向=G 2B B R m M 地=m BBBR v 2⑥由⑤⑥式解得22BAV R =R B R A ,所以v Av B =R B R A =12根据T A =A A V R π2,T B =BBV R π2可知T A T B =v B v A ·R A R B =21·41=8∶1【思维提升】我们在研究地球上的物体的运动时,地面附近物体的重力加速度近似看做是恒量.但研究天体运动时,应注意不能将其认为是常量,随高度变化,g 值是改变的.。
高考物理一轮复习江课件万有引力定律及其应用
其他验证万有引力定律实验方法
自由落体实验
自由落体实验也可以用来验证万有引力定律。在该实验中,通过测量不同质量 的物体在相同高度自由下落所需的时间,可以推算出地球表面的重力加速度, 进而验证万有引力定律。
卫星轨道观测
卫星轨道观测是一种间接验证万有引力定律的方法。通过观测卫星在地球周围 的轨道运动,可以推算出地球的质量和形状等参数,从而验证万有引力定律的 正确性。
05
万有引力定律实验验证与探究
卡文迪许扭秤实验原理及过程
实验原理
卡文迪许扭秤实验是通过测量两个小球之间 的引力来验证万有引力定律的。该实验利用 了扭秤的扭转角度与引力大小成正比的原理 ,通过测量扭转角度来推算出引力大小。
实验过程
首先,将两个质量相等的小球分别固定在扭 秤的两端,并调节扭秤的平衡。然后,将一 个大质量的物体放置在两个小球附近,由于 万有引力的作用,两个小球会受到朝向大质 量物体的引力,导致扭秤发生扭转。通过测 量扭转角度,可以计算出两个小球之间的引
生。
地球形状对重力影响
地球形状
地球并非一个完美的球体,而是一个略微扁平的椭球体。这种形状的不规则性会对重力产生影响,使 得不同地区的重力加速度略有差异。
重力异常
由于地球形状的不规则性,会导致重力异常现象的发生。例如,在山脉地区,由于地下岩石密度的不 均匀分布,会使得当地的重力加速度偏大;而在盆地地区,则会使得当地的重力加速度偏小。这种重 力异常现象可以通过精密的重力测量仪器进行观测和研究。
卫星周期
卫星绕地球一周所需的时 间称为周期,与卫星轨道 半径和地球质量有关。
宇宙速度概念及计算
第一宇宙速度
使物体紧贴地球表面作圆周运动的速 度,数值为7.9km/s。
高考物理一轮复习 第4单元曲线运动 万有引力第3讲 万有引力定律及其应用课件 新人教版
.
知识建构
技能建构
(2)设月球表面处的重力加速度为g月,根据题意:
t
v0=g月 2
mg月=G
M月m r2
解得:M月=
2v0r Gt
2
.
【答案】(1)
3
gR 2T 4 2
2
(2)
2v0r 2 Gt
知识建构
技能建构
4.中子星是恒星演化过程的一种可能结果,它的密度很大.现有一中
子星,观测到它的自转周期T=
A.0.5
B.2
C.3.2
D.4
知识建构
技能建构
【名师点金】在忽略行星自转的情况下,行星对人的万有引力等于 人所受到的重力.根据万有引力定律列式,代入行星质量之比,即可求 得行星半径之比.
【规范全解】由题意可知地球表面的重力加速度与行星表面的重 力加速度之比为 966000= 1254,由黄金代换可知:
一般有以下几种表达形式:
①G
Mm r2
=m
v2 r
;②G
Mm r2
=mω2r;③GMr2m
=m4T22
r.
知识建构
技能建构
3.天体质量和密度的计算
(1)利用天体表面的重力加速度g和天体半径R.
由于G
MRm2 =mg,故天体质量M=
gR,2天体密度ρ= M=
G
V
4 MR=3 43GgR.
3
知识建构
知识建构
技能建构
(2)若宇航员随登月飞船登陆月球后,在月球表面某处以速度v0竖直 向上抛出一个小球,经过时间t,小球落回抛出点.已知月球半径为r,引 力常量为G,试求出月球的质量M月.
【解析】(1)根据万有引力定律和向心力公式:
版高考物理一轮复习4.4万有引力定律及其应用课件
图示或公式
������ 3 ������ 2
=k,k 是一个与行星
无关的常量
-3-
二、万有引力定律 1.公式 ������1 · ������2 G F=_________ ,其中G为引力常量,G=6.67×10-11 N· m2/kg2,可由卡 ������2 文迪许扭秤实验测定。 2.适用条件 两个质点之间 的相互作用。 (1)质量分布均匀的球体间的相互作用,也可用本定律来计算,其 中r为两球心间 的距离。 (2)一个质量分布均匀的球体和球外一个质点之间的万有引力也 适用,其中r为质点到球心之间 的距离。
������ ������
-11-
关闭
万有引力定律公式适用于任何两个质点之间的万有引力计算,当两物体间
的距离趋近于0时,物体不能视为质点,万有引力公式不再适用,选项A、B 均错误;万有引力为两物体间的相互作用力,符合牛顿第三定律,选项C正
确;引力常量G的值是由英国物理学家卡文迪许利用钮秤实验装置测出的,
选项 C D错误。
解析
关闭
答案
-12-
关闭
火 火 地 ������ )火星的半径约为地球半径的一半 ������ 8 3 . ( 多选 , 质量约为地球质量的 密度 ρ= = , 故 = · = ,故选项 A 错误。由 3 ������ ������ ������ ������ 9 4 1 地 地 火 ,那么( ) 3π������
=mg 可得重力加速度 g= 2 ,故 = · = 9 ,故 2 ������ ������ ������ 9 ������ B.火星表面的重力加速度约为地球表面的重力加速度的 ������ 地 地 火 =
火
������
火
������
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
禁止流通,仿冒必究2013届曲靖一中物理一轮复习新题分类汇编:万有引力定律及应用基础知识一.开普勒运动定律(1)开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上. (2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等. (3)开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等. 二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. (2)公式:F =G221rm m ,其中2211/1067.6kg m N G ⋅⨯=-,称为为有引力恒量。
(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力. 三、万有引力和重力重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F 向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g 随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m 2g =G221rm m , g=GM/r 2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高度的增大而减小,即g h =GM/(r+h )2,比较得g h =(hr r +)2·g在赤道处,物体的万有引力分解为两个分力F 向和m 2g 刚好在一条直线上,则有禁止流通,仿冒必究F =F 向+m 2g , 所以m 2g=F 一F 向=G221rm m -m 2R ω自2因地球目转角速度很小G221rm m » m 2R ω自2,所以m 2g= G221rm m假设地球自转加快,即ω自变大,由m 2g =G 221rm m -m 2R ω自2知物体的重力将变小,当G221rm m =m 2R ω自2时,m 2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自,比现在地球自转角速度要大得多.四.天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R ,由mg=2Mm GR得g=2M GR,由此推得两个不同天体表面重力加速度的关系为21212212g R M gRM=*五.天体质量和密度的计算原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力. G2rmM =m224Tπr ,由此可得:M=2324GTr π;ρ=VM =334RM π=3223RGT rπ(R 为行星的半径)由上式可知,只要用实验方法测出卫星做圆周运动的半径r 及运行周期T ,就可以算出天体的质量M .若知道行星的半径则可得行星的密度规律方法1、万有引力定律的基本应用【例1】如图所示,在一个半径为R 、质量为M 的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d 的质点m 的引力是多大?分析 把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解. 解 完整的均质球体对球外质点m 的引力这个引力可以看成是:m 挖去球穴后的剩余部分对质点的引力F 1与半径为R/2的小球对质点的引力F 2之和,即F=F 1+F 2.因禁止流通,仿冒必究半径为R/2的小球质量M /为MR M R R M8134234234333/=⋅⎪⎭⎫ ⎝⎛=⋅⎪⎭⎫⎝⎛=ππρπ,则()()22/22/82/R d Mm GR d mM GF -=-=所以挖去球穴后的剩余部分对球外质点m 的引力()22212/8R d Mm GdMm GF F F --=-=()22222/8287R d dRdR dGMm-+-=上式表明,一个均质球壳对球外质点的引力跟把球壳的质量(7M/8)集中于球心时对质点的引力一样.【例2】某物体在地面上受到的重力为160 N ,将它放置在卫星中,在卫星以加速度a =½g 随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为90 N 时,求此时卫星距地球表面有多远?(地球半径R =6.4×103km,g 取10m/s 2)解析:设此时火箭上升到离地球表面的高度为h ,火箭上物体受到的支持力为N,物体受到的重力为mg /,据牛顿第二定律.N -mg /=ma ……①在h 高处mg /=()2h R MmG+……② 在地球表面处mg=2RMm G……③把②③代入①得()ma R h mgRN++=22∴⎪⎪⎭⎫⎝⎛--=1ma N mgR h =1.92×104km.禁止流通,仿冒必究说明:在本问题中,牢记基本思路,一是万有引力提供向心力,二是重力约等于万有引力.【例3】有人利用安装在气球载人舱内的单摆来确定气球的高度。
已知该单摆在海平面处的周期是T 0。
当气球停在某一高度时,测得该单摆周期为T 。
求该气球此时离海平面的高度h 。
把地球看作质量均匀分布的半径为R 的球体。
解析:根据单摆周期公式:,20g L T π=,2gL T π=其中l 是单摆长度,g 0和g 分别是两地点的重力加速度。
根据万有引力公式得,2RM Gg =,)(2h R M Gg +=其中G 是引力常数,M 是地球质量。
由以上各式解得R T Th ⎪⎪⎭⎫⎝⎛-=10 【例4】登月火箭关闭发动机在离月球表面112 km 的空中沿圆形轨道运动,周期是120.5 min,月球的半径是1740 km,根据这组数据计算月球的质量和平均密度.解析:设月球半径为R ,月球质量为M ,月球密度为ρ,登月火箭轨道离月球表面为h ,运动周期为T ,火箭质量为m ,由GMm/r 2=m4π2r/T 2得M=4π2r 3/(GT 2),ρ=M/V ,其中V=4π2R 3/3,则F 向=m ω2r=m4π2(R+h )/T 2,F 引=GMm/(R+h )2,火箭沿轨道运行时有F 引=F 向,即GMm/(R+h )2= m4π2(R+h )/T 2 故M=4π2(R+h )3/(GT 2)2=7.2×1022kg,ρ=3M/4πR 3=3.26×103kg/m 3【例5】已知火星上大气压是地球的1/200.火星直径约为球直径的一半,地球平均密度ρ地=5.5×103kg/m 3,火星平均密度ρ火=4×103kg/m 3.试求火星上大气质量与地球大气质量之比.分析 包围天体的大气被吸向天体的力.就是作用在整个天体表面(把它看成平面时)的大气压力.利用万有引力算出火星上和地球上的重力加速度之比,即可算出它们的大气质量之比.解 设火星和地球上的大气质量、重力加速度分别为m 火、g 火、m 地、g 地,火星和地球上的大气压分别为,R g m p 24火火火火π=,R g m p 24地地地地π=据万有引力公式,火星和地球上的重力加速度分别为,R M Gg 2火火火=禁止流通,仿冒必究,R M Gg 2地地地=地地地火火火式中ρπρπ333434R ,MR M ==综合上述三式得火地火地地火地火ρρ∙∙=R R P P m m 3104.345.5212001-⨯=⨯⨯=【例6】一个宇航员在半径为R 的星球上以初速度v 0竖直上抛一物体,经ts 后物体落回宇航员手中.为了使沿星球表面抛出的物体不再落回星球表面,抛出时的速度至少为多少?解析:物体抛出后,受恒定的星球引力作用,做匀减速运动,遵循着在地面上竖直上抛时的同样规律.设星球对物体产生的“重力加速度”为g x ,则由竖直上抛运动的公式得为使物体抛出后不再落回星球表面,应使它所受到的星球引力正好等于物体所需的向心力,即成为卫星发射了出去。
tRv Rg v x x 02==得,这个速度即是这个星球上发射卫星的第一宇宙速度。
【例7】在“勇气”号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。
假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h ,速度方向是水平的,速度大小为v 0,求它第二次落到火星表面时速度的大小,计算时不计大气阻力。
已知火星的一个卫星的圆轨道半径为r ,周期为T 。
火星可视为半径为r 0的均匀球体。
分析:第一次落到火星表面弹起在竖直方向相当于竖直上抛,在最高点由于只有水平速度故将做平抛运动,第二次落到火星表面时速度应按平抛处理。
无论是竖直上抛还是平抛的计算,均要知道火星表面的重力加速度g /。
利用火星的一个卫星的相关数据可以求出g /。
解:设火星的一个卫星质量为m ,任一物体的质量为m /,在火星表面的重力加速度为g /,火星的质量为M 。
任一物体在火星表面有://20/gm r MmG=……① 火星的卫星应满足:rT m rMm G222⎪⎭⎫ ⎝⎛=π……②第一次落到火星表面弹起在竖直方向满足:v 12=2g /h ……③ 第二次落到火星表面时速度应按平抛处理:221v v v +=……④由以上4式可解得2202328v r T hr v -=π2、讨论天体运动规律的基本思路禁止流通,仿冒必究基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供。
()r f m T m r m r vm rMm G 2222222ππω=⎪⎭⎫⎝⎛===【例8】2000年1月26日我国发射了一颗同步卫星,其定点位置与东经980的经线在同一平面内.若把甘肃省嘉峪关处的经度和纬度近似为东经980和北纬α=400,已知地球半径R 、地球自转周期T,地球表面重力加速度g (视为常数)和光速c ,试求该同步卫星发出的微波信号传到嘉峪关处的接收站所需的时间(要求用题给的已知量的符号表示).解析:设m 为卫星质量,M 为地球质量,r 为卫星到地球中心的距离,ω为卫星绕地心转动的角速度.由万有引力定律和牛顿定律有22ωmr rMm G =,式中G 为万有引力恒量,因同步卫星绕地心转动的角速度ω与地球自转的角速度相等,有ω=2π/T ;因mg RMm G=2,得GM=gR 2.设嘉峪关到同步卫星的距离为L ,如图所示,由余弦定律得:αcos 222rR R rL -+=所求的时间为t =L/c .由以上各式得cgT R R R gT R t322232224cos 24⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=παπ【例9】在天体运动中,将两颗彼此相距较近的行星称为双星。