初中数学 人教版七年级下册 第9章 不等式与不等式组 单元练习
人教版七年级数学下册第九章《不等式与不等式组》单元测试试题(含答案)

第九章《不等式与不等式组》单元检测题题号 一 二三总分21 22 23 24 25 26 27 28 分数一、选择题:1.不等式组102(1)x x x +<⎧⎨-⎩,≤的解集是( ).A.x <-1 B.x ≤2 C.x >1D.x ≥22.不等式2+x <6的非负整数解有( )A .2个B .3个C .4个D .5个3.下图所表示的不等式组的解集为( )-234210-1A .x 3B .32 x -C .2- xD .32 x -4.若方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ).A.m >-1.25B.m <-1.25 C.m >1.25D.m <1.255.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ).A.5千米 B.7千米 C.8千米 D.15千米6.对于不等式组下列说法正确的是( )A .此不等式组无解B .此不等式组有7个整数解C .此不等式组的负整数解是﹣3,﹣2,﹣1D .此不等式组的解集是﹣<x ≤27.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤238.现规定一种运算:a ※b=ab+a ﹣b ,其中a 、b 为常数,若2※3+m ※1=6,则不等式<m 的解集是( )A .x <﹣2B .x <﹣1C .x <0D .x >2 9.如图是测量一颗玻璃球体积的过程:(1)将300ml 的水倒进一个容量为500ml 的杯子中; (2)将四颗相同的玻璃球放入水中,结果水没有满; (3)再加一颗同样的玻璃球放入水中,结果水满溢出. 根据以上过程,推测这样一颗玻璃球的体积在( )A .20ml 以上,30ml 以下B .30ml 以上,40ml 以下C .40ml 以上,50ml 以下D .50ml 以上,60ml 以下10、在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( ) A.66厘米 B.76厘米 C.86厘米 D.96厘米 二、填空题:11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .三、解答题:19、解不等式:2(x+1)﹣1≥3x+2 20、解不等式:21、解不等式:﹣2> 22、解不等式组:23、解不等式组: 24、解不等式组:25、把一篮苹果分给几个学生,如果每人分4个,则剩下3个;如果每人分6个,则最后一个学生最多得2个,你知道有多少学生,多少个苹果吗?26、某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,求一共购买了多少支签字笔?27、已知关于x ,y 的方程组的解满足不等式组求满足条件的m的整数值.28、便利店老板从厂家购进A 、B 两种香醋,A 种香醋每瓶进价为6.5元,B 种香醋每瓶进价为8元,共购进140瓶,花了1000元,且该店A 种香醋售价8元,B 种香醋售价10元 (1)该店购进A 、B 两种香醋各多少瓶?(2)将购进的140瓶香醋全部售完可获利多少元?(3)老板计划再以原来的进价购进A 、B 两种香醋共200瓶,且投资不超过1420元,仍以原来的售价将这200瓶香醋售完,且确保获利不少于339元,请问有哪几种购货方案?29、为落实国家“三农”政策,某地政府组织40辆汽车装运A 、B 、C 三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:农产品种类 A B C 每辆汽车的装载量(吨)456(1)如果装运C 种农产品需13辆汽车,那么装运A 、B 两种农产品各需多少辆汽车? (2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案.参考答案1、A2、C3、A4、A5、C6、B7、C8、C9、A 10、D11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =. 17. 3m <. 18. 无解.19、去括号,得2x+2﹣1≥3x+2,去括号得,2x >6﹣x+3,合并同类项,得﹣x ≥1;系数化为1,得x ≤﹣1 在数轴上表示为:20、- 画数轴表示正确-21、去分母,得:2(5x+1)﹣24>3(x ﹣5), 去括号,得:10x+2﹣24>3x ﹣15, 移项,得:10x ﹣3x >﹣15﹣2+24, 合并同类项,得:7x >7, 系数化为1,得:x >1; 将解集表示在数轴上如下:22、解不等式组:由①得:x ≥-1由②得:x ≤3 ∴ -1≤x ≤3 23、,由①得:x ≥-2,由②得:x <-,不等式组的解集为:-2≤x <-,在数轴上表示为:;24、不等式组的解集为;25、设有x 个学生,则有(4x+3)个苹果。
【3套试卷】人教版七年级下册单元复习题:第9章 不等式与不等式组

人教版七年级下册单元复习题:第9章 不等式与不等式组一、填空题:1、不等式5x +14≥0的负整数解是______ .2、如果不等式(1+a )x >1+a 的解集为x <1,那么a 的取值范围是 .3、某试卷共有30道题,每道题选对得10分,选错了或者不选扣5分,至少要选对______ 道题,其得分才能不少于80分.4、已知,,,则的取值范围是 .5、定义新运算:对于任意实数a,b 都有a#b=3a-b+1,其中等式右边是通常的加法、减法及乘法运算,如:2#5=3×2-5+1=2,若不等式x#m<5的解集表示在数轴上,如图所示,则m 的值为 .6、某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是 .二、选择题:7、下列选项中是一元一次不等式组的是( ) A. B. C. D.8、若a <b ,则下列各式中,错误的是( )A. a-3<b-3B. -a <-bC. -2a >-2bD. a/3<b/39、下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1);②去括号,得5x +10>6x -3;③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④10、不等式的解集是( ) A. B. C. D.11、不等式组的解集在数轴上表示正确的是( )A .B .C .D .12、对于实数x,我们规定:[x]表示不小于x 的最小整数,例如:[1.4]=2,[4]=4,[-3.2]=-3,若=6,则x 的取值可以是( ) A.41 B.47 C.50 D.5813、某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本( )A. 5本B. 6本C. 7本D. 8本14、若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( )A. m =2B. m >2C. m <2D. m ≥215、若某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为()A. ()21090182100x x +-≥B. ()90210182100x x +-≤C. ()2109018 2.1x x +-≤D. ()2109018 2.1x x +->16、甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A. 小于8km/hB. 大于8km/hC. 小于4km/hD. 大于4km/h 三、解答题:17、解下列不等式和不等式组:(1)2x -13-9x +26≤1;(2)18、解下列不等式,并将解集在数轴上表示出来:(1);(2).19、已知:不等式≤2+x,( 1 )解该不等式,并把它的解集表示在数轴上;( 2 )若实数a满足a>2,说明a是否是该不等式的解.20、求不等式组的正整数解.21、已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.22、某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.23、学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?参考答案一、填空题:1、-2,-12、a<-13、164、5、26、8二、选择题:7、D8、B9、D10、C11、C12、C13、C14、D15、A16、B三、解答题:17、(1) x≥-2 (2) -2<x≤418、(1)y≤1(2)x>-.19、( 1 )2-x≤3( 2+x ),2-x≤6+3x, -4x≤4,x≥-1,解集表示在数轴上如下:( 2 )∵a>2,不等式的解集为x≥-1,而2>-1,∴a是不等式的解.20、不等式组的正整数解是1,2,3,4.21、解不等式5x+1>3(x-1),得x>-2.解不等式12x≤8-32x+2a,得x≤4+a.则不等式组的解集是-2<x≤4+a.不等式组只有两个整数解,是-1和0.根据题意,得0≤4+a<1.解得-4≤a<-3.22、(1)榕树和香樟树的单价分别是60元/棵,80元/棵;(2)方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.23、(1) 购买1台平板电脑和1台学习机各需3000元,800元;(2) 方案1:购买平板电脑38台,学习机62台,费用为114000+49600=163600(元);方案2:购买平板电脑39台,学习机61台,费用为117000+48800=165800(元);方案3:购买平板电脑40台,学习机60台,费用为120000+48000=168000(元),则方案1最省钱.人教版年级数学下册第九章 不等式与不等式组单元测试题人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题1.设a >b >0,c 为常数,给出下列不等式:①a-b >0;②ac>bc ;③1a <1b;④b 2>ab ,其中正确的不等式有( )A .1个B .2个C .3个D .4个2.已知b a <,下列式子不成立的是( )A .11+<+b aB .b a 33<C .b a 2121->-D .如果0<c ,那么cb c a < 3.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x≥0,y >0,那么m 的取值范围在数轴上应表示为( )4.方程组⎩⎨⎧=++=+3212y x m y x 中,若未知数x 、y 满足0>+y x ,则m 的取值范围是( ) A .4->m B .4-≥m C .4-<m D .4-≤m 5.某市自来水公司按如下标准收取水费:若每户每月用水不超过25m ,则每立方米收费5.1 元;若每户每月用水超过25m ,则超过部分每立方米收费2元,小颖家某月的水费不少于15元,那么她家这个月的用水量(吨数为整数)至少是( )A .210mB .29mC .28mD .26m6.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h7.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的同学每人分5本,那么最后一人就分不到3本.则这些图书有( )A .23本B .24本C .25本D .26本8.定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A .[x ]=x (x 为整数)B .0≤x -[x ]<1C .[x +y ]≤[x ]+[y ]D .[n +x ]=n +[x ](n 为整数)9.某射击运动员在一次比赛中(共10次射击,每次射击最多是10环),前6次射击共中52环.如果他要打破89环的记录,那么第7次射击不能少于( )A .5环B .6环C .7环D .8环10.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有( )种.A. 2B. 3C. 4D. 5 二、填空题1.若点A (x +3,2)在第二象限,则x 的取值范围是________.2.当x ________时,式子3+x 的值大于式子12x -1的值.3.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了________支.4.定义一种法则“”如下:ab =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ).例如:=2.若(-2m -=3,则m 的取值范围是__________. 5.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.6.不等式组⎩⎪⎨⎪⎧x +1>3(1-x ),1+2x 3≤x 的解集是____________. 三、解答题1.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x+2;(2)2x -13-9x +26≤1.2.已知关于x 的方程4(x +2)-2=5+3a 的解不小于方程(3a +1)x 3=a (2x +3)2的解,试求a 的取值范围.3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =1,①x -y =m.② (1)求这个方程组的解(用含m 的式子表示);(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.4.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2 200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?5.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?参考答案:一、选择题。
人教版七年级数学下册第九章《不等式与不等式组》单元练习题(含答案)

人教版七年级数学下册第九章《不等式与不等式组》练习题(含答案)一.选择题1.已知a>b,则下列结论错误的是()A.a﹣4>b﹣4 B.﹣2a<﹣2b C.﹣D.﹣1+a<﹣1+b 2.不等式2(x﹣1)≤4+5x的解集为()A.x≥2 B.x≤2 C.x≥﹣2 D.x≤﹣23.不等式组解集在数轴上表示为()A.B.C.D.4.不等式x﹣3≤0的正整数解的个数是()A.1 B.2 C.3 D.45.如图,已知有理数a,b,c在数轴上对应的点分别为A,B,C,则下列不等式中不正确的是()A.c<b<a B.ac>ab C.cb>ab D.c+b<a+b6.如果不等式组的解集是0≤x<1,那么a+b的值为()A.﹣1 B.0 C.1 D.27.某商品的标价比成本价高m%,根据市场行情,该商品需降价n%出售,为了不亏本,则m、n应满足()A.(1+m%)(1+n%)≥1 B.(1+m%)(1﹣n%)≥1C.(1﹣m%)(1+n%)≥1 D.(1﹣m%)(1﹣n%)≥18.对于任意实数a,b,定义一种运算:a※b=ab+a﹣b+1.例如,2※4=2×4+2﹣4+1=7.根请据上述的定义,若不等式2※x>8,则该不等式的解集为()A.x>4 B.x<4 C.x<5 D.x>5二.填空题9.﹣2x<4的解集是.10.已知点P(2a+6,4+a)在第二象限,则a的取值范围是.11.关于x的方程4x﹣2m+1=5x﹣8的解是负数,则满足条件的m的最小整数值是.12.一张试卷共20道题,做对一题得5分,做错或不做一题扣1分,小明做了全部试题,若要成绩优秀(注:70分及以上成绩为优秀),那么小明至少要做对道题.13.某品牌电脑的成本为2000元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x折销售,请依据题意列出关于x的不等式:.14.若关于x的不等式组的整数解共有5个,则a的取值范围.15.若关于x的不等式组无解,则a的取值范围为.16.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,例如=1×4﹣2×3=﹣2,如果>0,则x的取值范围为.三.解答题17.解不等式(组),并把解集在数轴上表示出来.(1)(2).18.解不等式组,并把解集在数轴上表示出来.19.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少人?20.小马虎解不等式﹣>1出现了错误,解答过程如下:不等式两边都乘以6,得3﹣2(x﹣2)>1(第一步)去括号,得3﹣2x+4>1(第二步)移项,合并同类项,得﹣2x>﹣6.(第三步)解得x<3(第四步)(1)小马虎解答过程是从第步开始出错的,出错的原因是.(2)请写出此题正确的解答过程.21.解不等式组并求出其所有整数解的和.22.若关于x,y的二元一次方程组的解满足且x+y≥0,求m的取值范围.23.已知方程组的解x为非正数,y为负数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1.24.抗击新型冠状肺炎疫情期间,84消毒液和酒精都是重要的防护物资.某药房根据实际需要采购了一批84消毒液和酒精,共花费11500元,84消毒液和酒精的进价和售价如下:84消毒液酒精进价(元/瓶)25 20售价(元/瓶)40 28 (1)该药房销售完这批84消毒液和酒精后共获利6100元,则84消毒液和酒精各销售了多少瓶?(2)随着疫情的发展,该药房打算再次采购一批84消毒液和酒精,第二次采购仍以原价购进84消毒液和酒精,购进84消毒液的数量不变,而购进酒精的数量是第一次采购数量的2倍,84消毒液按原价出售,而酒精打折让利出售.若该药房将84消毒液和酒精全部销售完,要使第二次的销售获利不少于4900元,则每瓶酒精最多打几折?参考答案一.选择题1.解:由a>b,得到a﹣4>b﹣4,﹣2a<﹣2b,<﹣,﹣1+a>﹣1+b,故选:D.2.解:去括号得:2x﹣2≤4+5x,移项合并得:﹣3x≤6,解得:x≥﹣2.故选:C.3.解:解不等式x﹣2>0,得:x>2,解不等式﹣5≤﹣2x+1,得:x≤3,则不等式组的解集为2<x≤3,故选:B.4.解:不等式x﹣3≤0的解集为x≤3,故其正整数解为3、2、1共3个.故选:C.5.解:由题意,可知a>0>b>c.A、∵a>0>b>c,∴c<b<a,故此选项错误;B、∵b>c,a>0,∴ac<ab,故此选项正确;C、∵c<a,b<0,∴cb>ab,故此选项错误;D、∵c<a,∴c+b<a+b,故此选项错误;故选:B.6.解:解不等式x+2a≥4,得:x≥﹣2a+4,解不等式<1,得:x<,∵不等式组的解集为0≤x<1,∴﹣2a+4=0,=1,解得a=2,b=﹣1,∴a+b=2﹣1=1,故选:C.7.解:设进价为a元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0,则(1+m%)(1﹣n%)≥1.故选:B.8.解:∵2※x>8,∴2x+2﹣x+1>8,解得x>5,故选:D.二.填空题9.解:两边同时除以﹣2,得:x>﹣2.故答案是:x>﹣2.10.解:∵点P(2a+6,4+a)在第二象限,∴,解得﹣4<a<﹣3,故答案为﹣4<a<﹣3.11.解:∵4x﹣2m+1=5x﹣8,∴x=9﹣2m.∵关于x的方程4x﹣2m+1=5x﹣8的解是负数,∴9﹣2m<0,解得m>,∴满足条件的m的最小整数值是5.故答案为5.12.解:设小明要做对x道题,依题意有5x﹣(20﹣x)≥70,x≥15.故小明至少要做对15道题.故答案为:15.13.解:设这种品牌的电脑打x折销售,依据题意得:2800×﹣2000≥2000×5%.故答案为:2800×﹣2000≥2000×5%.14.解:,解不等式①,得x<5,解不等式②,得x≥a,所以不等式组的解集是a≤x<5,∵关于x的不等式组的整数解共有5个,∴﹣1<a≤0,故答案为:﹣1<a≤0.15.解:,解不等式①,得x>3a,解不等式②,得x≤2,∵关于x的不等式组无解,∴3a≥2,解得:a≥,故答案为:a≥.16.解:根据题意得4x﹣3(3﹣x)>0,去括号,得:4x﹣9+3x>0,移项、合并,得:7x>9,系数化为1,得:x>,故答案为:x>.三.解答题17.解:(1)去分母,得:10﹣2(2﹣3x)<5(1+x),去括号,得:10﹣4+6x<5+5x,移项,得:6x﹣5x<5+4﹣10,合并同类项,得:x<﹣1,将解集表示在数轴上如下:(2)解不等式+3≥x,得:x≤3,解不等式1﹣3(x﹣1)<8﹣x,得:x>﹣2,则不等式组的解集为﹣2<x≤3,将解集表示在数轴上如下:18.解:解①得,x<2,解②得,x≥﹣2,∴原不等式组的解集为﹣2≤x<2,将解集表示在数轴上如下:19.解:设有x个学生,那么共有(3x+8)本书,则:,解得5<x≤6.5,所以x=6,共有6×3+8=26本.答:有26本书,6个学生.20.解:(1)两边应该同时乘以6,不等式左边=3﹣2(x﹣2),右边=1×6,即从第一步开始出错,出错原因是去分母时漏乘常数项,故答案为:一,去分母时漏乘常数项,(2)不等式两边都乘以6得:3﹣2(x﹣2)>1×6,去括号得:3﹣2x+4>6,移项,合并同类项得:﹣2x>﹣1,解得:x<.即不等式的解集为:x.21.解:解不等式①,得:x<5,解不等式②,得:x≥﹣2,则不等式组的解集为﹣2≤x<5,所以不等式组所有整数解的和为﹣2﹣1+0+1+2+3+4=7.22.解:解方程组,得:,∵x+y≥0,∴m+1﹣3m+3≥0,解得m≤2.23.解:(1)解这个方程组的解为,由题意,得,不等式①的解集是:a≤3,不等式②的解集是:a>﹣2,则原不等式组的解集为﹣2<a≤3;(2)∵不等式(2a+1)x>(2a+1)的解为x<1,∴2a+1<0且﹣2<a≤3,∴在﹣2<a<﹣范围内的整数a=﹣1.24.解:(1)设84消毒液销售了x瓶,酒精销售了y瓶,根据题意得,解得:.答:84消毒液销售了300瓶,酒精销售了200瓶;(2)设每瓶酒精打a折,根据题意得300×40+200×2×0.1a×28﹣300×25﹣200×2×20≥4900,解得:a≥7.5.答:每瓶酒精最多打7.5折。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
人教版七年级数学下册第9章不等式与不等式组单元练习卷含解析

第9章不等式与不等式组一.选择题(共10小题)1.判断下列各式中不等式有()个(1)a+1>0;(2)a+b=0;(3)8<9;(4)3x﹣1≤x;(5)4﹣2x;(6)x﹣y≠1.A.2 B.3 C.4 D.62.不等式组的解在数轴上表示为()A.B.C.D.3.若a>b,则下列不等式中,不成立的是()A.﹣3a>﹣3b B.a﹣3>b﹣3 C.D.﹣a<﹣b4.下列是一元一次不等式的有()x>0,<﹣1,2x<﹣2+x,x+y>﹣3,x=﹣1,x2>3,.A.1个B.2个C.3个D.4个5.若不等式x<a只有5个正整数解,则a的取值范围为()A.5<a<6 B.5≤a≤6 C.5≤a<6 D.5<a≤66.下列各式不是一元一次不等式组的是()A.B.C.D.7.不等式组的解集是x<1,则a的取值范围是()A.a=1 B.a=2 C.a=3 D.a=﹣38.关于x的不等式组有5个整数解,则a的取值范围是()A.1<a≤2 B.1<a<2 C.1≤a<2 D.﹣1≤a<09.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9﹣9(x﹣1)>0B.7x+9﹣9(x﹣1)<8C.D.10.若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为()A.0<(3x+7)﹣5(x﹣1)≤5 B.0<(3x+7)﹣5(x﹣1)<5C.0≤(3x+7)﹣5(x﹣1)<5 D.0≤(3x+7)﹣5(x﹣1)≤5二.填空题(共3小题)11.不等式组有解,m的取值范围是.12.不等式3x≤x+4的非负整数解是.13.一次知识竞答比赛,共16道选择题,评选办法是;答对一道题得6分,答错一道题倒扣2分,不答则不扣分,王同学全部作答,如果王同学想成绩在60分以上,试写出他答对题x应满足的不等式.三.解答题(共3小题)14.解不等式≤+1,并把解表达在数轴上.15.市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:项目/品种单价(元/棵)成活率A80 92%B100 98%(1)若购树的总费用不超过82000元,则购A种树不少于多少棵?(2)当这批树的成活率不低于94%时,求购买这批树的最低费用为多少?16.一个运输公司有甲、乙两种货车,两次满载的运输情况如下表:甲种货车辆数乙种货车辆数合计运货吨数第一次 2 4 18第二次 5 6 35(1)求甲、乙两种货车每次满载分别能运输多少吨货物;(2)现有一批重34吨的货物需要运输,而甲、乙两种货车运输的保养费用分别为80元/辆和40元/辆.公司打算由甲、乙两种货车共10辆来完成这次运输,为了使保养费用不超过700元,公司该如何安排甲、乙两种货车来完成这次运输任务.参考答案与试题解析一.选择题(共10小题)1.判断下列各式中不等式有()个(1)a+1>0;(2)a+b=0;(3)8<9;(4)3x﹣1≤x;(5)4﹣2x;(6)x﹣y≠1.A.2 B.3 C.4 D.6【分析】主要依据不等式的定义﹣﹣﹣﹣﹣用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【解答】解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(3),(4),(6)为不等式,共有4个.故选:C.2.不等式组的解在数轴上表示为()A.B.C.D.【分析】根据在数轴上表示不等式解集的方法表示出不等式组的解集,选出符合条件的选项即可.【解答】解:∵,∴在数轴上表示为:.故选:C.3.若a>b,则下列不等式中,不成立的是()A.﹣3a>﹣3b B.a﹣3>b﹣3 C.D.﹣a<﹣b【分析】根据不等式的形式,结合“a>b”,依次分析各个选项,选出不成立的选项即可.【解答】解:A.a>b,两边同时乘以﹣3,不等号的方向要改变,即﹣3a<﹣3b,A项不成立,B.a>b,两边同时减去3,不等号的方向不变,即a﹣3>b﹣3,B项成立,C.a>b,两边同时除以3,不等号的方向不变,即,C项成立,D.a>b,两边同时乘以﹣1,不等号的方程改变,即﹣a<﹣b,D项成立,故选:A.4.下列是一元一次不等式的有()x>0,<﹣1,2x<﹣2+x,x+y>﹣3,x=﹣1,x2>3,.A.1个B.2个C.3个D.4个【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.【解答】解:是一元一次不等式的有:x>0,2x<﹣2+x共有2个.故选:B.5.若不等式x<a只有5个正整数解,则a的取值范围为()A.5<a<6 B.5≤a≤6 C.5≤a<6 D.5<a≤6【分析】根据题意可以得到a的取值范围,本题得以解决.【解答】解:∵不等式x<a只有5个正整数解,∴a的取值范围是:5<a≤6,故选:D.6.下列各式不是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式组的定义进行解答.【解答】解:A、该不等式组符合一元一次不等式组的定义,故本选项错误;B、该不等式组符合一元一次不等式组的定义,故本选项错误;C、该不等式组中含有2给未知数,不是一元一次不等式组,故本选项正确;D、该不等式组符合一元一次不等式组的定义,故本选项错误;故选:C.7.不等式组的解集是x<1,则a的取值范围是()A.a=1 B.a=2 C.a=3 D.a=﹣3【分析】分别求出每一个不等式的解集,根据不等式组的解集列出关于a的方程,解之可得.【解答】解:解不等式3x+a<0,得:x<﹣,解不等式2x+7>4x﹣1,得:x<4,∵不等式组的解集为x<1,则﹣=1,解得a=﹣3,故选:D.8.关于x的不等式组有5个整数解,则a的取值范围是()A.1<a≤2 B.1<a<2 C.1≤a<2 D.﹣1≤a<0【分析】先求出两个不等式的解集,再求其公共解,然后根据整数解的个数确定a的取值范围即可.【解答】解:,解不等式①得,x≤4,解不等式②得,x>a﹣2,所以,不等式组的解集是a﹣2<x≤4,∵不等式组有5个整数解,∴整数解为0、1、2、3、4,∴﹣1≤a﹣2<0,解1≤a<2.故选:C.9.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9﹣9(x﹣1)>0B.7x+9﹣9(x﹣1)<8C.D.【分析】不到8棵意思是植树棵树在0棵和8棵之间,包括0棵,不包括8棵,关系式为:植树的总棵树≥(x﹣1)位同学植树的棵树,植树的总棵树<8+(x﹣1)位同学植树的棵树,把相关数值代入即可.【解答】解:(x﹣1)位同学植树棵树为9×(x﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵,∴可列不等式组为:,即.故选:C.10.若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为()A.0<(3x+7)﹣5(x﹣1)≤5 B.0<(3x+7)﹣5(x﹣1)<5C.0≤(3x+7)﹣5(x﹣1)<5 D.0≤(3x+7)﹣5(x﹣1)≤5【分析】若干个苹果分给x个小孩,根据如果每人分3个,那么余7个,共(3x+7)个苹果;如果每人分5个,那么最后一人分到的苹果是(3x+7)﹣5(x﹣1),可列出不等式组.【解答】解:若干个苹果分给x个小孩,0≤(3x+7)﹣5(x﹣1)<5.故选:C.二.填空题(共3小题)11.不等式组有解,m的取值范围是m<8 .【分析】根据不等式的解集是小大大小中间找,可得答案.【解答】解:由有解,得m<8.故答案为:m<8.12.不等式3x≤x+4的非负整数解是0,1,2 .【分析】首先求出不等式的解集,然后求得不等式的非负整数解.【解答】解:解不等式3x≤x+4得,x≤2,∴不等式3x≤x+4的非负整数解是0,1,2,故答案为:0,1,2.13.一次知识竞答比赛,共16道选择题,评选办法是;答对一道题得6分,答错一道题倒扣2分,不答则不扣分,王同学全部作答,如果王同学想成绩在60分以上,试写出他答对题x应满足的不等式6x﹣2(16﹣x)>60 .【分析】设他答对题x道,则答错(16﹣x)道,根据题意可得不等关系:答对题得分﹣答错题的分数>60,根据不等关系列出不等式即可.【解答】解:设他答对题x道,由题意得:6x﹣2(16﹣x)>60,故答案为:6x﹣2(16﹣x)>60.三.解答题(共3小题)14.解不等式≤+1,并把解表达在数轴上.【分析】去括号,移项,合并同类项,把化系数为1即可求出x的取值范围,再在数轴上表示出不等式的解集.【解答】解:去分母,得:3(x+1)≤(x﹣2)+6,去括号,得:3x+3≤x﹣2+6,移项,得:3x﹣x≤6﹣3﹣2,合并同类项,得:2x≤1,系数化为1,得:x≤,将不等式解集表示在数轴上如下:.15.市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:项目/品种单价(元/棵)成活率A80 92%B100 98%(1)若购树的总费用不超过82000元,则购A种树不少于多少棵?(2)当这批树的成活率不低于94%时,求购买这批树的最低费用为多少?【分析】(1)设购A种树不少于x棵,则B种树为(900﹣x)棵,根据两种树的总费用不超过82000元建立不等式,求出其解即可;(2)根据成活的棵数÷购进树种的总数=总成活率建立不等式求出购买A种树的数量范围,设购买这批树的费用为W元,建立W于y的一次函数关系就可以求出结论.【解答】解:(1)解设购A种树x棵.则B种树为(900﹣x)棵,由题意,得80x+100(900﹣x)≤82000x≥400答:购A种树不少于400棵;(2)设购买A种树y棵,则购买B种树为(900﹣y)棵,由题意,得92%y+98%(900﹣y)≥900×94%解得:y≤600设购买这批树的费用为W元,由题意,得W=80y+100(900﹣y),=﹣20y+90000,∴k=﹣20<0,∴W随y的增大而减小,∴y=600时,W最小=﹣20×600+90000=78000元.16.一个运输公司有甲、乙两种货车,两次满载的运输情况如下表:甲种货车辆数乙种货车辆数合计运货吨数第一次 2 4 18第二次 5 6 35(1)求甲、乙两种货车每次满载分别能运输多少吨货物;(2)现有一批重34吨的货物需要运输,而甲、乙两种货车运输的保养费用分别为80元/辆和40元/辆.公司打算由甲、乙两种货车共10辆来完成这次运输,为了使保养费用不超过700元,公司该如何安排甲、乙两种货车来完成这次运输任务.【分析】(1)设每辆甲种货车每次能运x吨货物,每辆乙种货车每次能运y吨货物,由第一次和第二次运输的货物的吨数可列二元一次方程组,解出方程组即可得解;(2)由保养费用不超过700元和运输货物不少于34吨可列出不等式组,求出整数解即可.【解答】(1)解:设甲车每辆运输x吨货物,乙车每辆运输y吨货物,由题意得:,解得:,答:甲车每辆运输4吨货物,乙车每辆运输2.5吨货物.(2)解:安排甲车a辆、乙车(10﹣a)辆,,解得:6≤a≤7.5,∵a为整数,∴a可以取的整数是6或7,答:公司可以安排甲车6辆、乙车4辆或甲车7辆、乙车3辆.。
第9章 不等式与不等式组【真题模拟练】(解析版)七年级数学下册单元复习(人教版)

第9章不等式与不等式组真题模拟练(时间:90分钟,分值:100分)一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2021•常德)若a b >,下列不等式不一定成立的是()A .55a b ->-B .55a b -<-C .a bc c>D .a c b c+>+【答案】C .【解析】解:A .∵a b >,∴55a b ->-,故本选项不符合题意;B .∵a b >,∴55a b -<-,故本选项不符合题意;C .∵a b >,∴当0c >时,a b c c >;当0c <时,a bc c<,故本选项符合题意;D .∵a b >,∴a c b c +>+,故本选项不符合题意;故选:C .2.(3分)(2021•河北)已知a b >,则一定有4a -□4b -,“□”中应填的符号是()A .>B .<C .D .=【答案】B .【解析】解:根据不等式的性质,不等式两边都乘同一个负数,不等号的方向改变.∴a b >,∴44a b -<-.故选:B .3.(3分)(2021•丽水)若31a ->,两边都除以3-,得()A .13a <-B .13a >-C .3a <-D .3a >-【答案】A .【解析】解:∵31a ->,∴不等式的两边都除以3-,得13a <-,故选:A .4.(3分)(2021•临沂)已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若0b >,则11a b<,其中正确的个数是()A .1B .2C .3D .4【答案】A .【解析】解:a b >,∴当0a >时,2a ab >,当0a =时,2a ab =,当0a <时,2a ab <,故①结论错误∴a b >,∴当||||a b >时,22a b >,当||||a b =时,22a b =,当||||a b <时,22a b <,故②结论错误;∵a b >,0b <,∴2a b b +>,故③结论错误;∵a b >,0b >,∴0a b >>,∴11a b<,故④结论正确;∴正确的个数是1个.故选:A .5.(3分)(2021•包头)定义新运算“?”,规定:?2a b a b =-.若关于x 的不等式?3x m >的解集为1x >-,则m 的值是()A .1-B .2-C .1D .2【答案】B .【解析】解∵?2a b a b =-,∴?2x m x m =-.∵?3x m >,∴23x m ->,∴23x m >+.∵关于x 的不等式?3x m >的解集为1x >-,∴231m +=-,∴2m =-.故选:B .6.(3分)(2021•临沂)不等式113x x -<+的解集在数轴上表示正确的是()A .B .C .D .【答案】B .【解析】解:去分母,得:133x x -<+,移项,得:331x x -<+,合并同类项,得:24x -<,系数化为1,得:2x >-,将不等式的解集表示在数轴上如下:故选:B .7.(3分)(2021•贵港)不等式组1231x x <-<+的解集是()A .12x <<B .23x <<C .24x <<D .45x <<【答案】C .【解析】解:不等式组化为123231x x x <-⎧⎨-<+⎩①②,由不等式①,得2x >,由不等式②,得4x <,故原不等式组的解集是24x <<,故选:C .8.(3分)(2021•南通)若关于x 的不等式组23120x x a +>⎧⎨-⎩恰有3个整数解,则实数a 的取值范围是()A .78a <<B .78a <C .78a <D .78a 【答案】C .【解析】解:23120x x a +>⎧⎨-⎩①②,解不等式①,得 4.5x >,解不等式②,得x a ,所以不等式组的解集是4.5x a <,∵关于x 的不等式组23120x x a +>⎧⎨-⎩恰有3个整数解(整数解是5,6,7),∴78a <,故选:C .9.(3分)(2021•湘潭)不等式组12480x x +⎧⎨-<⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】D .【解析】解:解不等式12x +,得:1x ,解不等式480x -<,得:2x <,则不等式组的解集为12x <,将不等式组的解集表示在数轴上如下:故选:D .10.(3分)(2021•永州)在一元一次不等式组21050x x +>⎧⎨-⎩的解集中,整数解的个数是()A .4B .5C .6D .7【答案】C .【解析】解:21050x x +>⎧⎨-⎩①②∵解不等式①得:0.5x >-,解不等式②得:5x ,∴不等式组的解集为0.55x -<,∴不等式组的整数解为0,1,2,3,4,5,共6个,故选:C .11.(3分)(2020•宜宾)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A .2种B .3种C .4种D .5种【答案】B .【解析】解:设购买A 型分类垃圾桶x 个,则购买B 型分类垃圾桶(6)x -个,依题意,得:500550(6)3100x x +-,解得:4x .∵x ,(6)x -均为非负整数,∴x 可以为4,5,6,∴共有3种购买方案.故选:B .12.(3分)(2020•重庆)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A .5B .4C .3D .2【答案】B .【解析】解:设还可以买x 个作业本,依题意,得:2.27640x ⨯+,解得:1410x .又∵x 为正整数,∴x 的最大值为4.故选:B .二、填空题(共10小题,满分30分,每小题3分)13.(3分)(2021•苏州)若21x +,且01y <<,则x 的取值范围为.【答案】102x <<.【解析】解:由21x y +=得21y x =-+,根据01y <<可知0211x <-+<,∴120x -<-<,∴102x <<.故答案为:102x <<.14.(3分)(2021•内江)已知非负实数a ,b ,c 满足123234a b c---==,设23S a b c =++的最大值为m ,最小值为n ,则nm的值为.【答案】1116.【解析】解:设123234a b ck ---===,则21a k =+,32b k =+,34c k =-,∴23212(32)3(34)414S a b c k k k k =++=++++-=-+.∵a ,b ,c 为非负实数,∴210320340k k k +⎧⎪+⎨⎪-⎩,解得:1324k-.∴当12k =-时,S 取最大值,当34k =时,S 取最小值.∴14()14162m =-⨯-+=,3414114n =-⨯+=.∴1116n m =.故答案为:1116.15.(3分)(2021•柳州)如图,在数轴上表示x 的取值范围是.【答案】2x >.【解析】解:在数轴上表示x 的取值范围是2x >.故答案为:2x >.16.(3分)(2021•眉山)若关于x 的不等式1x m +<只有3个正整数解,则m 的取值范围是.【答案】32m -<-.【解析】解:解不等式1x m +<得:1x m <-,根据题意得:314m <-,即32m -<-,故答案是:32m -<-.17.(3分)(2021•上海)不等式2120x -<的解集是.【答案】6x <.【解析】解:移项,得:212x <,系数化为1,得:6x <,18.(3分)(2021•丹东)不等式组213xx m-<⎧⎨>⎩无解,则m的取值范围.【答案】2m.【解析】解:213xx m-<⎧⎨>⎩①②,解不等式①得:2x<,解不等式②x m>,∵不等式组无解∴2m,故答案为:2m.19.(3分)(2021•荆门)关于x的不等式组()31213x ax x--<⎧⎪+⎨-⎪⎩恰有2个整数解,则a的取值范围是.【答案】56a<.【解析】解:解不等式()3x a--<,得:3x a>-,解不等式1213x x+-,得:4x,∵不等式组有2个整数解,∴233a-<,解得56a<.故答案为:56a<.20.(3分)(2020•攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有人进公园,买40张门票反而合算.【答案】33.【解析】解:设x人进公园,若购满40张票则需要:40(51)404160⨯-=⨯=(元),故5160x>时,解得:32x>,则当有32人时,购买32张票和40张票的价格相同,则再多1人时买40张票较合算;32133+=(人).则至少要有33人去世纪公园,买40张票反而合算.21.(3分)(2013•乌鲁木齐)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n 道题,则根据题意可列不等式.【答案】105(20)90n n -->.【解析】解:根据题意,得105(20)90n n -->.故答案为:105(20)90n n -->.22.(3分)(2020•宁夏)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为.【答案】6.【解析】解:设阅读过《西游记》的人数是a ,阅读过《水浒传》的人数是(b a ,b 均为整数),依题意,得:48a bb a >⎧⎪>⎨⎪<⎩,∵a ,b 均为整数∴47b <<,∴b 最大可以取6.故答案为:6.三、解答题(共5小题,满分34分)23.(6分)(2021•陕西)求不等式3125x -+>-的正整数解.【答案】见解析.【解析】解:去分母得:3510x -+>-,移项合并得:315x ->-,解得:5x <,则不等式的正整数解为1,2,3,4.24.(6分)(2017•呼和浩特)已知关于x 的不等式21122m mx x ->-.(1)当1m =时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】见解析.【解析】解:(1)当1m =时,不等式为2122x x->-,去分母得:22x x ->-,解得:2x <;(2)不等式去分母得:22m mx x ->-,移项合并得:(1)2(1)m x m +<+,当1m ≠-时,不等式有解,当1m >-时,不等式解集为2x <;当1m <-时,不等式的解集为2x >.25.(6分)(2021•兴安盟)解不等式组:21612152263x x x x+<+⎧⎪--⎨-⎪⎩,在数轴上表示解集并列举出非正整数解.【答案】见解析.【解析】解:解不等式216x x +<+得:5x <,解不等式12152263x x---得:2x -,将解集表示在数轴上如下:∴不等式组的解集为25x -<,∴不等式组的非正整数解为2-、1-、0.26.(8分)(2021•本溪)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?【答案】见解析.【解析】解:(1)设每本手绘纪念册的价格为x 元,每本图片纪念册的价格为y 元,依题意得:4135 52225 x yx y+=⎧⎨+=⎩,解得:3525 xy=⎧⎨=⎩.答:每本手绘纪念册的价格为35元,每本图片纪念册的价格为25元.(2)设可以购买手绘纪念册m本,则购买图片纪念册(40)m-本,依题意得:3525(40)1100m m+-,解得:10m.答:最多能购买手绘纪念册10本.27.(8分)(2021•黑龙江)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?【答案】见解析.【解析】解:(1)设购进1x万元,1件乙种农机具y万元.根据题意得:2 3.533x yx y+=⎧⎨+=⎩,解得:1.50.5 xy=⎧⎨=⎩,答:购进1件甲种农机具1.5万元,1件乙种农机具0.5万元.(2)设购进甲种农机具m件,购进乙种农机具(10)m-件,根据题意得:1.50.5(10)9.8 1.50.5(10)12m mm m+-⎧⎨+-⎩,解得:4.87m.∵m为整数.∴m可取5、6、7.∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件.11方案二:购买甲种农机具6件,乙种农机具4件.方案三:购买甲种农机具7件,乙种农机具3件.设总资金为w 万元.1.50.5(10)5w m m m =+-=+.∵10k =>,∴w 随着m 的减少而减少,∴5m =时,15510w =⨯+=最小(万元).∴方案一需要资金最少,最少资金是10万元.(3)设节省的资金用于再次购买甲种农机具a 件,乙种农机具b 件,由题意得:(1.50.7)(0.50.2)0.750.25a b -+-=⨯+⨯,其整数解:015a b =⎧⎨=⎩或37a b =⎧⎨=⎩,∴节省的资金全部用于再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件.方案二:购买甲种农机具3件,乙种农机具7件.。
人教版七年级数学下学期 第9章 不等式与不等式组 单元练习
A.3<m≤4
B.4≤m<5
C.4<m≤5
D.4≤m≤5
11.某企业决定购买 A,B 两种型号的污水处理设备共 8 台,具体情况如下表:
A型
B型
价格(万元/台)
12
10
月污水处理能力(吨/月)
200
160
经预算,企业最多支出 89 万元购买设备,且要求月处理污水能力不低 1380 吨,该企业
有哪些购买方案呢?为解决这个问题,设购买 A 型污水处理设备 x 台,所列不等式组正
③x﹣2x+1≤3x﹣3, x﹣2x﹣3x≤﹣3﹣1, ﹣4x≤﹣4, x≥1, 将解集表示在数轴上如下:
6/7
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
④解不等式 5x﹣6≤2(x+3),得:x≤4, 解不等式 ﹣1< ,得:x>0, 则不等式组的解集为 0<x≤4, 将解集表示在数轴上如下:
根据题意,得:
,
解得:
,
答:A、B 两种型号的空调的销售单价分别为 2500 元,2100 元;
(2)设采购 A 种型号的空调 a 台,则采购 B 型号空调(30﹣a)元, 根据题意,得:2000a+1700(30﹣a)≤54000, 解得:a≤10, 答:A 种型号的空调最多能采购 10 台. 15.解:去分母,得 2x≥30+5(x﹣2) 去括号,得 2x≥30+5x﹣10
D.5 个
A.a+1>﹣2b﹣1 B.﹣a<b
C.3a+6b<0
D. >﹣2
3.下列说法正确的是( ) A.x=﹣3 是不等式 x>﹣2 的一个解 B.x=﹣1 是不等式 x>﹣2 的一个解 C.不等式 x>﹣2 的解是 x=﹣3 D.不等式 x>﹣2 的解是 x=﹣1
七年级数学(下)第9章《不等式与不等式组》综合测试题含答案
A CDB 七年级数学(下)第9章《不等式与不等式组》综合测试题一、选择题:(每题3分,共30分)1.下列根据语句列出的不等式错误的是( ) A. “x 的3倍与1的和是正数”,表示为3x+1>0.B. “m 的15与n 的13的差是非负数”,表示为15m-13n ≥0. C. “x 与y 的和不大于a 的12”,表示为x+y ≤12a.D. “a 、b 两数的和的3倍不小于这两数的积”,表示为3a+b ≥ab. 2.给出下列命题:①若a>b,则ac 2>bc 2;②若ab>c,则b>ca;③若-3a>2a,则a<0;•④若a<b,则a-c<b-c,其中正确命题的序号是( )A.③④B.①③C.①②D.②④ 3.解不等式3x-32<2x-2中,出现错误的一步是( ) A.6x-3<4x-4 B.6x-4x<-4+3 C.2x<-1 D.x>-124.不等式12,39x x -<⎧⎨-≤⎩ 的解集在数轴上表示出来是( )5. .下列结论:①4a>3a;②4+a>3+a;③4-a>3-a 中,正确的是( ) A.①② B.①③ C.②③ D.①②③6.某足协举办了一次足球比赛,记分规则是:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场共积7分,则甲队可能平了( ) A.2场 B.3场 C.4场 D.5场7.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( ) A.3项B.4项C.5项D.6项8.若│a │>-a,则a 的取值范围是( ) A.a>0B.a ≥0C.a<0D.自然数9.不等式23>7+5x 的正整数解的个数是( ) A.1个B.无数个C.3个D.4个10.已知(x+3)2+│3x+y+m │= 0中,y 为负数,则m 的取值范围是( ) A.m>9 B.m<9C.m>-9D.m<-9二、填空题:(每题3分,共24分)11.若y=2x-3,当x______时,y ≥0;当x______时,y<5. 12.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______. 13.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.14. (2008苏州)6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元. 15.不等式组204060x x x +>⎧⎪->⎨⎪-<⎩的解集为________.16.小明用100元钱去购买笔记本和钢笔共30分,已知每本笔记本2元,•每枝钢笔5元,那么小明最多能买________枝钢笔. 17.如果不等式组212x m x m >+⎧⎨>+⎩的解集是x>-1,那么m 的值是_______.18.关于x 、y 的方程组321431x y a x y a +=+⎧⎨+=-⎩的解满足x>y,则a 的取值范围是_________.三、解答题:(共46分)19.解不等式(组)并把解集在数轴上表示出来(每题4分,共16分)(1)5(x+2)≥1-2(x-1) (2)273125y yy+>-⎧⎪-⎨≥⎪⎩(3)42x--3<522x+; (4)32242539x xx xx+>⎧⎪->-⎨⎪->-⎩20. (5分)k取何值时,方程23x-3k=5(x-k)+1的解是负数.21. (5分)某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A 处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费?22.(5分)(1)A、B、C三人去公园玩跷跷板,从下面的示意图(1)•中你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,从示意图(2)•中你能判断这四个人的轻重吗?23. (7分)某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?24.(8分) 2011年我市筹备30周年庆典,园林部门决定利用现有的3490盆甲种花卉和2950,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型盆乙种花卉搭配A B需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?参考答案一、1.D 2.A 3.D 4.A 5. C 6.C 7.B 8.B 9.C 10.A 二、11.x ≥32,x<4 ; 12.x<120; 13.a=1,b=-2; 14.8 ; 15.4<x<6 ; 16.13; 17.-3; 18.a>-6.三、19. (1)x ≥-1 (2)2≤y<8;(3)x>-3; (4)-2<x<3 20.k<1221.设走xm 需付车费y 元,n 为增加455m 的次数.∴y=2.8+0.5n,可得n=70.5=14 ∴2000+455×13<x ≤2000+455×14 即7915<x ≤8370,又7915<x-300≤8370 ∴8215<x ≤8670, 故8215<x ≤8370,CB 为2x ,且4107.5<2x≤4185, 4107.52000455-=4.63<5,41852000455-=4.8<5,∴n=5代入y=2.8+0.5×5=5.3(元) ∴从C 到B 需支付车费5.3元. 22.(1)C 的重量>A 的重量>B 的重量(2)从图中可得S>P,P+R>Q+S ,R>Q+(S-R),∴R>Q; 由P+R>Q+S ,S-P<R-Q ∴ (Q+R-P)-P<R-Q ∴P>Q, 同理R>S,∴R>S>P>Q23. 解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12, 解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案:(2)方案一所需运费 300×2 + 240×6 = 2040元; 方案二所需运费 300×3 + 240×5 = 2100元; 方案三所需运费 300×4 + 240×4 = 2160元. 所以王保应选择方案一运费最少,最少运费是2040元.24. 解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个 ②A 种园艺造型32个 B 种园艺造型18个 ③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元) 方案②需成本:328001896042880⨯+⨯=(元) 方案③需成本:338001796042720⨯+⨯=元∴应选择方案③,成本最低,最低成本为42720元。
人教版七年级数学下册第九章 不等式和不等式组单元同步练习(含答案)
第九章 不等式与不等式组一、单选题1.下列说法正确的是( )A .x =﹣3是不等式x >﹣2的一个解B .x =﹣1是不等式x >﹣2的一个解C .不等式x >﹣2的解是x =﹣3D .不等式x >﹣2的解是x =﹣12.下列说法:①0x =是不等式210x <-的一个解;①14x =不是不等式410x >-的解;①不等式210x -+<的解有无数个.其中正确的有( )A .0个B .1个C .2个D .3个3.用不等式表示图中的解集,其中正确的是( )A .x≥-2B .x≤-2C .x <-2D .x >-24.若x y >,则下列式子错误..的是( ). A .33x y ->- B .33x y > C .22x y -<- D .33x y ->- 5.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >6.已知点M(2m ﹣1,1﹣m)在第四象限,则m 的取值范围在数轴上表示正确的是( ) A . B .C .D .7.某次知识竞赛共有30道题,每一题答对得5分,答错或不答扣3分,小亮得分要超过70分,他至少要答对多少道题?如果设小亮答对了x 道题,根据题意列式得( ) A .()533070x x -+≥B .()533070x x +-≤C .()533070x x +->D .()533070x x -->8.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( ) A .m≤-1 B .m<-1 C .-1<m≤0 D .-1≤m<0 9.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆10.设m ,n 是实数,a ,b 是正整数,若()()m n a m n b ++…,则( ) A .m n a m n b ++++… B .m n a m n b +-+-„C .a b m n m n ++…D .m n m n a b++„二、填空题11.若x >0,y <0,则xy______0.12.若不等式(a -2)x <1,两边除以a -2后变成x <1a 2-,则a 的取值范围是______. 13.在二元一次方程128x y +=中,当0y <时,x 的取值范围是_____.14.已知关于x 的不等式组255332x t x t x +⎧->⎪⎪⎨+⎪->⎪⎩恰有三个整数解,则t 的取值范围为__________.三、解答题15.已知 4x -y =6,x -12y <2,求 x 的取值范围. 16.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:(2)一般地,如果a b c d<⎧⎨<⎩那么a c +_______b d +(用“<”或“>”填空).请你利用不等式的基本性质说明上述不等式的正确性17.某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.其中甲型机器每日生产零件106个,乙型机器每日生产零件60个,经调査,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元.(1)求甲、乙两种机器每台各多少万元?(2)如果工厂购买机器的预算资金不超过34万元,那么你认为该工厂有哪几种购买方案?(3)在(2)的条件下,如果要求该工厂购进的6台机器的日产量能力不能低于400个,那么为了节约资金.应该选择哪种方案?18.解不等式组并把解集在数轴上表示出来:4261139x xx x>-⎧⎪⎨-+≤⎪⎩①②19.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?答案1.B 2.D 3.D 4.D 5.C 6.A 7.D 8.A 9.C 10.D 11.<. 12.a>213.x>2 314.34 23t-≤<-15.①4x-y=6,①y=4x-6,①x-12y<2,①x-12(4x-6)<2,解得:x >1,即x 的取值范围是x >1.16.解:(1)4+231>+,3221--<-,故答案为>、<;(2)结论:a c b d +<+,理由如下:①a b <,①a c b c +<+,①c d <,①a c b d +<+.17.解:(1)设甲种机器每台x 万元,乙种机器每台y 万元.根据题意得:32312x y x y +=⎧⎨-=⎩,解得:75x y =⎧⎨=⎩. 答:甲种机器每台7万元,乙种机器每台5万元.(2)设购买甲种机器a 台,则购买乙种机器(6﹣a )台.根据题意:7a+5(6﹣a )≤34,解得a≤2.①a 是整数,a≥0,①a=0或1或2,①有三种购买方案:①购买甲种机器0台,乙种机器6台;①购买甲种机器1台,乙种机器5台;①购买甲种机器2台,乙种机器4台.(3)方案①所需费用为6×5=30(万元),日产量能力为60×6=360(个),舍去;方案①所需费用为7+5×5=32(万元),日产量能力为106+60×5=406(个);方案①所需费用为2×7+4×5=34(万元),日产量能力为106×2+60×4=452(个)①32<34,①选择购买方案①,即购买甲种机器1台,乙种机器5台.18.解不等式①得:x>-3,解不等式①得:x≤2,把不等式①①的解集在数轴上表示如下:所以不等式组的解集为:-3<x≤2.19.解:(1)设每台电脑机箱、液晶显示器的进价各是x,y元,根据题意得:1087000 254120x yx y+=⎧⎨+=⎩,解得:60800 xy=⎧⎨=⎩,答:每台电脑机箱、液晶显示器的进价各是60元,800元;(2)设该经销商购进电脑机箱m台,购进液晶显示器(50-m)台,根据题意得:60800(50)22240 10160(50)4100m mm m+-≤⎧⎨+-≥⎩,解得:24≤m≤26,因为m要为整数,所以m可以取24、25、26,从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台,①电脑箱:25台,液晶显示器:25台;①电脑箱:26台,液晶显示器:24台.①方案一的利润:24×10+26×160=4400,方案二的利润:25×10+25×160=4250,方案三的利润:26×10+24×160=4100,①方案一的利润最大为4400元.答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;①进25台电脑机箱,25台液晶显示器;①进26台电脑机箱,24台液晶显示器.第①种方案利润最大为4400元。
七年级下册《第9章不等式与不等式组》单元测试题(含答案解析)
秋人教版七年级下《第9章不等式与不等式组》单元测试题一.选择题(共10小题)1.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<02.已知x>2,则下列变形正确的是()A.﹣x<2B.若y>2,则x﹣y>0C.﹣x+2<1D.若y>2,则3.如果不等式组有解,那么m的取值范围是()A.m>5B.m≥5C.m<5D.m≤84.一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.5.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±36.下列各式不是一元一次不等式组的是()A.B.C.D.7.用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.8.不等式x﹣1<2的正整数解有()A.1个B.2个C.3个D.4个9.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4B.3C.2D.110.已知点M(1﹣a,3a﹣9)在第三象限,且它的坐标都是整数,则a的值是()A.0B.1C.2D.3二.填空题(共8小题)11.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=.12.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).13.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是.14.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是.15.请写出一个一元一次不等式.16.不等式x+3<2的解集是.17.不等式组的解集为.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买个.三.解答题(共7小题)19.利用数轴确定不等式组的解集.20.根据下列语句列不等式并求出解集:x与4的和不小于6与x的差.21.列式计算:求使的值不小于的值的非负整数x.22.阅读下面的材料:小明在学习了不等式的知识后,发现如下正确结论:若A﹣B>0,则A>B;若A﹣B=0,则A=B;若A﹣B<0,则A<B.下面是小明利用这个结论解决问题的过程:试比较与2的大小.解:∵=﹣2+=2>0,∴2.回答下面的问题:(1)请完成小明的解题过程;(2)试比较2(x2﹣3xy+4y2)﹣3与3x2﹣6xy+8y2﹣2的大小(写出相应的解答过程).23.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5+23+1﹣3﹣1﹣5﹣21﹣24+1(2)一般地,如果那么a+c b+d(用“<”或“>”填空).请你说明上述性质的正确性.24.定义新运算:对于任意有理数a,b,都有a*b=b(a﹣b)﹣b,等式右边是通常的加法、减法及乘法运算,例如:2*5=5×(2﹣5)﹣5=﹣20.(1)求2*(﹣5)的值;(2)若x*(﹣2)的值大于﹣6且小于9,求x的取值范围,并在如图所示的所画的数轴上表示出来.25.已知:关于x、y的方程组的解为非负数.(1)求a的取值范围;(2)化简|2a+4|﹣|a﹣1|;(3)在a的取值范围内,a为何整数时,使得2ax+3x<2a+3解集为x>1.秋人教版七年级下册《第9章不等式与不等式组》单元测试题参考答案与试题解析一.选择题(共10小题)1.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<0【分析】本题利用数与数轴的关系及数形结合解答.【解答】解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.【点评】本题主要是利用数形结合的思想,用排除法选项.2.已知x>2,则下列变形正确的是()A.﹣x<2B.若y>2,则x﹣y>0C.﹣x+2<1D.若y>2,则【分析】根据不等式的性质,可得答案.【解答】解:A、两边乘以不同的数,故A不符合题意;B、x,y无法比较,故B不符合题意;C、两边都除以﹣2,不等号的方向改变,故C符合题意;D、x,y无法比较,故D不符合题意;故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.如果不等式组有解,那么m的取值范围是()A.m>5B.m≥5C.m<5D.m≤8【分析】依据小大大小中间找,可确定出m的取值范围.【解答】解:∵不等式组有解,∴m<5.故选:C.【点评】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.4.一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:第一个不等式的解集为:x>﹣3;第二个不等式的解集为:x≤2;所以不等式组的解集为:﹣3<x≤2.在数轴上表示不等式组的解集为:.故选:C.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±3【分析】根据一元一次不等式的定义,|m|﹣3=1,m+4≠0,分别进行求解即可.【解答】解:根据题意|m|﹣3=1,m+4≠0解得|m|=4,m≠﹣4所以m=4.故选:A.【点评】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.6.下列各式不是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式组的定义进行解答.【解答】解:A、该不等式组符合一元一次不等式组的定义,故本选项错误;B、该不等式组符合一元一次不等式组的定义,故本选项错误;C、该不等式组中含有2给未知数,不是一元一次不等式组,故本选项正确;D、该不等式组符合一元一次不等式组的定义,故本选项错误;故选:C.【点评】本题考查了一元一次不等式组的定义,每个不等式中含有同一个未知数且未知数的次数是1的不等式组是一元一次不等式组.7.用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.【分析】抓住题干中的“不小于﹣7”,是指“大于”或“等于﹣7”,由此即可解决问题.【解答】解:根据题干“a的一半”可以列式为:a;“不小于﹣7”是指“大于等于﹣7”;那么用不等号连接起来是:a≥﹣7.故选:A.【点评】此题考查了由实际问题抽象一元一次不等式的知识,属于基础题,理解“不小于”的含义是解答本题的关键.8.不等式x﹣1<2的正整数解有()A.1个B.2个C.3个D.4个【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得不等式的解集,继而可得其正整数解.【解答】解:移项,得:x<2+1,合并同类项,得:x<3,所以不等式的正整数解为1、2,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.9.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4B.3C.2D.1【分析】首先设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意可得不等关系:甲饮料的花费+乙饮料的花费≤50元,根据不等关系可列出不等式,再求出整数解即可.【解答】解:设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意得:7x+4(10﹣x)≤50,解得:x≤,∵x为整数,∴x=0,1,2,3,则小红最多能买甲种饮料的瓶数是3瓶.故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,找出合适的不等关系,设出未知数,列出不等式.10.已知点M(1﹣a,3a﹣9)在第三象限,且它的坐标都是整数,则a的值是()A.0B.1C.2D.3【分析】在第三象限内,那么横坐标小于0,纵坐标小于0.而后求出整数解即可.【解答】解:∵点M在第三象限.∴,解得1<a<3,因为点M的坐标为整数,所以a=2.故选:C.【点评】主要考查了平面直角坐标系中第三象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).二.填空题(共8小题)11.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=﹣4.【分析】解答此题要理解“≥”“≤”的意义,判断出a和b的最值即可解答.【解答】解:因为x≥2的最小值是a,a=2;x≤﹣6的最大值是b,则b=﹣6;则a+b=2﹣6=﹣4,所以a+b=﹣4.故答案为:﹣4.【点评】解答此题要明确,x≥2时,x可以等于2;x≤﹣6时,x可以等于﹣6.12.若a<b,则﹣5a>﹣5b(填“>”“<”或“=”).【分析】根据不等式的性质,在不等式的两边同时乘以一个负数,不等号的方向改变,即可得出答案.【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.【点评】此题考查了不等式的性质,掌握不等式的基本性质是本题的关键,不等式的基本性质是:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.13.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是a<3.【分析】根据不等式的性质可得a﹣3<0,由此求出a的取值范围.【解答】解:∵(a﹣3)x>1的解集为x<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故答案为:a<3.【点评】本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a﹣3小于0.14.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是﹣3.【分析】根据去括号、移项、合并同类项,可得不等式的解集,根据不等式解集的表示方法,可得答案.【解答】解:去括号,得3x+1>2x﹣2,移项、合并同类项,得x>﹣3,故答案为:﹣3.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来>或≥,向右画;<或≤,向左画,注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.请写出一个一元一次不等式x﹣1>0(答案不唯一).【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.【解答】解:一元一次不等式有:x﹣1>0.故答案为:x﹣1>0(答案不唯一).【点评】本题考查不等式的定义;写出的不等式只需符合条件,越简单越好.16.不等式x+3<2的解集是x<﹣1.【分析】不等式经过移项即可得到答案.【解答】解:x+3<2,移项得:x<﹣1,即不等式的解集为:x<﹣1,故答案为:x<﹣1.【点评】本题考查解一元一次不等式,熟悉解一元一次不等式的步骤是解题的关键.17.不等式组的解集为6<x<9.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式8x>48,得:x>6,解不等式2(x+8)<34,得:x<9,则不等式组的解集为6<x<9,故答案为:6<x<9.【点评】本题考查了不等式组的解法,求不等式组中每个不等式的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买16个.【分析】设购买篮球x个,则购买足球(50﹣x)个,根据总价=单价×购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.【解答】解:设购买篮球x个,则购买足球(50﹣x)个,根据题意得:80x+50(50﹣x)≤3000,解得:x≤.∵x为整数,∴x最大值为16.故答案为:16.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题(共7小题)19.利用数轴确定不等式组的解集.【分析】先分别求出各不等式的解集,在数轴上表示出来,即可得出不等式组的解集.【解答】解:由①得x≥﹣2由②得x<1在数轴上表示不等式①、②的解集所以,不等式组的解集是﹣2≤x<1【点评】本题考查了解一元一次不等式组:先分别解几个不等式,然后把它们的解集的公共部分作为原不等式的解集;按照“同大取大,同小取小,大于小的小于大的取中间,大于小的小于大的为空集”.也考查了利用数轴表示不等式的解集.20.根据下列语句列不等式并求出解集:x与4的和不小于6与x的差.【分析】与4的和不小于6与x的差.可表示为x+4≥6﹣x,由此可得出不等式,然后求解即可.【解答】解:根据题意可得:x+4≥6﹣x,解得:x≥1.【点评】本题考查了由实际问题抽象一元一次不等式的知识及解一元一次不等式的知识,属于基础题,注意掌握解不等式的法则.21.列式计算:求使的值不小于的值的非负整数x.【分析】根据题意列出不等式后,依据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1求得其解集,继而可得答案.【解答】解:≥,3(x+1)+4≥2(3x﹣1),3x+3+4≥6x﹣2,3x﹣6x≥﹣2﹣3﹣4,﹣3x≥﹣9,x≤3,则符合条件的非负整数有0、1、2、3.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变22.阅读下面的材料:小明在学习了不等式的知识后,发现如下正确结论:若A﹣B>0,则A>B;若A﹣B=0,则A=B;若A﹣B<0,则A<B.下面是小明利用这个结论解决问题的过程:试比较与2的大小.解:∵=﹣2+=2>0,∴>2.回答下面的问题:(1)请完成小明的解题过程;(2)试比较2(x2﹣3xy+4y2)﹣3与3x2﹣6xy+8y2﹣2的大小(写出相应的解答过程).【分析】(1)根据示例可知,一个式子减去另一个式子,如果结果大于0,则前面的式子大于后边的式子,故>2,(2)用2(x2﹣3xy+4y2)﹣3减去3x2﹣6xy+8y2﹣2,将得到的式子化简,发现总<0,则2(x2﹣3xy+4y2)﹣3<3x2﹣6xy+8y2﹣2.【解答】解:(1)根据题意可知:若A﹣B>0,则A>B,∵﹣(2﹣)>0,∴>2答案为:>,(2)2(x2﹣3xy+4y2)﹣3﹣(3x2﹣6xy+8y2﹣2)=2x2﹣6xy+8y2﹣3﹣3x2+6xy﹣8y2+2=﹣x2﹣1.∵﹣x2﹣1<0,∴2(x2﹣3xy+4y2)﹣3﹣(3x2﹣6xy+8y2﹣2)<0.∴2(x2﹣3xy+4y2)﹣3<3x2﹣6xy+8y2﹣2.【点评】本题考查不等式的性质和实数的大小比较,掌握比较实数大小的方法是解决本题的关键.23.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5+2>3+1﹣3﹣1>﹣5﹣21﹣2<4+1(2)一般地,如果那么a+c>b+d(用“<”或“>”填空).请你说明上述性质的正确性.【分析】(1)根据不等式的性质即可判断;(2)利用(1)中规律即可判断,根据不等式的性质即可证明;【解答】解:(1)5+2>3+1,﹣3﹣1>﹣5﹣2,1﹣2<4+1;故答案为>,>,<;(2)结论:a+c>b+d.理由:因为a>b,所以a+c>b+c,因为c>d,所以b+c>b+d,所以a+c>b+d.故答案为>.【点评】本题考查不等式的性质、解题的关键是熟练掌握不等式的性质解决问题,属于中考常考题型.24.定义新运算:对于任意有理数a,b,都有a*b=b(a﹣b)﹣b,等式右边是通常的加法、减法及乘法运算,例如:2*5=5×(2﹣5)﹣5=﹣20.(1)求2*(﹣5)的值;(2)若x*(﹣2)的值大于﹣6且小于9,求x的取值范围,并在如图所示的所画的数轴上表示出来.【分析】(1)根据新定义列式计算可得;(2)根据新定义得出x*(﹣2)=﹣2x﹣2,由“x*(﹣2)的值大于﹣6且小于9”列出关于x的不等式组,解之可得.【解答】解:(1)2*(﹣5)=﹣5×[2﹣(﹣5)]﹣(﹣5)=﹣5×(2+5)+5=﹣35+5=﹣30;(2)x*(﹣2)=﹣2×(x+2)+2=﹣2x﹣4+2=﹣2x﹣2,由题意可得,解得:﹣5.5<x<2,不等式组的解集在数轴上表示为:【点评】本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.25.已知:关于x、y的方程组的解为非负数.(1)求a的取值范围;(2)化简|2a+4|﹣|a﹣1|;(3)在a的取值范围内,a为何整数时,使得2ax+3x<2a+3解集为x>1.【分析】(1)先解方程组,根据解为非负数,得出a的取值范围;(2)根据a的取值范围化简|2a+4|﹣|a﹣1|即可;(3)根据2ax+3x<2a+3解集为x>1,得出a的值即可.【解答】解:(1)由得,,∵方程组的解为非负数,∴,得﹣2≤a≤﹣1;(2)∵﹣2≤a≤﹣1,∴|2a+4|﹣|a﹣1|=2a+4﹣(1﹣a)=2a+4﹣1+a=3a+3;(3)∵2ax+3x<2a+3解集为x>1,∴2a+3<0,∵﹣2≤a≤﹣1,∴若a为整数,则a=﹣2,即在a的取值范围内,a=﹣2时,使得2ax+3x<2a+3解集为x>1.【点评】本题考查一元一次不等式的整数解、绝对值、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
第9章 不等式与不等式组
一.选择题(共10小题)
1.已知a<b,下列不等式成立的是( )
A.a+2<b+1 B.﹣3a>﹣2b C.m﹣a>m﹣b D.am2<bm2
2.设a,b,c,d都是整数,且a<2b,b<3c,c<4d,d<20,则a的最大值是( )
A.480 B.479 C.448 D.447
3.满足﹣2<x≤1的数在数轴上表示为( )
A. B.
C. D.
4.若关于x、y的二元一次方程组的解满足不等式2x﹣3y≥a,且m的取值范
围如图所示,则a的值为( )
A.﹣2 B.2 C.6 D.﹣6
5.我们知道不等式的解是x>﹣5,现给出另一个不等式<
+1,它的解是( )
A.x> B.x< C.x>﹣2 D.x<﹣2
6.整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),
且使得关于x的不等式组无解,则所有满足条件的a的和为( )
A.9 B.16 C.17 D.30
7.已知不等式组的解集为{x|﹣2<x<3},则(a+b)2019的值为( )
A.﹣1 B.2019 C.1 D.﹣2019
8.不等式组的解集是3<x<a+2,则a的取值范围是( )
A.a>1 B.a≤3 C.a<1或a>3 D.1<a≤3
2
9.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一
次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是( )
A.﹣2 B.2 C.6 D.10
10.开发区某物流公司计划调用甲、乙两种型号的物流货车共15辆,运送360件A种货物
和396件B种货物.已知甲种物流货车每辆最多能载30件A种货物和24件B种货物,
乙种物流货车每辆最多能载20件A种货物和30件B种货物.设安排甲种物流货车x辆,
你认为下列符合题意的不等式组是( )
A.
B.
C.
D.
二.填空题(共5小题)
11.不等式a(x﹣2)>3(a﹣x)的解集为x>2,则a的值为 .
12.若不等式组没有解,则m的取值范围是 .
13.关于x的不等式组的所有整数解的和是 .
14.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两
种产品50件.生产一件A产品需要甲种原料9千克,乙种原料3千克;生产一件B产品,
需要甲种原料4千克,乙种原料10千克.设生产x件A种产品,x应满足的不等式组
是: .
15.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,
若min{2x+1,1}=x,则x= .
三.解答题(共6小题)
3
16.解不等式:﹣≥1,并把它的解集在数轴上表示出来.
17.解不等式组,并把解集在数轴上表示出来.
18.已知方程组的解满足x为非正数,y为负数.
(1)求m的取值范围;
(2)化简:|m﹣3|﹣|m+2|;
(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.
19.对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和
乘法运算.例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,
且解集中有两个整数解,求a的取值范围.
20.2019年“519(我要走)全国徒步日(江夏站)”暨第六届“环江夏”徒步大会5月19
日在美丽的花山脚下隆重举行.组公(活动主办方)为了奖励活动中取得了好成绩的参
赛选手,计划购买共100件的甲、乙两纪念品发放其中甲种纪念品每件售价120元,乙
种纪念品每件售价80元,
(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多
少件?
(2)设购买甲种纪念品m件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2
倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种
方案所需总费用最少?最少总费用是多少元?
21.在精准扶贫中,李师傅在扶贫工作者的指导下,计划用8个大棚种植香瓜和甜瓜,根据
种植经验及市场情况,他打算两个品种同时种,一个大棚只种一个品种的瓜并预测明年
两种瓜的产量、销售价格及成本如下:
品种项目 产量(斤/每棚) 销售价(元/每斤) 成本(元/棚)
香瓜 2000 12 8000
甜瓜 4500 3 5000
根据以上信息,求李师傅至少种植多少个大棚的香瓜,才能使他获得的利润不低于10万
元.
4
答案
一.选择题(共10小题)
1.
C.
2.
D.
3.
B.
4.
A.
5.
A.
6.
C.
7.
A.
8.
D.
9.
B.
10.
A.
二.填空题(共5小题)
11.
2.
12.
m≥2.
13.
5
9.
14.
.
15.
﹣1或1.
三.解答题(共6小题)
16.解:﹣≥1,
2(2x﹣1)﹣3(5x+1)≥6,
4x﹣2﹣15x﹣3≥6,
﹣11x≥11,
x≤﹣1,
在数轴上表示为.
17.解:,
由①得:x<2,
由②得:x≥﹣3,
∴不等式组的解集是﹣3≤x<2,
在数轴上表示为.
18.解:(1)解原方程组得:,
∵x≤0,y<0,
∴,
解得﹣2<m≤3;
(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;
(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,
∵x>1,∴
6
2m+1<0,
∴m<﹣,
∴﹣2<m<﹣,
∴m=﹣1.
19.解:由题意得,a<2x﹣2﹣x+3<7,
则a﹣1<x<6,
∵解集中有两个整数解,
∴3≤a﹣1<4,
故答案为:4≤a<5.
20.解:(1)设甲种纪念品购买了x件,乙种纪念品购买了(100﹣x)件,
根据题意得120x+80(100﹣x)=9600,
解得x=40,
则100﹣x=60,
答:设甲种纪念品购买了40件,乙种纪念品购买了60件;
(2)设购买甲种纪念品m件,乙种奖品购买了(100﹣m)件,
根据题意,得 ,
解得 ≤m≤35,
∵m为整数,
∴m=34或m=35,
当m=34时,100﹣m=66;当m=35时,100﹣m=65;
答:组委会有2种不同的购买方案:甲种纪念品34件,乙种奖品购买了66件或甲种纪
念品35件,乙种奖品购买了65件.
21.解:设种植香瓜的大棚x个,才能使他获得的利润不低于10万元,
可得:(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)≥100000,
解得:x,
x取整数,
所以至少要种植5个大棚的香瓜,才能使他获得的利润不低于10万元.
7