动量守恒定律单元测试题(2)

合集下载

【单元练】(必考题)高中物理选修1第一章【动量守恒定律】经典测试题(答案解析)

【单元练】(必考题)高中物理选修1第一章【动量守恒定律】经典测试题(答案解析)

一、选择题1.如图所示,体积相同的匀质小球A和B并排悬挂,静止时悬线平行,两球刚好接触,悬点到球心的距离均为L,B球悬线右侧有一固定的光滑小铁钉P,O2P=3 4L。

现将A向左拉开60°角后由静止释放,A到达最低点时与B发生弹性正碰,碰后B做圆周运动恰能通过P点的正上方。

已知A的质量为m,取3=1.73,5=2.24,则B的质量约为()A.0.3m B.0.8mC.m D.1.4m B解析:B设A碰前的速度大小为v,碰撞后A、B球的速度分别为v1、v2,B通过最高点时的速度大小为v3,根据机械能守恒定律有mg(L–L cos60°)=12mv2得gLA、B发生弹性正碰,则mv=mv1+m2v212mv2=1221mv+12222m v得v2=22mvm m碰后B上摆到最高点的过程,有12222m v=m2g12L+12223m vB恰好能通过最高点,则m2g=m2234vL解得m2=(455–1)m≈0.8m故选B。

2.假设将来某宇航员登月后,在月球表面完成下面的实验:在固定的竖直光滑圆轨道内部最低点静止放置一个质量为m 的小球(可视为质点),如图所示,当给小球一瞬时冲量I 时,小球恰好能在竖直平面内做完整的圆周运动。

已知圆轨道半径为r ,月球的半径为R ,则月球的第一宇宙速度为( )A 5I Rm rB I R m rC I r m RD 5I rm RA解析:A小球获得瞬时冲量I 的速度为v 0,有00I p mv ∆=-=而小球恰好通过圆周的最高点,满足只有重力提供向心力2v mg m r=从最低点到最高点由动能定理可知220112=22mg r mv mv -⨯-解得22=5I g rm 月球的近地卫星最小发射速度即为月球的第一宇宙速度,满足21=v m g m R''解得15I Rv m r=故A 正确,BCD 错误。

故选A 。

3.人和冰车的总质量为M ,另一木球质量为m ,且M ∶m =31∶2。

《动量守恒定律》单元测试题含答案

《动量守恒定律》单元测试题含答案

《动量守恒定律》单元测试题含答案 一、动量守恒定律 选择题1.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。

已知物块与木板之间的动摩擦因数为μ,整个过程中弹簧的形变均在弹性限度内,则( )A .木板先加速再减速,最终做匀速运动B .整个过程中弹簧弹性势能的最大值为204()Mmv M m + C .整个过程中木板和弹簧对物块的冲量大小为0Mmv M m+ D .弹簧压缩到最短时,物块到木板最右端的距离为202()Mv M m gμ+ 2.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+ C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++ 3.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D .小球离开弹簧后能追上圆弧槽4.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。

已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。

《动量守恒定律》单元测试题(含答案)

《动量守恒定律》单元测试题(含答案)

《动量守恒定律》单元测试题(含答案)一、动量守恒定律 选择题 1.如图所示,质量均为m 的A 、B 两物块用轻弹簧连接,放在光滑的水平面上,A 与竖直墙面接触,弹簧处于原长,现用向左的推力缓慢推物块B ,当B 处于图示位置时静止,整个过程推力做功为W ,瞬间撤去推力,撤去推力后( )A .当A 对墙的压力刚好为零时,物块B 的动能等于WB .墙对A 物块的冲量为4mWC .当B 向右运动的速度为零时,弹簧的弹性势能为零D .弹簧第一次伸长后具有的最大弹性势能为W2.如图所示,在光滑的水平面上放有一质量为M 的物体P ,物体P 上有一半径为R 的光滑四分之一圆弧轨道, 现让质量为m 的小滑块Q (可视为质点)从轨道最高点由静止开始下滑至最低点的过程中A .P 、Q 组成的系统动量不守恒,机械能守恒B .P 移动的距离为m M m+R C .P 、Q 组成的系统动量守恒,机械能守恒 D .P 移动的距离为M m M +R 3.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。

已知物块与木板之间的动摩擦因数为μ,整个过程中弹簧的形变均在弹性限度内,则( )A .木板先加速再减速,最终做匀速运动B .整个过程中弹簧弹性势能的最大值为204()Mmv M m + C .整个过程中木板和弹簧对物块的冲量大小为0Mmv M m+D .弹簧压缩到最短时,物块到木板最右端的距离为202()Mv M m g μ+ 4.如图所示,在光滑的水平杆上套有一个质量为m 的滑环.滑环上通过一根不可伸缩的轻绳悬挂着一个质量为M 的物块(可视为质点),绳长为L .将滑环固定时,给物块一个水平冲量,物块摆起后刚好碰到水平杆;若滑环不固定时,仍给物块以同样的水平冲量,则( )A .给物块的水平冲量为2M gLB .物块上升的最大高度为mL m M+ C .物块上升最高时的速度为2m gL D .物块在最低点时对细绳的拉力3Mg5.如图所示,一木块静止在长木板的左端,长木板静止在水平面上,木块和长木板的质量相等均为M ,木块和长木板之间、长木板和地面之间的动摩擦因数都为μ。

《动量守恒定律》单元测试题含答案

《动量守恒定律》单元测试题含答案

《动量守恒定律》单元测试题含答案一、动量守恒定律 选择题1.如图所示,在同一水平面内有两根足够长的光滑水平平行金属导轨,间距为L =20cm ,电阻不计,其左端连接一恒定电源,电动势为E ,内阻不计,两导轨之间交替存在着磁感应强度为B =1T 、方向相反的匀强磁场,同向磁场的宽度相同。

闭合开关后,一质量为m =0.1kg 、接入电路的阻值为R =4Ω的导体棒恰能从磁场左边界开始垂直于导轨并与导轨接触良好一直运动下去,导体棒运动到第一个磁场的右边界时有最大速度,为5m/s ,运动周期为T =21s ,则下列说法正确的是( )A .E =1VB .导体棒在第偶数个磁场中运动的时间为2T C .相邻两磁场的宽度差为5 mD .导体棒的速度随时间均匀变化2.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m l =,现有质量20.2kg m =可视为质点的物块,以水平向右的速度0v 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数0.5μ=,取2g=10m/s ,则( )A .物块滑上小车后,系统动量守恒和机械能守恒B .增大物块与车面间的动摩擦因数,摩擦生热不变C .若0 2.5m/s v =,则物块在车面上滑行的时间为0.24sD .若要保证物块不从小车右端滑出,则0v 不得大于5m/s3.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是( )A .人在船上走动过程中,人的动能是船的动能的8倍B .人在船上走动过程中,人的位移是船的位移的9倍C .人走动时,它相对水面的速度大于小船相对水面的速度D .人突然停止走动后,船由于惯性还会继续运动一小段时间4.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )A .物块与木板相对静止时的速率为1m/sB .物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J5.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。

高中物理选择性必修一第一章 动量守恒定律 单元测试(含答案)

高中物理选择性必修一第一章  动量守恒定律 单元测试(含答案)

高中物理选择性必修一第一章一、选择题(1-7单选题,8-10多选题)1.2024年春天,中国航天科技集团研制的50kW级双环嵌套式霍尔推力器,成功实现点火并稳定运行,标志着我国已跻身全球嵌套式霍尔电推进技术领先行列。

嵌套式霍尔推力器不用传统的化学推进剂,而是使用等离子体推进剂,它的一个显著优点是“比冲”高。

比冲是航天学家为了衡量火箭引擎燃料利用效率引入的一个物理量,英文缩写为I sp,是单位质量的推进剂产生的冲量,比冲这个物理量的单位应该是( )A.m/s B.kg⋅m/s2C.m/s2D.N⋅s2.物理在生活和生产中有广泛应用,以下实例没有利用反冲现象的是( )A.乌贼喷水前行B.电风扇吹风C.火箭喷气升空D.飞机喷气加速3.如图所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱。

关于上述过程,下列说法中正确的是( )A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量大小不相等4.人从高处跳到较硬的水平地面时,为了安全,一般都是让脚尖先触地且着地时要弯曲双腿,这是为了( )A.减小地面对人的冲量B.减小人的动量的变化C.增加人对地面的冲击时间D.增大人对地面的压强5.在光滑的水平面上,质量为m1的小球以速率v0向右运动。

在小球的前方有一质量为m2的小球处于静止状态,如图所示,两球碰撞后粘合在一起,两球继续向右运动,则两球碰撞后的速度变为( )A.仍为v0B.m1v0(m1+m2)C.m2v0(m1+m2)D.v0(m1+m2)6.重量为mg的物体静止在水平地面上,物体与地面之间的最大静摩擦力为F m,从0时刻开始,物体受到水平拉力F的作用,F与时间t的关系如图a所示,为了定性地表达该物体的运动情况,在图b所示的图象中,纵轴y应为该物体的()A.动量大小P B.加速度大小a C.位移大小xD.动能大小E k7.一质量为0.1kg的小球自t=0时刻从水平地面上方某处自由下落,小球与地面碰后反向弹回,不计空气阻力,也不计小球与地面弹性碰撞的时间,小球距地面的高度h与运动时间t关系如图所示,取g=10m/s2.则()A .小球第一次与地面弹性碰撞后的最大速度为10m /sB .小球与地面弹性碰撞前后动量守恒C .小球第一次与地面弹性碰撞时机械能损失了19JD .小球将在t =6s 时与地面发生第四次弹性碰撞8.如图所示,质量为M 的带有四分之一光滑圆弧轨道的小车静止置于光滑水平面上,圆弧的半径为R(未知),一质量为m 的小球以速度v 0水平冲上小车,恰好达到圆弧的顶端,此时M 向前走了0.25R ,接着小球又返回小车的左端。

《动量守恒定律》测试题(含答案)

《动量守恒定律》测试题(含答案)

... .jz.第16章《动量守恒定律》测试题一、单选题(每小题只有一个正确答案)1.质量为m ,速度为v 的棒球,与棒相互作用后以被原速率弹回,则小球动量的变化量为(取作用前的速度方向为正方向)()A .0B .-2mvC .2mvD .mv2.相向运动的A 、B 两辆小车相撞后,一同沿A 原来的方向前进,则碰撞前的瞬间( )A .A 车的动量一定大于B 车的速度 B .A 车的速度一定大于B 车的动量C .A 车的质量一定大于B 车的质量D .A 车的动能一定大于B 车的动能3.将质量为m 的铅球以大小为v 0、仰角为θ的初速度抛入一个装着沙子的总质量为m '的静止小车中,如图所示,小车与地面间的摩擦力不计,则最后铅球与小车的共同速度等于()A .0cos mv m m θ+'B .0sin mv m m θ+'C .0mv m m +'D .0tan mv m m θ+' 4.物体在恒定合力F 作用下做直线运动,在1t ∆内速度由0增大到1E ,在2t ∆内速度由v 增大到2v.设2E 在1t ∆内做功是1W ,冲量是1I ;在2t ∆内做功是2W ,冲量是2I ,那么( )A .1212I I W W <=,B .1212I I W W <<,C .1212,I I W W ==D .1212I I W W =<,5.沿光滑水平面在同一条直线上运动的两物体A 、B 碰撞后以共同的速度运动,该过程的位移—时间图象如图所示。

则下列判断错误的是()A .碰撞前后A 的运动方向相反B .A 、B 的质量之比为1:2C .碰撞过程中A 的动能变大,B 的动能减小D .碰前B 的动量较大6.如图所示,质量M=3kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动。

质量m=2kg 的小球(视为质点)通过长L=0.5m 的轻杆与滑块上的光滑轴O 连接,开始时滑块静止,轻杆处于水平状态,现让小球从静止开始释放,取g=10m/s 2,下列说法正确的的是()A.小球m从初始位置到第一次到达最低点的过程中,轻杆对小球的弹力一直沿杆方向B.小球m从初始位置到第一次到达最低点时,小球m 速度大小为C.小球m从初始位置到第一次到达最低点的过程中,滑块M在水平轨道上向右移动了0.2mD.小球m上升到的最高位置比初始位置低7.蹦极是一项刺激的极限运动,如图,运动员将一端固定的弹性长绳绑在腰或踝关节处,从几十米高处跳下(忽略空气阻力)。

【单元练】(必考题)高中物理选修1第一章【动量守恒定律】复习题(含答案解析)

【单元练】(必考题)高中物理选修1第一章【动量守恒定律】复习题(含答案解析)

一、选择题1.一质量为m 的铁锤,以速度v 竖直打在木桩上,经过t ∆时间后停止,则在打击时间内,铁锤对木桩的平均冲力的大小是( ) A . mg t ∆ B .mv t∆ C .mvmg t+∆ D .mvmg t-∆ C 解析:C对铁锤应用动量定理,设木桩对铁锤的平均作用力为F ,以向上为正方向,则有()0()F mg t mv -∆=--解得mvmg F t+∆=由牛顿第三定律,铁锤对木桩的平均冲力大小为mvmg t+∆ 故选C 。

2.人从高处跳到较硬的水平地面时,为了安全,一般都是让脚尖先触地且着地时要弯曲双腿,这是为了( ) A .减小地面对人的冲量 B .减小人的动量的变化 C .增加地面对人的冲击时间 D .增大人对地面的压强C解析:C设人的质量为m ,着地前速度大小为v ,着地时间为t ,地面对人冲量大小为I ,作用力大小为F ,取竖直向下方向为正方向;AB .人着地过程,人的动量从一定值减到零,动量的变化量不变,根据动量定理得0mgt I mv -=-得到地面对人的冲量I mgt mv =+m 、v 一定,t 延长,则I 增大,故AB 错误;C .让脚尖先触地且着地时要弯曲双腿,增加地面对人的冲击时间,故C 正确;D .根据动量定理得0mgt Ft mv -=-得到mv F mg t=+t 增大,则F 减小,人对地面的压强减小,故D 错误; 故选C 。

3.如图所示,将一光滑的质量为4m 半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨有一个质量为m 的物块,今让一质量也为m 的小球自左侧槽口A 的正上方高R 处从静止开始落下,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次到最低点B 的运动过程中,槽的支持力对小球不做功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为4:1C .小球第一次从C 点滑出后将做竖直上抛运动D .物块最终的动能为15mgRD 解析:DA .小球从A 到B 的过程中,小球对半圆槽的压力方向向左下方,所以半圆槽要向左推动物块一起运动,因而小球参与了两个运动,一个是沿半圆槽的圆周运动,另一个是与半圆槽一起向左运动,小球所受支持力方向与速度方向并不垂直,而是大于90,故槽的支持力对小球做负功,故A 错误;B .由于小球、半圆槽和物块组成的系统在水平方向不受外力,故球、半圆槽和物块在水平方向动量守恒,取向右为正,则有12(4)0mv m m v -+=解得12:5:1v v =,故B 错误;CD .小球从A 到B 的过程,根据系统机械能守恒得2212112(4)22mg R mv m m v =++联立C 选选项中式子解得1103gR v =211053gR v =当小球从B 到C 的过程中,小球对半圆槽有向右下方的压力,半圆槽开始减速,与物块分离,则物块最终以211053gRv =221215k mgRE mv ==由于小球、半圆槽和物块组成的系统在水平方向不受外力,故球、半圆槽和物块在水平方向动量守恒,小球第一次到达C 点时,因为小物块速度不为0,则小球和半圆槽的水平速度也不可能为0,故小球第一次从C 点滑出后不可能做竖直上抛运动,故C 错误,D 正确。

人教版高中物理选修一第一章《动量守恒定律》测试题(答案解析)(2)

人教版高中物理选修一第一章《动量守恒定律》测试题(答案解析)(2)

一、选择题1.(0分)[ID :127077]如图所示,一块质量为0.5kg 的橡皮泥从距小车上表面1.25m 高处由静止下落,恰好落入质量为2kg 、速度为2.5m/s 沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取g =10m/s 2,不计空气阻力,下列说法正确的是( )A .橡皮泥下落的时间为0.4sB .橡皮泥与小车一起在水平地面上运动的速度大小为2m/sC .橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒D .整个过程中,橡皮泥与小车组成的系统损失的机械能为1.25J2.(0分)[ID :127067]在光滑水平面上,有两个小球A 、B 沿同一直线同向运动(B 在前),已知碰前两球的动量分别为p A =12kg·m/s 、p B =13kg·m/s ,碰后它们的动量变化分别为Δp A 、Δp B ,下列数值可能正确的是( ) A .Δp A =-3kg·m/s 、Δp B =3kg·m/s B .Δp A =3kg·m/s 、Δp B =-3kg·m/s C .Δp A =-24kg·m/s 、Δp B =24kg·m/sD .Δp A =24kg·m/s 、Δp B =-24kg·m/s3.(0分)[ID :127048]甲、乙两物体质量分别为m 1和m 2,两物体碰撞前后运动的位移随时间变化的x-t 图像如图所示,则在碰撞前( )A .乙的动能大B .甲的动能大C .乙的动量大D .甲的动量大4.(0分)[ID :127043]质量为M 的物块以速度v 运动,与质量为m 的静止物块发生正碰,碰撞后两者的动量正好相等,两者质量M 与m 的比值可能为( ) A .2B .4C .6D .85.(0分)[ID :127041]如图所示,一物体分别沿三个倾角不同的光滑斜面由静止开始从顶端下滑到底端C 、D 、E 处,三个过程中重力的冲量分别为123G G G I I I 、、,合力的冲量分别为123I I I 合合合、、,动量变化量的大小分别为123、、p p p ∆∆∆,动能变化量的大小分别为123k k k E E E ∆∆∆、、,则有( )A .123k k k E E E ∆=∆=∆,123p p p ∆=∆=∆B .123p p p ∆=∆=∆,123I I I ==合合合C .123I I I ==合合合,123G G G I I I ==D .123G G G I I I ==,123k k kE E E ∆=∆=∆6.(0分)[ID :127039]几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!如图所示,完全相同的水 球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则下列判断正确的是 ( )A .子弹在每个水球中的速度变化相同B .子弹在每个水球中运动的时间相同C .每个水球对子弹的冲量依次增大D .子弹在每个水球中的动能变化不相同7.(0分)[ID :127027]图甲中,长为L 的长木板M 静止于光滑水平面上,小物块m 位于木板的右端点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒定律单元测试题(2) 一、动量守恒定律 选择题1.如图所示,离地H 高处有一个质量为m 、带电量为q +的物体处于电场强度随时间变化规律为0E E kt =-(0E 、k 均为大于零的常数,电场方向以水平向左为正)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知0qE mg μ<.t=0时,物体从墙上由静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑4H 后脱离墙面,此时速度大小为2gH ,物体最终落在地面上.则下列关于物体的运动说法正确的是A .当物体沿墙壁下滑时,物体先加速运动再做匀速直线运动B .摩擦力对物体产生的冲量大小为202E q k μ C .摩擦力所做的功18W mgH = D .物体与墙壁脱离的时刻为gH t = 2.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )A .物块与木板相对静止时的速率为1m/sB .物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J3.如图所示,质量为m 的小球从距离地面高度为H 的A 点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h 的B 点时速度减为零不计空气阻力,重力加速度为g。

则关于小球下落过程中,说法正确的是A.整个下落过程中,小球的机械能减少了mgHB.整个下落过程中,小球克服阻力做的功为mg(H+h)C.在陷入泥潭过程中,小球所受阻力的冲量大于mD.在陷入泥潭过程中,小球动量的改变量的大小等于m4.如图所示,光滑绝缘的水平面上M、N两点有完全相同的金属球A和B,带有不等量的同种电荷.现使A、B以大小相等的初动量相向运动,不计一切能量损失,碰后返回M、N 两点,则A.碰撞发生在M、N中点之外B.两球同时返回M、N两点C.两球回到原位置时动能比原来大些D.两球回到原位置时动能不变5.质量为m的箱子静止在光滑水平面上,箱子内侧的两壁间距为l,另一质量也为m且可视为质点的物体从箱子中央以v0=2gl的速度开始运动(g为当地重力加速度),如图所示。

已知物体与箱壁共发生5次完全弹性碰撞。

则物体与箱底的动摩擦因数μ的取值范围是()A.1247μ<<B.2194μ<<C.22119μ<<D.221311μ<<6.质量分别为3m和m的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v0匀速运动.某时刻剪断细绳,质量为m的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是A .2083mv2023mv B .20mv 2032mv C .2012mv 2032mv D .2023mv 2056mv 7.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始落下,与圆弧槽相切自A 点进入槽内,则以下结论中正确的是A .小球在槽内运动的全过程中,小球、半圆槽组成的系统机械能守恒B .小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统水平动量守恒C .若小球能从C 点离开半圆槽,则其一定会做竖直上抛运动D .若小球刚好到达C 点,则12m h R M M =+ 8.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/sB .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s9.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 10.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。

已知物块与木板之间的动摩擦因数为μ,整个过程中弹簧的形变均在弹性限度内,则( )A .木板先加速再减速,最终做匀速运动B .整个过程中弹簧弹性势能的最大值为204()Mmv M m + C .整个过程中木板和弹簧对物块的冲量大小为0Mmv M m+ D .弹簧压缩到最短时,物块到木板最右端的距离为202()Mv M m gμ+ 11.2019年1月3号“嫦娥4号”探测器实现人类首次月球背面着陆,并开展巡视探测。

因月球没有大气,无法通过降落伞减速着陆,必须通过引擎喷射来实现减速。

如图所示为“嫦娥4号”探测器降落月球表面过程的简化模型。

质量m 的探测器沿半径为r 的圆轨道I 绕月运动。

为使探测器安全着陆,首先在P 点沿轨道切线方向向前以速度u 喷射质量为△m 的物体,从而使探测器由P 点沿椭圆轨道II 转至Q 点(椭圆轨道与月球在Q 点相切)时恰好到达月球表面附近,再次向前喷射减速着陆。

已知月球质量为M 、半径为R 。

万有引力常量为G 。

则下列说法正确的是( )A .探测器喷射物体前在圆周轨道I 上运行时的周期为32r GMB .在P 点探测器喷射物体后速度大小变为()m m u m-∆ C .减速降落过程,从P 点沿轨道II ()32R r GM π+D .月球表面重力加速度的大小为2GM R 12.如图所示,在粗糙水平面上,用水平轻绳相连的两个相同的物体A 、B 质量均为m ,在水平恒力F 作用下以速度v 做匀速运动.在t =0时轻绳断开,A 在F 作用下继续前进,则下列说法正确的是( )A .t =0至t =mv F 时间内,A 、B 的总动量守恒 B .t =2mv F 至t =3mv F 时间内,A 、B 的总动量守恒 C .t =2mv F 时,A 的动量为2mv D .t =4mv F时,A 的动量为4mv 13.如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A ,B 相连接,静止在光滑水平地面上,现使A 瞬时获得水平向右的速度3m/s ,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,下列说法正确的是( )A .物块A 在t 1和t 3两个时刻的加速度大小相等B .从开始计时到t 4这段时间内,物块A ,B 在t 2时刻相距最远C .t 1到t 3这段时间内弹簧长度一直在增大D .12:1:2m m14.如图所示,一质量为m 0=0.05 kg 的子弹以水平初速度v 0=200 m/s 打中一放在水平地面上A 点的质量为m =0.95 kg 的物块,并留在物块内(时间极短,可忽略),随后物块从A 点沿AB 方向运动,与距离A 点L =5 m 的B 处的墙壁碰撞前瞬间的速度为v 1=8 m/s,碰后以v 2=6 m/s 的速度反向运动直至静止,测得物块与墙碰撞的时间为t =0.05 s,g 取10 m/s 2,则A .物块从A 点开始沿水平面运动的初速度v =10 m/sB .物块与水平地面间的动摩擦因数μ=0.36C .物块与墙碰撞时受到的平均作用力大小F =266 ND .物块在反向运动过程中产生的摩擦热Q =18 J15.如图所示,质量为M 的长木板A 静止在光滑的水平面上,有一质量为m 的小滑块B 以初速度v 0从左侧滑上木板,且恰能滑离木板,滑块与木板间动摩擦因数为μ.下列说法中正确的是A .若只增大v 0,则滑块滑离木板过程中系统产生的热量增加B .若只增大M ,则滑块滑离木板过程中木板所受到的冲量减少C .若只减小m ,则滑块滑离木板时木板获得的速度减少D .若只减小μ,则滑块滑离木板过程中滑块对地的位移减小16.一个物体以某一初速度从粗糙斜面的底部沿斜面向上滑,物体滑到最高点后又返回到斜面底部,则下述说法中正确的是()A .上滑过程中重力的冲量小于下滑过程中重力的冲量B .上滑过程中摩擦力的冲量与下滑过程中摩擦力的冲量大小相等C .上滑过程中合力的冲量大于下滑过程中合力的冲量D .上滑与下滑的过程中合外力冲量的方向相同17.如图所示,在倾角30θ=︒的光滑绝缘斜面上存在一有界匀强磁场,磁感应强度B =1T ,磁场方向垂直斜面向上,磁场上下边界均与斜面底边平行,磁场边界间距为L =0.5m 。

斜面上有一边长也为L 的正方形金属线框abcd ,其质量为m =0.1kg ,电阻为0.5R =Ω。

第一次让线框cd 边与磁场上边界重合,无初速释放后,ab 边刚进入磁场时,线框以速率v 1作匀速运动。

第二次把线框从cd 边离磁场上边界距离为d 处释放,cd 边刚进磁场时,线框以速率v 2作匀速运动。

两种情形下,线框进入磁场过程中通过线框的电量分别为q 1、q 2,线框通过磁场的时间分别t 1、t 2,线框通过磁场过程中产生的焦耳热分别为Q 1、Q 2.已知重力加速度g=10m/s 2,则:( )A .121v v ==m/s ,0.05d =mB .120.5q q ==C ,0.1d =m C .12:9:10Q Q =D .12:6:5t t =18.如图所示,ab 、cd 是竖直平面内两根固定的光滑细杆,ab >cd 。

ab 、cd 的端点都在同一圆周上,b 点为圆周的最低点,c 点为圆周的最高点,若每根杆上都套着一个相同的小滑环(图中未画出),将甲、乙两滑环分别从a 、c 处同时由静止释放,则( )A .两滑环同时到达滑杆底端B .两滑环的动量变化大小相同C .重力对甲滑环的冲量较大D .弹力对甲滑环的冲量较小19.带有14光滑圆弧轨道、质量为M 的小车静止置于光滑水平面上,如图所示,一质量为m 的小球以速度0v 水平冲上小车,到达某一高度后,小球又返回车的左端,则( )A .小球一定向左做平抛运动B .小球可能做自由落体运动C .若m M =,则此过程小球对小车做的功为2012Mv D .若m M <,则小球在弧形槽上升的最大高度将大于204v g20.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a 自由下落到b ,再从b 开始以恒力制动竖直下落到c 停下.已知跳楼机和游客的总质量为m ,ab 高度差为2h ,bc 高度差为h ,重力加速度为g .则A .从a 到b 与从b 到c 的运动时间之比为2:1B .从a 到b ,跳楼机座椅对游客的作用力与游客的重力大小相等C .从a 到b ,跳楼机和游客总重力的冲量大小为m ghD .从b 到c ,跳楼机受到制动力的大小等于2mg二、动量守恒定律 解答题21.如图所示,足够长的传送带与水平面间的夹角为θ。

相关文档
最新文档