储层评价技术

合集下载

石油地质与储层评价技术

石油地质与储层评价技术

石油地质与储层评价技术石油地质与储层评价技术是石油勘探开发领域中的核心内容,它通过对地质条件和石油储层的评价,为石油勘探开发提供可靠的依据。

本文将从石油地质和储层评价的基本概念、方法和应用案例等方面进行论述,以便更好地了解石油地质与储层评价技术的重要性和应用效果。

一、石油地质的概念和研究方法石油地质是研究地球内部岩石运动和构造、地层演化、沉积物特征和古地理环境等储层形成条件的学科。

它通过野外地质调查、地球物理勘探、岩心分析等手段,综合研究各种地质因素,揭示石油成藏的规律和特点。

在石油地质研究中,常用的方法包括地层学、岩相学、古生物学、测井解释等。

地层学是应用地质学原理和方法将一系列岩石按一定顺序进行分类和划分的学科;岩相学研究沉积物的特征和岩石的沉积环境;古生物学通过对化石的研究,推断古地理环境和古气候等信息;测井解释则是通过对地下岩层进行测量和解释,获取与储层特征有关的参数。

二、储层评价的概念和方法储层评价是指对石油储层的油气性质、物性参数和储集条件等进行综合分析与评价的过程。

储层评价的目的是为油气勘探开发提供客观有效的储层描述和预测。

在储层评价中,需要使用一系列地球物理测井、岩石物性实验和沉积学分析等方法。

地球物理测井是利用地面仪器和设备对井孔进行测量,获取各种物性参数的方法,包括测井曲线解释和测井响应模拟等;岩石物性实验则通过采集岩心样品,进行物性参数测定;沉积学分析结合古地理、古气候和古生物学等领域的知识,对岩石进行粒度、颗粒组成和沉积环境等方面的研究。

三、石油地质与储层评价技术的应用案例1. 复杂构造下的储层评价在复杂构造地区,储层评价技术的应用成为石油勘探开发的关键。

通过采用地震反演、重力测量和电磁测井等技术手段,可以对复杂构造地区的储层进行准确定量化评价,提高勘探开发效果。

2. 沉积相划分的储层评价对于复杂的沉积环境,储层评价技术的应用可以帮助研究人员根据沉积相的变化,划分出不同的储层类型和油气分布规律,为油气勘探提供科学的依据。

储层评价技术(一)

储层评价技术(一)
粒度命名法: 含量>50%——主名;25~50%——质;10~25%——含
常用的碎屑颗粒粒度分级表
十进制
颗粒直径(mm)
>1000 1000~100 100~10
10—1
巨砾 粗砾 中砾 细砾
1—0.5 0.5~0.25 0.25~0.1
粗砂 中砂 细砂
0.1—0.05 0.05~0.01
粗粉砂 细粉砂
三、油气储层地质学的近代进展
80年代以来:
1、 储、产层一体化组合研究 四性资料—测试—试井—生产动态—生产测井综合研究 重点: 产层参数、产层特征、产能判断
2 、储盖层综合研究 强化盖层研究,确定盖层封闭能力,计算盖层封闭油气 柱高度。 ——准确确定储层有效性
3 、构造、储层综合研究 1)构造和断裂的演化与储层形成机制——孔隙发育 2)不同构造类型的储层与油气富集关系——有利构造 圈闭
薄片鉴定
2、填隙组分 杂基(粘土和灰泥)和胶结物。 胶结物指成岩期在颗粒缝隙中形成的化学沉淀物。 主要为: 碳酸盐矿物(方解石、白云石和菱铁矿) 硅质—石英、玉髓和蛋白石 其它铁质矿物(赤铁矿、褐铁矿和黄铁矿) 硫酸盐矿物(石膏、硬石膏、重晶石(少见))
三 、结构
1 、粒度 一般采用十进制粒度分级,编制粒度概率图和求粒 度参数多采用2的几何级数制。 砾和砂的分界也可定在2mm、粉砂和粘土的分界也 可定在0.0039或0.005mm
建立岩、电关系综合剖面。 主要测井曲线: 自然电位、微电极、感应、自然伽马、密度、声波、 地层倾角等 五 、分类进行分析化验 岩石薄片,铸体薄片,荧光薄片、粒度分析、重矿 物分析、阴极发光薄片、电子探针分析、扫描电镜、 X-衍射分析、微量元素分析、稳定同位素分析、图 像分析、压汞分析、油层物性分析。

岩石物性与储层评价技术

岩石物性与储层评价技术

岩石物性与储层评价技术岩石物性与储层评价技术是石油地质学中的关键领域,它对于油气勘探和生产具有重要的指导意义。

通过对岩石的物性参数分析和储层评价,可以帮助地质工作者更好地理解油气资源的分布,为储层的有效开发和生产提供科学依据。

一、岩石物性岩石物性是指岩石在地质力学作用下的一些基本物理特征,包括密度、孔隙度、渗透率等。

岩石物性参数的测量和分析是储层评价的基础,也是评价岩石储集性能和油气开发潜力的重要手段。

1. 密度测量岩石的密度与其成分、孔隙度、含水饱和度等因素有关。

通过地震勘探等方法可以获得地下岩石的密度分布情况,进而反演岩石中的油气含量和储集性能。

2. 孔隙度测量孔隙度是指岩石体积中孔隙所占的比例,是评价储层质量的重要指标之一。

常用的孔隙度测量方法有压汞法、氦气置换法等,可以准确测定岩石孔隙度并进一步评价其储存流体的能力。

3. 渗透率测量渗透率是指岩石中流体渗透的能力,是评价储集层透水性的重要指标。

常用的渗透率测量方法有渗流模型、试油法等,可以帮助确定储层的渗透能力和产能潜力。

二、储层评价技术储层评价技术是指对储集层进行系统分析和评价的一种方法和手段,用于判断储层的优劣和变化情况,进而指导油气勘探和生产。

1. 相态分析相态分析是通过石油地质学、地震学和油气物性等技术手段,对储层中的油气-水-岩石三相关系进行研究。

通过相态分析可以评价储层的饱和度、物性变化和含油气阶段等参数,为油气勘探提供理论依据。

2. 流体识别技术流体识别技术是通过地球物理学、地层学和岩石物性等综合手段,识别和区分储层中的不同流体类型,如原油、天然气和水等。

通过流体识别技术可以判断储层中油气的产状、储量分布和流体运移规律,为油气开发提供准确的评价数据。

3. 产能评价技术产能评价技术是评价储层产能潜力和储层可采程度的关键方法。

通过地质地球物理参数、流体动力学模拟等技术手段,可以对储层的产能进行定量评价和预测,为油气勘探和生产提供决策支持。

非常规油气储层评价方法

非常规油气储层评价方法

非常规油气储层评价方法随着全球能源需求的不断增长,传统油气资源的开采已经逐渐达到了瓶颈。

因此,非常规油气储层的开发和利用成为了当今油气行业的热点。

然而,非常规油气储层的评价方法与传统油气储层有很大的不同。

本文将介绍一些非常规油气储层评价方法。

1. 岩石物理学方法岩石物理学方法是评价非常规油气储层的一种常用方法。

该方法通过测量岩石的物理性质,如密度、声波速度、电阻率等,来推断储层的孔隙度、渗透率、饱和度等参数。

这些参数对于评价非常规油气储层的储量和产能具有重要意义。

例如,通过测量岩石的声波速度,可以推断出储层的孔隙度和渗透率,从而评价储层的储量和产能。

2. 地震勘探方法地震勘探方法是评价非常规油气储层的另一种常用方法。

该方法通过测量地震波在地下的传播速度和反射特征,来推断储层的地质构造、孔隙度、渗透率等参数。

这些参数对于评价非常规油气储层的储量和产能具有重要意义。

例如,通过分析地震波的反射特征,可以推断出储层的地质构造和孔隙度,从而评价储层的储量和产能。

3. 气体吸附法气体吸附法是评价非常规油气储层的一种新方法。

该方法通过测量储层中气体的吸附量和解吸量,来推断储层的孔隙度、渗透率、饱和度等参数。

这些参数对于评价非常规油气储层的储量和产能具有重要意义。

例如,通过测量储层中气体的吸附量和解吸量,可以推断出储层的孔隙度和渗透率,从而评价储层的储量和产能。

4. 微观成像技术微观成像技术是评价非常规油气储层的一种新方法。

该方法通过使用高分辨率的成像技术,如扫描电子显微镜、透射电子显微镜等,来观察储层中的微观结构和孔隙结构,从而推断储层的孔隙度、渗透率、饱和度等参数。

这些参数对于评价非常规油气储层的储量和产能具有重要意义。

例如,通过观察储层中的微观结构和孔隙结构,可以推断出储层的孔隙度和渗透率,从而评价储层的储量和产能。

评价非常规油气储层是一个复杂的过程,需要综合运用多种方法和技术。

岩石物理学方法、地震勘探方法、气体吸附法和微观成像技术是评价非常规油气储层的一些常用方法。

储层评价参数核磁共振检测技术000.ppt

储层评价参数核磁共振检测技术000.ppt

核磁共振技术应用原理小结
核磁共振岩样分析技术的测量参数、测量原理 以及仪器结构等均与核磁共振测井相同或相似,区 别在于测井是在井下测井壁,而岩样分析是在地面 测岩心、岩屑或井壁取心。
可动流体参数在低渗透储层评价中的应用
低渗透储层地质条件差,孔隙微小,比表面 大,粘土含量高,孔隙内的流体受到固体表面 的束缚力强,因此低渗透储层评价有必要综合 考虑可动流体参数。
5.7
2 1978-1982 灰色荧光粉砂岩 岩屑 140.50 6.8 0.269 25.22 1.73 18.52 干层
3 1997.5-1998.1 褐灰色油浸粉砂岩 岩芯 1466.67 6.4 0.686 49.92 3.18 32.13 油水层 9.2 2.8
4 1998.5-1999.5 褐灰色油浸粉砂岩 岩芯 1272.00 6.6 0.179 49.10 3.25 31.27 油水层
5 2103-2107 褐灰色油斑粉砂岩 岩屑 665.63 9.2 0.215 21.07 1.94 33.19 差油层
6 2196-2199 灰色荧光泥质粉砂岩 岩屑 27.05 4.4 0.085 34.87 1.51 20.77 干层
7 2333-2335 灰色荧光泥质粉砂岩 岩屑 85.90 8.7 0.125 22.96 1.99 10.24 水层
吉林油田乾163井核磁录井解释成果表
井段
序号
m
岩性
核磁共振录井分析参数
试油结果
类 别
定量 荧光 浓度 mg/l
孔 隙 度
渗 透 率
可动 流体
可采 含油 核磁 孔隙 饱和 录井 度 度 解释
日产油 日产水


% 10-3 2

页岩气储层可压裂性评价技术

页岩气储层可压裂性评价技术

页岩气储层可压裂性评价技术随着全球对清洁能源的需求不断增加,页岩气作为一种非常规天然气资源,逐渐受到了广泛。

页岩气储层具有巨大的储量和生产潜力,但其开采和生产过程涉及到复杂的工程技术和地质因素。

为了提高页岩气储层的开采效率,本文将探讨页岩气储层可压裂性评价技术的重要性及研究进展。

页岩气储层是一种非常规天然气储层,主要分布在盆地内沉积岩层中。

这些储层通常具有较低的孔隙度和渗透率,因此需要进行压裂作业以提高产能。

可压裂性评价技术是指通过对储层特性进行分析,评估其是否适合进行压裂作业以提高产能的技术。

页岩气储层具有一些特殊性质,如多孔性、裂缝性等。

多孔性是指储层中存在许多纳米级孔隙,这些孔隙是页岩气的主要存储空间。

裂缝性是指储层中存在天然裂缝或岩石断裂,这些裂缝可以为页岩气提供运移通道和存储空间。

这些特点对可压裂性评价技术具有重要影响,因为它们将直接影响压裂作业的效果和产能。

可压裂性评价技术主要包括岩芯实验和数值模拟两种方法。

岩芯实验是通过钻取储层中的岩石样品,在实验室进行压裂实验,观察储层的压裂特性和反应。

这种方法可以较为准确地模拟实际压裂作业过程中的情况,从而对储层的可压裂性进行评价。

但是,岩芯实验成本较高,需要大量的时间和人力。

数值模拟是通过计算机模型对储层进行模拟压裂,以评估其可压裂性和产能。

这种方法可以通过调整模型参数来模拟不同条件下的压裂作业,具有较高的灵活性和成本效益。

但是,数值模拟需要依赖一定的假设和简化,其准确性和可靠性受到一定限制。

在实际应用中,页岩气储层可压裂性评价技术已经得到了广泛的应用。

例如,在北美地区的页岩气田,通过可压裂性评价技术对储层进行评估,可以有效地指导压裂作业和提高产能。

在国内,该技术也逐渐得到了重视和应用,例如在川渝地区的页岩气田,通过可压裂性评价技术的运用,成功地提高了产能和开采效率。

页岩气储层可压裂性评价技术对于提高页岩气田的开采效率和产能具有重要意义。

本文介绍了该技术的相关概念、方法和实践经验,并指出了该技术在应用过程中需要注意的问题和未来的发展方向。

非常规储层评价技术

非常规储层评价技术

储集层:具有储存油气空间的岩层。

储层分类:①按岩类:碎屑岩储层、碳酸盐岩储层、特殊岩类储层;②按储集空间类型:孔隙型、裂缝型、孔隙裂缝型、缝洞型、孔洞型、孔洞缝复合型;③按渗透性:高渗储层、中渗储层、低渗储层、特低渗储层。

特殊储层:不同于常规均质孔隙型砂岩储层的储层,包括岩浆岩、变质岩、砾岩、泥质岩等。

评价碳酸盐岩储层特征的核心是空隙空间结构,即它的孔隙、溶洞、裂缝的发育特征及组合状况。

非常规储层测井评价基本任务:①储层在哪里、什么类型、是否有效——找储层;②是储层含什么性质的流体——找油气层;③是储层的储集物性条件如何——评价油气层的好坏;④是什么地方还有好的储层——储层多井对比与横向预测。

碳酸盐岩岩石成份:①主要成分——方解石、白云石、硬石膏、岩盐(是骨架,比重最大);②粘土成分(性质最活跃);③其它成分——有机质、黄铁矿、铝土矿、碳酸磷灰石(量少,影响大)。

各自的主要物理性质:①方解石:白色、灰色,分布广,易溶蚀。

②白云石:灰白色,分布于咸度高的海、湖,次生方式形成,为石灰岩受含镁溶液交代而成的白云岩中的主要矿物。

③硬石膏、盐岩:都不是碳酸盐岩,而是蒸发岩,但经常出现在碳酸盐岩地层剖面中。

④粘土矿物:种类繁多、结构复杂、分布形式多变、含量不稳定、性能特殊,对储层物性测井响应影响极大。

有较强的可压缩性。

⑤有机质:含量少,但对油气的生成、岩石的某些物理性质影响很大。

⑥黄铁矿:呈团块、结核状分布。

岩石结构:描述岩石各组成部分的几何形态特征的一个概念;是指岩石颗粒、晶粒的大小、形状、分选、表面性质及其组成形式。

非均质岩石构造类型:薄层状构造、眼球眼皮构造、豹斑构造、燧石结核构造。

空隙空间的基本类型:孔隙、吼道、裂缝、洞穴。

裂缝:指岩石受外力作用、失去内聚力而发生各种破裂或断裂所形成的片状空间,它切割岩石组构。

裂缝的分类:①按裂缝成因分:成岩缝、风化溶蚀缝、构造缝;②按裂缝宽度分:微裂缝、中等裂缝、粗大裂缝;③按裂缝产状分:高角度缝、斜交缝、低角度缝;④按填充状况分:全充填缝、半充填缝、未充填缝;⑤其它分类方法:单组系裂缝、网状裂缝。

陆相页岩油储层评价关键参数及方法

陆相页岩油储层评价关键参数及方法

陆相页岩油储层评价关键参数及方法在石油勘探开发领域中,页岩油储层评价是一个至关重要的环节。

而对于陆相页岩油储层的评价,更是需要考虑到其特殊的地质条件和油气成藏特点。

本文将从多个方面对陆相页岩油储层评价的关键参数及方法进行深入探讨,并共享个人观点和理解。

一、岩石地球物理参数评价在陆相页岩油储层评价中,岩石地球物理参数是至关重要的。

包括岩石的孔隙度、渗透率、孔喉结构、裂缝特征等参数,都直接影响着储层的含油气性能。

利用密度、声波、电阻率等地球物理勘探技术,对储层进行详细的参数评价是至关重要的。

1. 孔隙度和渗透率孔隙度和渗透率是评价页岩储层储层性质的重要参数。

其中,孔隙度直接关系到储集空间的大小,而渗透率则是衡量岩石孔隙连接性的重要指标。

通过密度测井、核磁共振等技术,可以获得储层的孔隙度和渗透率数据,从而评价储层的含油气能力。

2. 孔隙结构和裂缝特征页岩储层中的孔隙结构和裂缝特征对于油气的储集和运移具有重要影响。

通过核磁共振、微观成像等高分辨率技术,可以对储层孔隙结构和裂缝进行定量描述,为后续的油藏开发提供重要依据。

二、地质条件评价除了岩石地球物理参数外,对于陆相页岩油储层评价,还需要考虑其特殊的地质条件。

包括构造背景、沉积环境、岩相特征等多个方面的评价。

1. 构造背景构造背景直接影响着储层的形成和演化。

对于陆相页岩储层来说,构造背景的复杂性常常导致储层的非均质性和非均一性,因此需要对构造背景进行详细评价,为储层开发提供依据。

2. 沉积环境沉积环境对于储层的孔隙结构、岩相特征等都有着重要影响。

通过对沉积环境的综合分析,可以更好地理解储层的特点和规律,为勘探开发提供指导。

三、评价方法及技术针对陆相页岩油储层评价的复杂性和特殊性,需要结合多种评价方法和技术来进行综合评价。

1. 地震技术地震技术在陆相页岩油储层评价中有着重要应用。

通过地震反演、地震成像等技术,可以获取储层的地质构造、岩性分布等重要信息。

2. 岩心分析岩心分析是对储层岩石进行详细分析的重要手段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

储层评价技术
储层评价是指通过一系列的技术手段和方法来评价油气储层的性质和
储集条件,为油田开发提供依据。

储层评价的目的是确定储层的孔隙度、
渗透率、饱和度等参数,进而评估储层的储量和产能,为油田开发和生产
提供科学的指导。

储层评价技术主要包括岩心实验、地震勘探和测井技术等。

岩心实验
是通过采集储层岩石样品,并进行一系列的实验分析,来获得储层岩石的
物理性质和流体性质。

常用的岩心实验包括岩心物性实验、岩心饱和度实验、岩心渗透率实验等。

岩心实验可以提供直接的储层参数数据,为储层
评价提供重要依据。

地震勘探是通过地震波在地下介质中传播的方式来获取储层的地质信息。

地震勘探可以获得储层的层位分布、厚度、构造等信息,进而推断储
层的孔隙度、渗透率及饱和度等参数。

地震勘探主要包括地震勘探数据采集、地震资料处理和解释等过程。

地震勘探可以提供广泛的储层信息,对
于评价储层的连通性和储量有着重要的作用。

测井技术是通过测井仪器对井下的地层进行测量,获取储层的物性参
数和流体性质。

常用的测井技术包括电测井、声测井、自然伽玛测井等。

测井技术可以提供井壁周围地层的电阻率、声波速度、放射性等参数,进
而推断储层的孔隙度、饱和度和渗透率等参数。

测井技术是评价储层的一
种重要手段,能够在井中直接获取储层参数,对储层评价具有较高的精度。

储层评价技术的选择和应用应根据不同的储层类型和区域特点进行综
合考虑。

不同的储层评价技术有其适用的场合和局限性,在实际应用中需
合理选择和组合多种技术手段,以达到准确评价储层的目的。

同时,随着
技术的不断发展,如岩心CT扫描技术、地震反演技术和三维测井技术的
应用,储层评价技术将进一步提高。

综上所述,储层评价技术是评价油气储层性质和储集条件的重要手段,岩心实验、地震勘探和测井技术是常用的评价手段。

通过合理选择和组合
多种技术手段,可以获得准确的储层参数和地质信息,为油田开发和生产
提供科学的依据。

储层评价技术的发展将进一步推动油气勘探开发的科学
化和精细化。

相关文档
最新文档