硝化和亚硝化

合集下载

第三章硝化反应

第三章硝化反应

3.1
概述
硝化反应是最普遍和最早的有机反应 之一。
1834年,通过硝化将苯→硝基苯。 1842年,硝基苯还原为苯胺,硝化在有 机化学工业上的应用和研究开始发展。
3.1
概述
• • • •
3.1.1 3.1.2 3.1.3 3.1.4
定义 引入硝基的目的 硝化剂类型 硝化方法
3.1
概述
3.1.1 定义 • 硝化 ? 向有机化合物分子的C(或N、O)原子 上引入-NO2的反应。 硝基直接取代H:
3.2 硝化反应历程
• 结论: 用混酸硝化时,普遍认为硝化活性质点 是NO2+,尽管NO2+的含量很低。 随着混酸中含水量的增加,NO2+浓度 逐渐下降;当水摩尔分数50%,混酸中几乎 没有NO2+存在; HNO3中加入H2SO4,NO2+浓度增大。 NO2+浓度大小是硝化能力强弱的重要 标志。硝化速度与NO2+浓度成正比。
3.3 硝化反应动力学
⑴ 甲苯硝化反应步骤 Giles以甲苯的一硝化为例,提出了非 均相硝化的数学模型:8步
• 研究发现: 非均相混酸硝化,有机相中的反应极 少(<0.001%),且反应速度比酸相反应速 度小几个数量级,即反应主要在酸相和两 相界面处进行。
3.3 硝化反应动力学
⑵ 非均相反应体系的三种类型 H2SO4浓度变化对均相硝化反应速度 有明显的影响,非均相硝化反应速度同样 与混酸中H2SO4浓度密切相关。 甲苯在63~78% H2SO4浓度范围内非 均相硝化速度常数 k 变化幅度高达105。
a.分子结构
O
Π3
4
氢键 σ σ
H O
N
σ
O
中心N以SP2杂化轨道与3个O形 成3个σ 键,呈平面三角形分布; N上未参与杂化的P轨道与2个非 羟基O原子的P轨道重叠,在O-N-O 间形成大π 键∏34。 HNO3分子内还可形成氢键。

第03章 硝化和亚硝化

第03章 硝化和亚硝化

6.3 硝化机理及特征 6.3.1 硝化活性质点和反应机理
主要的硝化剂有不同活性硝酸、混酸、硝酸盐和硫酸、硝 酸和醋酸或醋酐的混合物。 已证实:多数硝化剂硝化反应的活性质点是NO2+(硝基阳 离子)。 当硝酸中水分增加,硝化和氧化速度均降低。但前者降低 更多,氧化副反应增加。
在稀硝酸中,硝化活性质点不是NO2+,而是硝酸中所 含微量HNO2离解生成的NO+。 在乙酐或乙酸中硝化是NO2+— CH3COOH或NO2+。
6.5.2
设S和N表示混酸中硫酸和硝酸的质量百分数,ф表示
硝酸比,则混酸含水量=100-S-N; 硝化生成水=N/ф×18/63=2N/7ф; 则脱水值公式如下: 6.5.2.2 硝化活性因数 Factor of Nitration Activity (F.N.A.) 废酸计算含量( F.N.A.)指混酸硝化终了时,废酸中硫酸 的计算含量(质量分数)若以100份混酸为计算基准,则 当Ф≤1
例如,利用二氯乙烷溶剂,可分离1,5或1,8-二硝基萘 或二硝基蒽醌。利用环丁砜,1-氯苯,甲苯,不同组分的 混酸和不同浓度的硝酸,均可比较好的分离1,5-或1,8 -二硝基蒽醌。
6.7
其它硝化方法
6.7.1 硝酸硝化 6.7.2 酸酐硝化 6.7.3 置换硝化
6.8
重要实例
6.8.1 邻、对硝基氯苯 6.8.2 1-硝基蒽醌 6.8.3 2-二乙氧基-4-硝基-N-苯甲酰苯胺
第03章 硝化和亚硝化
Nitration and Nitrosation 概 述 主要硝化方法 硝化机理及特征 硝化影响因素 混酸硝化 硝化异构产物的分离 硝基苯的生产 其他硝化实例 亚硝化
6.1 概述 6.1.1 硝化定义

精细有机合成化学以及工艺学 第六章 硝化以及亚硝化

精细有机合成化学以及工艺学 第六章 硝化以及亚硝化

15
6.3.6硝化副反应 (1)主要的硝化副反应:氧化、去烃基、置换、 脱羧、开环、聚合等。其中氧化影响最大,生成 硝基酚。 (2)烷基苯硝化时,硝化液颜色发黑变暗,说明 硝酸用量不足或硝化温度过高。 因 为 形 成 了 络 合 物 (C6H5CH3· 2ONOSO3H· 2SO4)。 3H 破坏方法:45~55℃时补加HNO3或混酸 (3)大多数副反应,与体系中存在的氮的氧化物 有关。
-8
1.210
-8
10
结论:苯环上有给电子基,硝化反应速度快,产物 主要是邻、对位 苯环上有吸电子基,硝化速度减慢,产物主要 是间位。 2.芳烃硝化异构产物 带有吸电子的取代芳烃硝化邻位异构体 的生成量比对位异构体多。原因是硝基易同 邻位取代基中带负电荷的原子形成络合物。
CHO 19 72 9 1.3 COOH 18.5 80.5 2.2 CN 17.1 80.7 1 NO 2 9 90 8.2 40.8 NO 2 51 OCH 3
F . N . A. D.V .S . 1 F . N . A. D.V .S . F . N . A. 100 % 1 D.V .S .
22
6.4.2 混算配制 配酸工艺:水、硫酸、硝酸如何混合? 先将浓硫酸先缓慢、后渐快加入到水中, 在40度以下先慢后快加入硝酸。
23
6.4.3硝化操作
(4)非均相混酸硝化
被硝化物和硝化产物在反应温度下都呈液态,且 难溶于混酸时,常采用非均相的混酸硝化。这时 需剧烈搅拌,使有机相充分地分散到酸相中以完 成硝化反应。
(5)有机溶剂中硝化
可避免大量使用硫酸作溶剂。 (6)气相硝化 NO2与苯于80~190℃通过分子筛处理便转化为 硝基苯。
5
6.2硝化理论解释

经济学硝化和亚硝化

经济学硝化和亚硝化
会失去控制。
20/42
6.3 影响因素→ 6.3.5 相比和硝酸比
6.3.5 相比和硝酸比 (1)相比(酸油比):混酸与被硝化物的质量
比。 相比↗ 被硝化物在酸相中的溶解量↗故硝化速
度↗,设备生产能力↗。 但相比过大 ,使设备生产能力↘。 工业上增加相比的方法:加入一定量上批硝化
的废酸。
21/42
蒽醌的硝化动力学方程为一级。r = k [ArH ] 少量亚硝酸杂质阻碍硝化;加入尿素(适量)可破坏亚硝
酸的作用。 (2)浓硫酸介质中的硝酸硝化 苯、蒽醌在浓硫酸介质中的硝化为二级反应: r = k [ArH ][HNO3];
k-表观速度常数,与硫酸浓度密切相关,90%浓度时最大。
9/42
6.2 反应机理与动力学→ 6.2.3 非均相硝化动力学
HNO3 +H2O
NO3-+ H3O +
硝酸硝化的同时,高温下发生分解而具有氧化性:
2 HNO3
H2O + N2O5
N2O4 + [O]
浓硝酸高温下氧化性特强。水分增加,硝化、氧化速度均 降低,但硝化降低更多。
7/42
6.2 反应机理与动力学→ 6.2.1 硝化剂的活性质点和反应历程
稀硝酸(< 50%):硝化活性质点为(亚硝基阳离子)NO+, (由硝酸中痕量的亚硝酸离解产生):
14/42
6.3 影响因素→ 6.3.1 被硝化物的性质
(2) 萘环、蒽环:α位活泼。 (3) 吡咯、呋喃、噻酚:在混酸中易被破坏、 不能硝化;在硝酸-乙酐中,硝基进入α位(电子云 密度高)。 (4)其它杂原子化合物:在芳香杂环上硝化时 应注意环上杂原子电性效应的影响和在酸中形成正 离子的影响。
15/42

精细化工 第五章 硝化反应

精细化工 第五章  硝化反应
第五章 硝化及亚硝化
1




5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
概述 硝化反应历程 混酸硝化 硫酸介质中的硝化 有机溶剂-混酸硝化 在乙酐或乙酸中的硝化 稀硝酸硝化 臵换硝化 亚硝化
2
5.1


概述
一、定义
向有机物分子的碳原子上引入硝基生成C-NO2键的反 应称硝化反应。 Ar-H + HO-NO2 →Ar-NO2 + H2O 硝化反应是最普遍,最早的有机反应之一1834年 在脂肪族碳原子上的硝化反应,因难于控制,工业 上很少应用。芳族硝化反应像磺化反应一样是非常 重要的一类化学过程,其应用十分广泛。
21

例如:在采用多锅串联法对甲苯进行混酸 硝化时在第一硝化锅中,酸相中的硝酸浓 度较大,硫酸浓度也较高,反应受传质控 制。
而在第二锅中,由于酸度降低和硝酸含量 减少,反应速率将转变为受动力学控制, 即受化学反应速度控制。

22





二、混酸的硝化能力 对于每个具体硝化过程用的混酸都要求具有适当的 硝化能力。 硝化能力太强,虽然反应快,但容易产生多硝化副 反应; 硝化能力太弱,反应缓慢,甚至硝化不完全。 工业上通常利用硫酸脱水值(D.V.S)和废酸计算浓 度(F.N.A)来表示混酸的硝化能力。 混酸的硝化能力,只适用于混酸硝化,不适用于在 浓硫酸介质中的硝化。
时所用的硝酸约过量10~65%。
5、臵换硝化
11
5.2
硝化反应历程
一、硝化剂的活性质点
已经证实,多数硝化剂参加硝化反应的活性质点 为硝基阳离子。
HNO3 2H2 SO4 NO2 H3O 2HSO4

第五讲 硝化反应

第五讲 硝化反应

一般来说,带有吸电子基如-NO2、-CHO、 -SO3H、-COOH等取代基的芳烃在进行硝化时, 硝基易同邻位取代基中带负电荷的原子形成σ络合物 ,所以硝化产品中邻位异构体生成量往往远比对位 异构体多。当然主产物是间位异构体。
3.2
硝化剂
不同的硝化对象往往需要采用不同的硝化方 法。相同的硝化对象如果采用不同的硝化方法则常 常得到不同的产物组成。因此硝化剂的选择是硝化 反应必须考虑的。例如乙酰苯胺在采用不同的硝化 剂硝化时所得到的产物组成出入很大,见下表。
(3)浓硫酸介质中的均相硝化法 当被硝化物或硝化产物在反应温度下是固态 时,常常将被硝化物溶解于大量的浓硫酸中,然 后加入硫酸和硝酸的混合物进行硝化,这种方法 只需要使用过量很少的硝酸,一般产率较高,所 以应用范围较广。 (4)非均相混酸硝化法 当被硝化物和硝化产物在反应温度下都是液 态时,常常采用非均相混酸硝化的方法,通过剧 烈的搅拌,有机相被分散到酸相中而完成硝化反 应。这种硝化方法有很多优点是目前工业上最常 用、最重要的硝化方法也是本章讨论的重点。
(2)活泼芳烃用硝基盐硝化
硝基硼氟酸盐NO2+BF4-的硝化能力要比混酸强得 多,可以不必考虑NO2+的生成速度对整个反应的 影响:
(3)稀硝酸硝化
芳烃首先与亚硝酸作用生成亚硝基化合物,而 后硝酸再将亚硝基化合物氧化成硝基化合物, 硝酸本身则被还原,又生成新的亚硝酸:
决定步
(4)其他硝化 (A)在醋酐中硝化 硝酸在醋酐中可发生如下反应:
3.5
相比和硝酸比
相比也称酸油比,是指混酸与被硝化物的质量 比。在固定相比的条件下,剧烈的搅拌最多只能使 被硝化物在酸相中达到饱和溶解。增加相比能使更 多量的被硝化物溶解在酸相中,这对于加快反应速 度常常是有利的。 生产上常用的方法是向硝化锅中加入一定量上 批硝化的废酸(也称为循环酸),其优点不仅是可以 增加相比,也有利于反应热的分散和传递。

硝化

硝化

浙江工业大学精细化工研究所
因此: D.V.S.= S/[(100 – S – N )+(2/7)*(N/ψ)] 当ψ≈1时, 反应生成的水 = (2/7)*N D.V.S.= S/[(100 – S – N )+(2/7)*N] =S/[100– S – (5/7)*N] D.V.S.值越大,硝化能力越强;D.V.S.值越小, 硝化能力越弱。
浙江工业大学精细化工研究所
D.V.S.=S/[100– S – (5/7)*N] S = (140 – N)*F.N.A./140 当D.V.S.或F.N.A.为常数,而S、N为变 数时,是一个直线方程,在这直线上的 所有混酸组成都可满足相同D.V.S.值或 F.N.A.值的需求。

浙江工业大学精细化工研究所
废酸生成量,kg
119 53 74.1
141 69.1 96.0
237 139.8 192.0
浙江工业大学精细化工研究所
选择混酸成分时一般应符合以下原则: ①可充分利用硝酸 ②可充分发挥硫酸的作用 ③在原料酸所能配出的范围以内 ④废酸对设备的腐蚀性小 ⑤操作容易 F.N.A. 和D.V.S. 均相同 混酸Ⅰ:硫酸所量最省,但相比太小,操作难以控制。 易发生付反应。 混酸Ⅱ:合适 。 混酸Ⅲ:生产能力低,废酸量大。 硝化:①硝酸比② F.N.A.或D.V.S. ③ 相比(酸油 比)。
如氯苯一硝化: 硝酸比 Ψ=1.05 混酸Ⅰ H2SO4 44.5 混酸组成% HNO3 55.5 H2O 0.0 F.N.A. D.V.S. 73.7 2.8
Ⅱ 49.0 46.9 4.1
73.7 2.8
Ⅲ 59.0 27.9 13.1
73.7 2.8
所需混酸,kg

硝化及亚硝化—认识硝化反应(有机合成课件)

硝化及亚硝化—认识硝化反应(有机合成课件)

硝化及亚硝化反应
硝化方法
稀硝酸硝化 浓硝酸硝化 浓硫酸介质中的均相硝化 非均相混酸硝化 有机溶剂中硝化
精精细细有有机机合合成技成术技术
硝化及亚硝化反应
(1)稀硝酸硝化
• 稀硝酸硝化常用于含有强的第一类定位基的芳香族化合 物,如酚类、酚醚类和某些N-酸化的芳胺的硝化。反应 在不锈钢或搪瓷设备中进行,硝酸约过量10%~65%。
• 对于某些在混酸中易被磺化的化合物,可在硝酸、醋酐、 二氯甲烷或二氯乙烷等介质中用硝酸硝化。这种方法可 避免使用大量的硫酸作溶剂,在工业上具有广阔的前景。
精精细细有有机机合合成技成术技术
硝化及亚硝化反应
有机溶剂中硝化—溶剂作用下形成均相反应体系
• 适用于反应条件下呈固态、易被磺化的化合物。 (1)避免使用大量硫酸做溶剂,减少或消除了废酸量; (2)选择合适的溶剂,可以改变硝基异构体的比例; (3)溶剂:二氯甲烷、二氯乙烷、乙酸、乙酸酐等。
精精细细有有机机合合成技成术技术
硝化及亚硝化反应
精精细细有有机机合合成技成术技术
硝化及亚硝化反应
(4)可制备炸药,如有的多硝基化合物是烈性炸药; 还可用作氧化剂或溶剂等。
在精细化工生产中,芳烃的亲电性硝化更为多见, 且理论和生产工艺的研究也最多。
精精细细有有机机合合成技成术技术
硝化及亚硝化反应
硝化及亚硝化反应
• 硝化是极其重要的单元反应。作为硝化反应的 产物——硝基化合物在燃料、溶剂、炸药、香 料、医药、农药等许多化工领域中可直接或间 接地找到它的应用实例。
精精细细有有机机合合成技成术技术
引入硝基的目的:
硝化及亚硝化反应
(1)作为制备氨基化合物的重要途径。 (2)为促进芳环上的亲核置换反应,引入强吸电性的硝 基可使其他取代基活化。有时硝基本身也可作为离去基团 而被亲核基团所置换。 (3)利用硝基的极性使染料的颜色加深。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
硝化反应定义
2
硝化反应的目的
3
硝化工艺方法
硝化反应概述
1.硝化反应定义
向有机分子的碳原子上引入硝基(-NO2)的反应,称作硝化反应。
2.硝化反应的目的
目的之一:赋予产品特定的性能。
硝基苯
TNT
二甲基麝香
硝化反应的目的
目的之二:将硝基转化为其它基团。
Ar-NO2 Ar-NO2
还原 置换卤化Ar-ຫໍສະໝຸດ H2 Ar-X硝化反应的目的
目的之三:提高亲核置换反应活性。
10% NaOH 350~400℃, 20~30MPa
10% NaOH 160℃, 0.6MPa
10% NaOH 100℃,常压
3.硝化工艺方法
硝化方法 非均相混酸硝化
浓硫酸介质中的硝化
有机溶剂-混酸硝化 乙酐或乙酸介质中的
硝化 稀硝酸硝化 置换硝化
稀HNO3
易发生亲电取代反应的被硝化物,如酚、酚醚、
(10~65%)
取代芳胺等
HNO3
取代硝化反应结果不理想
小结
硝基是具有较强吸电子作用的取代基。硝化 反应工艺方法的选择应依据被硝化物的性质。
硝化剂
适用范围
HNO3-H2SO4-H2O
反应温度下,被硝化物和硝化产物为液态,且 不溶于废硫酸
HNO3-H2SO4 HNO3
被硝化物和硝化产物是固态,且不溶或微溶于 中等浓度的硫酸中
HNO3-H2SO4 反应温度下,被硝化物为固态,且容易被磺化
HNO3
被硝化物易发生氧化、磺化、多硝化等副反应, 或因质子化而使硝化反应难以发生等
相关文档
最新文档