核磁共振谱图解析汇总.共40页

合集下载

核磁共振谱图解析

核磁共振谱图解析
影响因素多:核磁共振谱图的峰位置、形状和强度受到多种因素的影响如温度、溶剂、 分子结构等。
确定分子结构:通过核磁共振谱图中的化学位移值和偶合常数确定分子中各原子的类型和相 互连接方式
确定分子构型:利用核磁共振谱图中的耦合常数和自旋裂分确定分子中各原子的空间排列和 构型
确定分子动态:通过核磁共振谱图中的弛豫时间和扩散系数等信息了解分子内部的运动状态 和动力学行为
分辨率:核磁共振谱图的分辨率越高能够区分出的峰就越多有助于更准确地解析谱图。 灵敏度:灵敏度高的核磁共振谱图可以检测到更低浓度的物质有助于发现潜在的疾病或污染物。
了解核磁共振原理 熟悉常见峰型和化学位移 注意谱线间的耦合和裂分 结合实验条件和样品性质进行分析
误差分析:对谱图进行定量 和定性分析确定误差范围
添加标题
在医学诊断中的应用:核磁共振谱图可以用于医学影像学通过检测人体内氢原子核的共振信号生成人体 内部结构的图像有助于医生对疾病进行早期诊断和精确治疗。
添加标题
在石油化工中的应用:核磁共振谱图可以用于石油化工领域通过分析油样品的氢原子核共振信号评估油 品的性质和成分有助于石油勘探和开发。
添加标题
在农业食品中的应用:核磁共振谱图可以用于农业食品领域通过检测食品中的水分、脂肪、蛋白质等成 分评估食品的质量和安全性有助于食品安全监管和质量控制。
在材料科学中核磁共振谱图可用于 研究材料的微观结构和性质
在材料合成过程中核磁共振谱图可 用于监测反应进程和鉴定新材料的 结构
添加标题
添加标题
添加标题
添加标题
通过核磁共振谱图可以分析材料的 化学键和分子运动从而评估材料的 性能和潜在应用
核磁共振谱图还可以用于材料表征 和质量控制确保材料的可靠性和一 致性

第四节 核磁共振谱图解析

第四节 核磁共振谱图解析

(3)丙醛CH3CH2CHO
(4)异丙氯(CH3)2CHCl
(5)2—苯基乙醇C6H5CH2CH2OH 解:(1)甲苯C6H5CH3 δ7.2,单峰; δ2.2单峰。 面积比为5:3。
(2)二乙醚C2H5OC2H5 δ3.1, 四重峰; δ 2.1, 三重峰; 面积比为2:3
(3)丙醛CH3CH2CHO
质子b直接与吸电子元素相连,产生去屏蔽效应,峰在低场 (相对与质子a )出现。 质子a也受其影响,峰也向低场位移。
谱图解析( 3 )
苯环上的质子在低场出现。为什么? 为什么1H比6H的化学位移大?
例:试预测下列化合物的核磁共振波谱。指出各波峰的化学位 移,分裂型态,及相对强度。
(1)甲苯C6H5CH3 (2)二乙醚C2H5OC2H5
7.x:
8.x:

HCOO ArCHO
9.x: RCHO, 11.x:
RCOOH
二、谱图解析
谱图解析(1)
6个质子处于完全相同的化学环境,单峰。
没有直接与吸电子基团(或元素)相连,在高场出现。
谱图解析( 2 ) 质子a与质子 b所处的化学环境 不同,两个单峰。 单峰:没有相邻 碳原子(或相邻 碳原子无质子)
O CH2CH3
正确结构:
HC
O CH2CH3 O CH2CH3
谱图解析与结构确定(3)
化合物 C10H12O2,推断结构
δ7.3 δ1.2
5H
δ 5.21 2H
δ2.3
2H
3H
化合物 C10H12O2,
u=1+10+1/2(-12)=5
a O b CH2 C O CH2CH3 a CH2
1) δ 2.32和δ 1.2—CH2CH3相 互偶合峰 2) δ 7.3芳环上氢,单峰烷基 单取代 3) δ 5.21—CH2上氢,低场与 电负性基团相连

核磁共振谱图解析共40页文档

核磁共振谱图解析共40页文档
核磁共振谱图解析
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克

核磁共振图谱解析解析NMR

核磁共振图谱解析解析NMR

同核J-偶合(Homonuclear J-Coupling)
多重峰出现的规则: 1. 某一原子核与N个相邻的核相互偶合将给出(n+1)重峰. 2. 等价组合具有相同的共振频率.其强度与等价组合数有关. 3. 磁等价的核之间偶合作用不出现在谱图中. 4. 偶合具有相加性. 例如: observed spin coupled spin intensity
JCH JCH
H C
p-pulse on H
H C
这相当于使用一系列1800脉冲快速照射氢核。 pH pH
C-H
+J/2
C-H
-J/2
C-H
+J/2
pH
C-H
-J/2
pH
C-H
+J/2
pH
C-H
-J/2
Fig. 4-2.5 The proton-decoupled 13C spectrum of 1-propanol
H-12C H-13C H-13C x100
105 Hz
proton-coupled spectra (nondecoupled spectra)
Quartet, J=127 Hz
Proton-coupled spectra for large molecules are often difficult to interpret. The multiplets from different C commonly overlap because the 13C-H coupling constants are frequently larger than the chemical differences of the C in the spectrum. 原子核间的偶合导致谱图 的复杂化(―精细裂分”), 灵敏度下降。 Fig. 4-2.4 Ethyl phenylacetate. (a) The proton-coupled 13C spectrum. (b) The proton-decoupled 13C spectrum

核磁共振谱图解析(谷风参考)

核磁共振谱图解析(谷风参考)

下图是两个例子
经验学习
21
在核磁管里加入1-2滴重水即可将活泼氢交换掉
HDO
活泼氢
经验学习
22
CH3(CH2)15CH2CH2SH
经验学习
23
氟对氢的偶合
氟对氢的偶合在核磁中是经常碰见的,并且 利用此规律可以解决和验证很多芳香环上取代基 的取代位置问题。
参考下面的列表和谱图:
经验学习
24
1H和19F的耦合常数
2
S 5
J(3-4)=3.3-4.1
3 4
J(2-4)=1.0-1.5
J(2-5)=2.8-3.5
4 5N
6N2
J(4-5)=4-6 J(2-5)=1-2 J(2-4)=0-1 J(4-6)=?
经验学习
6
如何计算耦合常数
经验学习
7
经验学习
8
如何利用耦合常数来区分异构体
Ha Hb
CH3COO
OCOCH3
7-13
9-12
(R是脂肪链基团)
经验学习
12
经验学习
13
经验学习
14
经验学习
15
经验学习
16
经验学习
17
经验学习
18
经验学习
19
经验学习
20
重水交换
重水交换是在核磁管里加入1-2滴重水,摇匀,再做谱图会发 现活泼氢消失.
1) ROH; RNH2; R2NH; ArOH; ArSH; ArNH2; RSO3H; RCOOH; RNH2.HCl的活泼氢是比较容易交换;
2) RACrCOOHN; RHCRO的N活H泼2; A氢rC有O时N比H2较; R难CO交N换H,R特`;别A是rC醛ON氢H,这Ar时; 候在

图谱解析 核磁共振图谱-碳谱

图谱解析 核磁共振图谱-碳谱
14
SKLF
4-2.8 离共振去耦
在保持图谱在看上去相对简单的同时,离共振去耦通 常能都提供多重峰信息。 耦合常数被降低,多重峰重叠的情况很少发生。 离共振去耦谱图仍然保留C和相连的H之间的耦合作用, 但有效的去除了和距离较远的H原子之间的耦合。 辅助电磁波发射移所发射的频率既不处于低场也不处 于高场。 退藕装置处于低功率以防止完全去耦。
OH
C7H8O
OCH3
39
SKLF
C8H8O
O C CH3
O CH CH2
40
SKLF
2. 确定信号峰的数目,即分子内非等价C原子的个数
3. 确定分裂线的数目: 去共振耦合谱图可得各C原子上连接的H原子数
4. 将化学位移分类解析,查表推断相连基团。
28
SKLF
(环)烷烃
化学位移
单取代烷烃
取代烷烃 炔烃
羧酸 醛
双取代烷烃 烯烃 芳烃、杂芳环
1H
11
10
9876源自5432
1
伯碳
16sklf图图4427271丙醇的离共振去耦的丙醇的离共振去耦的131317sklf442929图图4428222822二甲基丁烷二甲基丁烷质子去耦合质子去耦合131318sklf图图442929环己醇的质子去耦合环己醇的质子去耦合131319sklf图图44210210环己烯的质子去耦合环己烯的质子去耦合131320sklf图图44211211环己酮的质子去耦合环己酮的质子去耦合131321sklf442
9
SKLF
最大增强效果
NOE max 1 γirr = ( ) 2 γobs 1 267 .5 = ( ) = 1.998 2 67.28
total predicted int ensity (max) = 1 + NOE max NOE max

图谱解析核磁共振图谱-氢谱_OK

图谱解析核磁共振图谱-氢谱_OK
• NMR 图谱可以区分分子中含有多少种不同的 质子。
• 通常,质子为化学等价时,它也是磁等价的。
CH3 CH3 O CH2 C CH3
CH3
O CH3 C CH2 O CH3
2021/10/10
32Байду номын сангаас
4.9 积分
NMR图谱显示分子中含有几种类型的氢原子。 在 NMR 图谱中, 每一个峰的的面积同产生这个峰的 氢原子数目成正比。
图的左边出现吸收峰。
26
B. 脉冲信号傅里叶转变移 (FT)
脉冲信号同时激发了分子中所有的磁性核。 海森堡测不准原理,一个频率范围
图4.14短脉冲信号 (a) 原始脉冲; (b) 同一脉冲信号的频率含量
27
自由感应衰减信号 (FID)
当脉冲信号连续时,被激 发的原子核将释放它们的 激发能,回到原始的自旋 状态,或者称弛豫。 当每一个激发的原子核都 发生弛豫时,它将放射出 电磁波。不同频率的电磁 波同时发射。这种放射信 号称为 FID 信号.
图. 4.15苯乙酸乙酯1H的自由感应衰减信号 (FID)信号
28
时域信号
以丙酮为例,所有的六个氢 原子都是等价的。
随着原子核的弛豫,它们的 逐渐消失,这种信号随时间 呈指数衰减。
观测到得FID 实际上是一种 无线电波和激发原子核放射 信号的干涉信号。
图4.16 (a)丙酮氢原子的 FID 曲线; (b)随 着信号逐渐消失,FID信号出现。
6
自旋状态+1/2 具有 较低的能量,因为其 磁矩与磁场方向相同; 自旋状态1/2具有较 高的能量,因为其磁 矩与磁场方向相反.
2021/10/10
图4.2 条形磁铁的顺磁和逆磁排列
7

核磁共振波谱法之氢谱解析

核磁共振波谱法之氢谱解析
6H
4H
C4H10O的核磁共振谱
第24页/共68页
解: U 2 2 4 10 0,饱和脂肪族化合物。 2
氢分布:a:b=2.1cm:1.4cm=3:2,因为分子式中氢总 数为10,因此a含6个氢,b为4个氢。
3.38 1.13 60 19.1 10, 一级偶合系统。
J
7.1
a1.13 三重峰 3H CH2CH3
δ烯氢(反式)=5.28+0.68+0+1.02=6.98(与6.71相近) δ烯氢(顺式)=5.28+0.68+0.33+0=6.29 所以,该化合物的结构式为:
O
CH3 CH2 O C C
H
H C
C
O
O CH2 CH3
第23页/共68页
例6 由下述NMR图谱,进行波谱解析,给出未知化合物的 结构及自旋系统。 (1)已知未知化合物的分子式为C4H10O,核磁共振图谱如 图所示:
氢分布:a: b:c:d:e=6H (1.8cm):1H(0.3cm):2H(0.6cm): 2H(0.6cm): 2H(0.6cm)
a1.22 二重峰 6H CH (CH3 )2
b 2.80 七重峰 1H Ar CH (CH3)2
b 1.55 1.33( Ar) 2.88
d 6.60 二重峰 2H e 7.03 二重峰 2H
例3 一个未知物的分子式为C9H13N。δa1.22(d)、 δb2.80(sep)、 δc3.44(s)、 δd6.60(m,多重峰)及δe7.03(m)。核磁共振氢谱如 图,试确定结构式。
4H
1H
6H
2H
C9H13N的核磁共振氢谱
第15页/共68页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
40
核磁共振谱图解析汇总.
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
相关文档
最新文档