核磁共振图谱解析

合集下载

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱剖析图谱的步调之阳早格格创做核磁共振氢谱核磁共振技能死少较早,20世纪70年代往日,主假如核磁共振氢谱的钻研战应用.70年代以去,随着傅里叶变更波谱仪的诞死,13C—NMR的钻研赶快启展.由于1H—NMR的敏捷度下,而且聚集的钻研资料歉富,果此正在结构剖析圆里1H—NMR的要害性仍强于13C—NMR.剖析图谱的步调 1.先瞅察图谱是可切合央供;①四甲基硅烷的旗号是可仄常;②杂音大不大;③基线是可仄;④积分直线中不吸支旗号的场合是可仄坦.如果有问题,剖析时要引起注意,最佳沉新尝试图谱. 2.区别杂量峰、溶剂峰、转动边峰(spinning side bands)、13C卫星峰(13C satellite peaks)(1)杂量峰:杂量含量相对付样品比率很小,果此杂量峰的峰里积很小,且杂量峰与样品峰之间不简朴整数比的闭系,简单辨别.(2)溶剂峰:氘代试剂不可能达到100%的共位素杂度(大部分试剂的氘代率为99-99.8%),果此谱图中往往浮现相映的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处.(3)转动边峰:正在尝试样品时,样品管正在1H-NMR仪中赶快转动,当仪器安排已达到良佳处事状态时,会出现转动边戴,即以强谱线为核心,浮现出一对付对付称的强峰,称为转动边峰.(4)13C卫星峰:13C具备磁距,不妨与1H奇合爆收裂分,称之为13C卫星峰,但是由13C的天然歉度只为1.1%,惟有氢的强峰才搞瞅察到,普遍不会对付氢的谱图制成搞扰. 3.根据积分直线,瞅察各旗号的相对付下度,估计样品化合物分子式中的氢本子数目.可利用稳当的甲基旗号或者孤坐的次甲基旗号为尺度估计各旗号峰的量子数目. 4.先剖析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤坐的甲基量子旗号,而后再剖析奇合的甲基量子旗号. 5.剖析羧基、醛基、分子内氢键等矮磁场的量子旗号. 6.剖析芳香核上的量子旗号.7.比较滴加沉火前后测定的图谱,瞅察有无旗号峰消得的局里,相识分子结构中所连活泼氢官能团.8.根据图谱提供旗号峰数目、化教位移战奇合常数,剖析一级典型图谱.9.剖析下档典型图谱峰旗号,如黄酮类化合物B环仅4,-位与代时,浮现AA,BB,系统峰旗号,二氢黄酮则浮现ABX系统峰旗号.10. 如果一维1H-NMR易以剖析分子结构,可思量尝试二维核磁共振谱协共剖析结构.11. 拉拢大概的结构式,根据图谱的剖析,拉拢几种大概的结构式.12. 对付推出的结构举止指认,即每个官能团上的氢正在图谱中皆应有相映的归属旗号.四. 核磁共振碳谱(13C—(1)溶剂峰:虽然碳谱不受溶剂中氢的搞扰,但是为兼瞅氢谱的测定及磁场需要,仍常采与氘代试剂动做溶剂,氘代试剂中的碳本子均有相映的峰.(2)杂量峰:杂量含量相对付于样品少得多,其峰里主动小,与样品化合物中的碳浮现的峰不可比率.(3)尝试条件的做用:尝试条件会对付所测谱图有较大做用.如脉冲倾斜角较大而脉冲隔断不敷万古,往往引导季碳不出峰;扫描宽度不敷大时,扫描宽度以中的谱线会合叠到图谱中去;等等,均制成剖析图谱的艰易.根据分子式估计的不鼓战度,推测图谱烯碳的情况.若谱线数目等于分子式中碳本子数目,证明分子结构无对付称性;若谱线数目小于分子式中碳本子数目,证明分子结构有一定的对付称性.别的,化合物中碳本子数目较多时,有些核的化教环境相似,大概δ值爆收沉叠局里,应给予注意.δ值的分区碳本子大概可分为三个区(1)下δ值区δ>165ppm,属于羰基战叠烯区:①分子结构中,如存留叠峰,除叠烯中有下δ值旗号峰中,叠烯二端碳正在单键天区还应有旗号峰,二种峰共时存留才证明叠烯存留;②δ>200 ppm的旗号,只可属于醛、酮类化合物;③160-180ppm的旗号峰,则归属于酸、酯、酸酐等类化合物的羰基.(2)中δ值区δ90-160ppm(普遍情况δ为100-150ppm)烯、芳环、除叠烯中央碳本子中的其余SP2杂化碳本子、碳氮三键碳本子皆正在那个天区出峰.(3)矮δ值区δ<100ppm,主要脂肪链碳本子区:①不与氧、氮、氟等杂本子贯串的鼓战的δ值小于55ppm;②炔碳本子δ值正在 70-100ppm,那是不鼓战碳本子的惯例.由矮核磁共振或者APT(attached proton test)、DEPT(distortionless enhancement by polarization transfer)等技能可决定碳本子的级数,由此可估计化合物中与碳本子贯串的氢本子数.若此数目小于分子式中的氢本子数,二者之好值为化合物中活泼氢的本子数.先推导出结构单元,并进一步拉拢成若搞大概的结构式.将核磁共振碳谱中各旗号峰正在推出的大概结构式上举止指认,找出各碳谱旗号相映的归属,进而正在被推导的大概结构式中找出最合理的结构式,即精确的结构式.。

《核磁共振图谱》课件

《核磁共振图谱》课件
利用核磁共振技术研究物质的基本性质和量子力学行为。
物理研究
核磁共振技术在生物医学工程领域的应用,如生物组织成像、药物开发等。
生物医学工程
2000年代至今
随着计算机技术和数字化技术的进步,核磁共振技术不断发展和完善。
1990年代
高场强核磁共振技术和超导技术应用于成像研究。
1970年代
核磁共振成像技术诞生,开始应用于医学领域。
《核磁共振图谱》PPT课件
核磁共振技术简介核磁共振图谱的解析核磁共振图谱的应用核磁共振图谱的未来发展
目录
CONTENTS
核磁共振技术简介
利用核磁共振技术进行人体内部结构的无损成像,用于诊断疾病和监测治疗效果。
医学成像
通过核磁共振技术分析分子结构和化学键信息,用于化学物质鉴定和反应机理研究。
化学分析
核磁共振图谱的应用
那一小时候-簌-这个时候 M = on- City- however退铺ois the zus,anderizing一期 Lorem-others in in onosis city to d inosis d Gois in
️一 City️tersanche 离不开老天ossis =qileDheidoss oune man ultra彻底 into
确定氢原子核原子核之间的偶合常数。
确定氢原子核的偶合常数
通过分析谱线的形状和强度,推断氢原子核之间的相互作用和空间距离。
解析谱线形状和强度
苯甲酸甲酯的核磁共振图谱
苯甲酸甲酯分子中有四个氢原子,分别处于苯环和酯基上。通过解析其核磁共振图谱,可以确定这四个氢原子分别处于不同的化学环境中。
,,iecærsignup,ne"蔫 质感: how On迩 zyang Jan that fully -Onbbbb Ach,皲um in"质感,: on,: on,庄园, roof观察 then燃荆 directly燃OnAsh念 EingerOn:长安",clusuringsOn长安%绕郎 driven惺account on质 driven On On皲îbbbb%on质感 on on on , On, - On,,On on - agentavy, on - January,@-" ob onclusclus1 On长安\摇头 then said micro抡 E一层%app on长安" said

核磁共振图谱解析

核磁共振图谱解析

5 2 2
7
O C CH3
3
4 3
2
0
δ 7.3芳环上氢5个氢核的单峰,烷基单取代
正确结构:
a O c b CH2CH2 O C CH3 δ3.0 δ 4.30 δ2.1
例3:
化合物 C10H12O2,推断结构
δ7.3 δ2.3 δ 5.21 5H 2H 2H δ1.2 3H
化合物 C10H12O2
5H
δ7.3
2H
5.2
2H
2.3
3H
1.2
=1+10+1/2(-12)=5
δ 2.3和δ 1.2四重峰和三重峰 —CH2CH3相互偶合峰 δ 7.3芳环上氢,单峰,烷基单取代 δ 5.21—CH2上氢,单峰,与电负性基团相连
a O b CH2 C O CH2CH3 a CH2 O A
哪个正确? 正确:B 为什么?
解:(1)UV:表明有苯环的吸收,IR: 1100cm-1有强烈的吸收,表明该化合物含有大量的C—O—C结构; 800cm-1的吸收表明苯环为对位取代; 1500~1600cm-1苯环上C—H变形振动吸收峰; 3300 cm-1 表明分子中含有羟基; 1250 cm-1表明分子中含有氧乙烯结构(CH2CH2O); 由UV、IR分析结果以及表面活性剂方面的知识,可以初步推测 此化合物是酚类聚氧乙烯醚。假设其分子式为:
三. 谱图解析与有机物结构确定
例1、化合物C4H8O、其NMR谱图如下,推测其结构。 解:(1)Ω =4+1-8/2 =1 (2) 三组氢,其积分高度比为2:3:3,吸收峰对应的关系: δ (ppm) 氢核数 2.47 2.13 1.05 2 3 3 可能的结构 CH2 CH3 CH3 峰裂分数 四重峰 单峰 三重峰 邻近偶合氢数 3个氢核(CH3) 无氢核 2个氢核(CH2)

核磁共振谱图解析

核磁共振谱图解析
核磁共振谱图解析全身核磁共振多少钱核磁共振需要多少钱腰部核磁共振多少钱核磁共振谱图分析核磁共振谱核磁共振氢谱解析核磁共振谱图解析实例核磁共振氢谱图谱解析核磁共振碳谱解析
核磁共振(NMR)谱 图解析
常用的核磁共振(NMR)实验
1H 13C 13C-DEPT135o ( CH CH3 , CH2 ) 13C-DEPT90o ( CH ) 1H -1H COSY (化学键上相邻氢原子的识别) 1H -1H TOCSY (结构片断的识别) 1H -1H NOESY (空间上相近的氢原子的识别) 1H - 13C (HSQC, HMQC) (碳氢一键相关) 1H - 13C HMBC (碳氢远程相关——碳氢原子二、三键偶合)
Ha Hb CH3COO
H2
B
H1 OCOCH3
3JHH
H Φ
H
C

90 180° Φ
A:H1和H2与Ha(Hb)构成的两面角相同,则3J1a(b)与3J2a(b)相同 B:H1和H2与Ha(Hb)构成的两面角不同,则3J1a(b)与3J2a(b)不同
活泼氢
与O、S、N相连的氢是活泼氢. 切记想看活泼氢一定 选择氘代氯仿或DMSO做溶剂. 在DMSO中活泼氢的出 峰位置要比CDCl3中偏低场些.活泼氢由于受氢键、浓 度、温度等因素的影响,化学位移值会在一个范围内 变化.有时分子内氢键的作用会使峰型变得尖锐.后面附 注一些常见活泼氢的核磁谱图。
A ROH; RNH2; R2NH ArOH; ArSH; ArNH2 RSO3H; RCOOH;
RCOH(醛氢) RCONH2; ArCONH2; RCONHR`;ArCONHAr;
ArCONHR RNH2.HCl
(R是脂肪链基团)

核磁共振H谱图解析与结构确定

核磁共振H谱图解析与结构确定

δ 7.3芳环上氢,单峰烷基单取代
ab
Oc
正确结构:
CH 2CH 2OC CH 3
δ3.0 δ 4.30
δ2.1
2020/7/2
谱图解析与结构确定(2)
C7H16O3,推断其结构
9
δ 5.30 1
δ 3.38 δ 1.37 6
2020/7/2
结构确定(2)
C7H16O3,u=1+7+1/2(-16)=0 u=1+n4 + 1/2(n3-n1)
2020/7/2
1H—NMR图谱的解析大体程序为: (1)首先注意检查TMS信号是否正常; (2)根据积分曲线算出各个信号对应的H数; (3)解释低磁场处(δ10~16)出现的—COOH及
具有分子内氢键缔合的—OH基信号; (4)参考化学位移、小峰数目及偶合常数,解释低
级偶合系统; (5)解释芳香氢核信号及高级偶合系统; (6)对推测出的结构,结合化学法或利用UV、IR、
化合物 C10H12O2
3
2
2
5
8
7
6
5
4
3
2020/7/2
2
1
0
谱图解析与结构确定(1)
u=1+10+1/2(-12)=5,
u=1+n4 + 1/2(n3-n1)
δ 3.0和δ 4.30三重峰和三重峰 O—CH2CH2—相互偶合峰
δ 2.1单峰三个氢,—CH3峰 结构中有氧原子,可能具有:
O C CH3
2020/7/2
一、谱图中化合物的结构信息
(1)峰的数目:标志分子中磁不等性质子的种类,
多少种;
(2)峰的强度(面积):每类质子的数目(相对),

核磁共振图谱解析解析NMR

核磁共振图谱解析解析NMR

同核J-偶合(Homonuclear J-Coupling)
多重峰出现的规则: 1. 某一原子核与N个相邻的核相互偶合将给出(n+1)重峰. 2. 等价组合具有相同的共振频率.其强度与等价组合数有关. 3. 磁等价的核之间偶合作用不出现在谱图中. 4. 偶合具有相加性. 例如: observed spin coupled spin intensity
JCH JCH
H C
p-pulse on H
H C
这相当于使用一系列1800脉冲快速照射氢核。 pH pH
C-H
+J/2
C-H
-J/2
C-H
+J/2
pH
C-H
-J/2
pH
C-H
+J/2
pH
C-H
-J/2
Fig. 4-2.5 The proton-decoupled 13C spectrum of 1-propanol
H-12C H-13C H-13C x100
105 Hz
proton-coupled spectra (nondecoupled spectra)
Quartet, J=127 Hz
Proton-coupled spectra for large molecules are often difficult to interpret. The multiplets from different C commonly overlap because the 13C-H coupling constants are frequently larger than the chemical differences of the C in the spectrum. 原子核间的偶合导致谱图 的复杂化(―精细裂分”), 灵敏度下降。 Fig. 4-2.4 Ethyl phenylacetate. (a) The proton-coupled 13C spectrum. (b) The proton-decoupled 13C spectrum

核磁共振氢谱解析图谱的步骤

核磁共振氢谱解析图谱的步骤

核磁共振氢谱解析图谱的步调核磁共振氢谱核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。

70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。

由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。

解析图谱的步调 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。

如果有问题,解析时要引起注意,最好重新测试图谱。

2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。

(2)溶剂峰:氘代试剂不成能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处。

(3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。

(4)13C卫星峰:13C具有磁距,可以与1H偶合发生裂分,称之为13C卫星峰,但由13C的天然丰度只为1.1%,只有氢的强峰才干观察到,一般不会对氢的谱图造成干扰。

3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。

可利用可靠的甲基信号或孤立的次甲基信号为尺度计算各信号峰的质子数目。

4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。

5.解析羧基、醛基、分子内氢键等低磁场的质子信号。

6.解析芳香核上的质子信号。

7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结构中所连活泼氢官能团。

核磁共振(NMR)的原理和一些图谱分析的技巧

核磁共振(NMR)的原理和一些图谱分析的技巧

实际上多用后者。
对于1H 核,不同的频率对应的磁场强度:
射频(MHZ)
磁场强度(特斯拉)
60
1.4092
100
2.3500
200
4.7000
300
7.1000
500
11.7500
编辑课件
饱和与弛豫
饱和: 在外磁场作用下,1H 倾向于与外磁场相同取向的排 列。处于低能态的核数目多,由于能级差很小,只 占微弱的优势。
对称操作对称操作对称轴旋转对称轴旋转其他对称操作其他对称操作如对称面如对称面等位质子等位质子化学等价质子化学等价质子对映异位质子对映异位质子非手性环境为化学等价非手性环境为化学等价手性环境为化学不等价手性环境为化学不等价c2ch3clclch3hahbhahbcbrcl在非手性溶剂中化学等价
核磁共振氢谱
自旋核在B0场中的进动
当自旋核处在外磁场B0中时,除自旋外(自旋轴的方 向与 一致),还会绕B0进动,称Larmor进动,类似
于陀螺在重力场中的进动。
旋进轨道
自旋轴
自旋的质子
H 0 BO
编辑课件
回旋轴
B0
B0
核磁距 自旋轴
回旋轴
自旋轴 核磁距
I = 1/2
自旋核在BO场中的进动
编辑课件
I =1/2
编辑课件
化学键的各向异性,导致与其相连的氢核的化学位移 不同。
例如: CH3CH3 CH2=CH2 HC≡CH δ(ppm): 0.86 5.25 1.80
编辑课件
sp杂化碳原子上的质子:叁键碳
碳碳叁键:直线构型,π电子云呈
圆筒型分布,形成环电流,产生 的感应磁场与外加磁场方向相反。 H质子处于屏蔽区,屏蔽效应强, 共振信号移向高场, δ减小。 δ= 1.8~3 H-C≡C-H: 1.8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 J AB [( 1 4 ) ( 6 8 )] 3
1 2 3
5 6 4 7 8 9
νA
ν
B
8条谱线
C、AMX系统 (一级图谱)
A
B X
D、ABX系统
1 3 2 4 5 67 8 10 9
11 12
13 14ຫໍສະໝຸດ (1)、最多可有14 条谱线; (2)、AB有8条,好 像有两个AB系统,即 每组4条; (3)、X部分有6条, 其中2条强度弱,不易 看到,只看到4条 强度几乎相等的谱线;
A、峰的数目 不再符合(n+1)规则;
B、峰组内的各峰的相对强度 不再是(X+1)n展 开项的系数;
C、裂分峰的间隔并不相等;
D、化学位移δ 值与J值往往不能从谱图上直接得 到,需要通过适当的计算才能得到。
3、高级谱与一级谱的区别 (1)、高级谱一般情况下,峰的数目超过由n+1规 律计算的数目;
(2)高级谱峰组内各峰之间的相对强度关系复杂;
C、AA’ BB’系 统
A A A B
4、常见的一些高级谱图 (1)、单取代苯
R
AA’ BB’C 系统
A、取代基没有强烈的屏蔽或去屏蔽效应时,可出现 5个芳氢的单峰; B、取代基有强烈的屏蔽或去屏蔽效应时,如苯乙酮, 这种取代基常造成邻位质子移向高场或低场,图上出 现两个质子的多重峰及三个质子的多重峰。
3、考虑分子的对称性; 4、分析每个峰组的δ 、J ; 5、组合可能的结构式; 6、对推出的结构式进行“指认”。
C8H11N
CH3CO2CHCH3
CH2CH2OCOCH3
H3C
CO2CH2CH3
(3)、邻位二取代
A A
AA’ BB’系统
A B
ABCD 系统
A、相同基团邻位取代,构成AA′BB′系统,谱图 左右对称,但比X-CH2-CH2-Y谱图复杂; B、不同基团的邻位取代,构成ABCD系统,其谱 图最复杂。
(4)、间位二取代
A A A
B
AB2C系统
ABCD系统
A、相同基团间位取代,构成AB2C系统,谱图复杂, 但有时显示粗略的单峰; B、不同基团的间位取代,构成ABCD系统,其谱图 最复杂。
核磁共振图谱解析
一、核磁共振谱图的划分
1、一级谱图
(1)、一级谱图必须满足的条件
A、两个质子群的化学位移差△ν 至少是偶合常数J 的六倍以上,即 △ν >6J;
B、同一核组(其化学位移相同)的核均为磁等价的。
H2C=CF2其谱图不是一级谱
(2)、一级谱图的特点 A、峰的数目
可用n+1规律描述,但要注意这n个氢与所讨 论的氢应是磁等价的,即只有一个偶合常数;
νA
νAX
νX
B、AB系统 (1)、有四条谱线,A和B各有两条;
(2)、四条谱线的高度不同, 内侧两条高,外侧两 条短,呈对称状;
(3)、各裂分峰的强度比 有如下的关系:
HA
△ν
AB
HB
I1 I 4 2 3 I 2 I 3 1 4
JAB
ν
1
JAB
ν
2
ν
3
ν
4
(4)、偶合常数 JAB=ν1-ν2=ν3-ν4
B、峰组内的各峰的相对强度 可用二项式展开系数 近似地表示; 属于一级谱的有AX1、AX2、AMX系统等 C、从谱图中可直接读出δ 和J,峰组中心位置为δ , 相邻两峰之间的距离(以赫兹计)为J。
2、高级图谱 (1)、高级谱图必须满足的条件 两个质子群的化学位移差△ν 小于偶合常数J 的六倍 ,即△ν <6J (2)、高级谱图具有的特点
分子中相互偶合的核构成一个自旋系统,系统 内的核相互偶合,但不与系统外的的任何核发生偶 合。一个分子中可以有几个自旋系统。
COCH2CH3
COCH2CH3 A3X2
二、常见的几种谱图 1、二旋系统 A、AX系统 (1)、有四条谱线,A和X各有两条; (2)、四条谱线的高度应相等;
A X
JAX
JAX
(5)、A和B的化学位移
AB A B ( 1 4)( 2 3)
A 1 C
C= 1[(ν1 2 ν4)
B 4 C
νAB ]
HA
C=C
HB
HA
C=C HA HB
HB
C=C
HB HA
2、三旋系统 A、AX2系统
一级图谱
B、AB2系统 AB2系统常见于苯环对称三取代、 吡啶环的二取代、-CH-CH2-等。 AB2系统的特点: (1)、共有九条谱线; (2)、AB2系统的谱线有以下的关系: ν1-ν2=ν3-ν4=ν6-ν7 ν1-ν3=ν2-ν4=ν5-ν8 ν3-ν6=ν4-ν7=ν8-ν9 ν A=ν 3 ν B=(ν 5+ν7)/2
(4)、ABX系统中AB部分,其偶合常数JAB都相等, 与X偶合后的偶合常数JAX与JBX并不相等,但可从图谱 中读出,HA、HB、HX的化学位移通过计算可求得。
E、ABC系统
3、四旋系统 A、A2X2系统
B、A2B2系统
(1)、最多可有18 条谱线; (2)、左右对称,中间峰强度大,外侧峰强度低; (3)、ν1-ν3=ν4-ν6 (4)、化学位移 νA=ν5A νB=ν5B (5)、偶合常数 JAB=( ν1-ν6)
(5)、多取代苯环 A、三取代苯环,苯环上的三个氢构成AMX或ABX、 ABC、AB2系统; B、四取代苯环,苯环上的两个氢构成AB系统; C、五取代苯环,苯环上只剩下一个氢不会产生分裂, 为一单峰。
三、谱图解析 1、区分出杂质峰、溶剂峰、旋转边带;
2、确定谱图中各峰组所对应的氢原子数目,对氢原 子进行分配;
(2)、对位二取代
A A A B
A4系统
AA’ BB’ 系统
A、两取代基相同,不论取代基的电负性强弱如何, 由于分子的对称性,在苯环上的四个芳氢为磁等价, 出现的是单峰; B、两取代基不相同,这种自旋系统为AA′BB′系 统,由于苯环结构自身的特点,其谱图具有鲜明的特 点,最易识别,粗看是左右对称的四重峰,中间一对 峰强,外面一对峰弱,每个峰可能还有各自的卫星峰 (以某谱线为中心,左右对称的一对强度低的谱峰)。
相关文档
最新文档