量子力学选择题库
量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。
答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。
答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。
答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。
答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。
答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。
2. 描述量子力学中的波函数坍缩现象。
答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。
量子力学导论考试题及答案

量子力学导论考试题及答案一、选择题(每题2分,共20分)1. 量子力学中,波函数的模平方代表什么?A. 粒子的动量B. 粒子的位置C. 粒子的概率密度D. 粒子的能量2. 海森堡不确定性原理中,哪两个物理量不能同时准确测量?A. 位置和动量B. 能量和时间C. 电荷和质量D. 速度和加速度3. 薛定谔方程是量子力学的哪个基本方程?A. 描述粒子运动的方程B. 描述粒子能量的方程C. 描述粒子自旋的方程D. 描述粒子相互作用的方程4. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒5. 量子力学中的“量子”一词意味着什么?A. 一个基本粒子B. 一个基本的物理量C. 一个离散的量D. 一个连续的量6. 波粒二象性是量子力学中的一个基本概念,它指的是什么?A. 粒子同时具有波和粒子的特性B. 粒子只能表现为波或粒子C. 粒子在宏观尺度下表现为波,在微观尺度下表现为粒子D. 粒子在宏观尺度下表现为粒子,在微观尺度下表现为波7. 量子纠缠是什么现象?A. 两个或多个粒子之间存在一种特殊的相互作用B. 两个或多个粒子的波函数是相互独立的C. 两个或多个粒子的波函数是相互关联的D. 两个或多个粒子的动量是相互关联的8. 量子隧道效应是指什么?A. 粒子在没有足够能量的情况下也能通过势垒B. 粒子在有足够能量的情况下不能通过势垒C. 粒子在有足够能量的情况下更容易通过势垒D. 粒子在没有足够能量的情况下不能通过势垒9. 以下哪个实验验证了量子力学的波粒二象性?A. 光电效应实验B. 双缝实验C. 康普顿散射实验D. 光电效应实验和康普顿散射实验10. 量子力学中的“叠加态”指的是什么?A. 粒子同时处于多个状态B. 粒子只处于一个状态C. 粒子的状态是随机的D. 粒子的状态是确定的二、简答题(每题10分,共30分)1. 简述量子力学中的波函数坍缩概念。
2. 解释什么是量子力学的测量问题。
量子力学选择题库(含答案)

量子力学选择题1.能量为100ev 的自由电子的De Broglie 波长是A A. 1.2A 0. B. 1.5A 0. C.2.1A 0. D. 2.5A 0. 2. 能量为0.1ev 的自由中子的De Broglie 波长是 A.1.3A 0. B. 0.9A 0. C. 0.5A 0. D. 1.8A 0. 3. 能量为0.1ev ,质量为1g 的质点的De Broglie 波长是 A.1.4A 0. B.1.9⨯1012-A 0. C.1.17⨯1012-A 0. D. 2.0A 0.4.温度T=1k 时,具有动能E k T B =32(k B 为Boltzeman 常数)的氦原子的De Broglie 波长是A.8A 0. B. 5.6A 0. C. 10A 0. D. 12.6A 0.5.用Bohr-Sommerfeld 的量子化条件得到的一维谐振子的能量m 为( ,2,1,0=n )AA.E n n = ω.B.E n n =+()12 ω. C.E n n =+()1 ω. D.E n n =2 ω.6.在0k 附近,钠的价电子的能量为3ev ,其De Broglie 波长是 A.5.2A 0. B.7.1A 0. C.8.4A 0. D.9.4A 0.7.钾的脱出功是2ev ,当波长为3500A 0的紫外线照射到钾金属表面时,光电子的最大能量为A. 0.25⨯1018-J. B. 1.25⨯1018-J. C. 0.25⨯1016-J. D. 1.25⨯1016-J.8.当氢原子放出一个具有频率ω的光子,反冲时由于它把能量传递给原子而产生的频率改变为A.2μc . B. 22μc . C. 222μc . D. 22μc .pton 效应证实了A.电子具有波动性.B. 光具有波动性.C.光具有粒子性.D. 电子具有粒子性. 10.Davisson 和Germer 的实验证实了A. 电子具有波动性.B. 光具有波动性.C. 光具有粒子性.D. 电子具有粒子性.11.粒子在一维无限深势阱U x x ax x a (),,,=<<∞≤≥⎧⎨⎩000中运动,设粒子的状态由ψπ()sinx C xa =描写,其归一化常数C 为B A.1a . B.2a . C.12a . D.4a .12. 设ψδ()()x x =,在dx x x +-范围内找到粒子的几率为DA.δ()x .B.δ()x dx .C.δ2()x .D.δ2()x dx .13. 设粒子的波函数为 ψ(,,)x y z ,在dx x x +-范围内找到粒子的几率为CA.ψ(,,)x y z dxdydz 2.B.ψ(,,)x y z dx 2. C.dxdydz z y x )),,((2⎰⎰ψ.D.dx dy dz x yz ψ(,)⎰⎰⎰2.14.设ψ1()x 和ψ2()x 分别表示粒子的两个可能运动状态,则它们线性迭加的态c x c x 1122ψψ()()+的几率分布为DA.c c 112222ψψ+. B. c c 112222ψψ++2*121ψψc c . C.c c 112222ψψ++2*1212ψψc c . D.c c 112222ψψ++c c c c 12121212****ψψψψ+.15.波函数应满足的标准条件是A.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限. 16.有关微观实物粒子的波粒二象性的正确表述是 A.波动性是由于大量的微粒分布于空间而形成的疏密波. B.微粒被看成在三维空间连续分布的某种波包. C.单个微观粒子具有波动性和粒子性. D. A, B, C. 17.已知波函数ψ1=-+u x i Et u x i Et ()exp()()exp(), ψ21122=-+u x i E t u x iE t ()exp()()exp(), ψ312=-+-u x i Et u x iEt ()exp()()exp(), ψ41122=-+-u x i E t u x iE t ()exp()()exp().其中定态波函数是A.ψ2.B.ψ1和ψ2.C.ψ3.D.ψ3和ψ4. 18.若波函数ψ(,)x t 归一化,则A.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都是归一化的波函数.B.ψ(,)exp()x t i θ是归一化的波函数,而ψ(,)exp()x t i -δ不是归一化的波函数.C.ψ(,)exp()x t i θ不是归一化的波函数,而ψ(,)exp()x t i -δ是归一化的波函数.D.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都不是归一化的波函数.(其中θδ,为任意实数) 19.波函数ψ1、ψψ21=c (c 为任意常数), A.ψ1与ψψ21=c 描写粒子的状态不同.B.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是1: c .C.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是2:1c. D.ψ1与ψψ21=c 描写粒子的状态相同.20.波函数ψ(,)(,)exp()x t c p t ipx dp =⎰12π 的傅里叶变换式是CA. c p t x t ipx dx (,)(,)exp()=⎰12π ψ. B. c p t x t i px dx (,)(,)exp()*=⎰12π ψ.C.c p t x t ipx dx (,)(,)exp()=-⎰12πψ.D.c p t x t i px dx (,)(,)exp()*=-⎰12π ψ.21.量子力学运动方程的建立,需满足一定的条件:(1)方程中仅含有波函数关于时间的一阶导数. (2)方程中仅含有波函数关于时间的二阶以下的导数.(3)方程中关于波函数对空间坐标的导数应为线性的. (4) 方程中关于波函数对时间坐标的导数应为线性的.(5) 方程中不能含有决定体系状态的具体参量. (6) 方程中可以含有决定体系状态的能量. 则方程应满足的条件是A. (1)、(3)和(6).B. (2)、(3)、(4)和(5).C. (1)、(3)、(4)和(5).D.(2)、(3)、(4)、(5)和(6).22.两个粒子的薛定谔方程是A.∑=ψ∇=ψ21212221),,(2),,(i i t r r t r r t iμ∂∂),,(),,(2121t r r t r r Uψ+ B.∑=ψ∇=ψ21212221),,(2),,(i i t r r t r r tμ∂∂),,(),,(2121t r r t r r Uψ+ C.∑=ψ∇=ψ21212221),,(2),,(i i i t r r t r r t μ∂∂),,(),,(2121t r r t r r U ψ+ D.∑=ψ∇=ψ21212221),,(2),,(i i i t r r t r r t i μ∂∂),,(),,(2121t r r t r r U ψ+ 23.几率流密度矢量的表达式为CA. J =∇ψ-2μ()**ψψ∇ψ.B. J i =∇ψ-2μ()**ψψ∇ψ. C. J i =-∇ψ2μ()**ψ∇ψψ. D. J =-∇ψ2μ()**ψ∇ψψ.24.质量流密度矢量的表达式为CA. J =∇ψ-2()**ψψ∇ψ. B. J i =∇ψ-2()**ψψ∇ψ. C. J i =-∇ψ2()**ψ∇ψψ. D. J =-∇ψ2()**ψ∇ψψ.25. 电流密度矢量的表达式为CA. J q =∇ψ-2μ()**ψψ∇ψ. B. J iq =∇ψ-2μ()**ψψ∇ψ. C. J iq =-∇ψ2μ()**ψ∇ψψ. D. J q =-∇ψ2μ()**ψ∇ψψ.26.下列哪种论述不是定态的特点DA.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为D A.πμ22224 n a ,B.πμ22228 n a ,C.πμ222216 n a , D.πμ222232 n a .28. 在一维无限深势阱U x x a x a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子的能级为C A.πμ22222 n a , B.πμ22224 n a , C.πμ22228 n a , D.πμ222216 n a .29. 在一维无限深势阱U x x b x b (),/,/=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为AA.πμ22222 n b ,B.πμ2222 n b , C.πμ22224 n b , D.πμ22228 n b .30. 在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于基态,其位置几率分布最大处是A.x =0,B.x a =,C.x a =-,D.x a =2.31. 在一维无限深势阱U x x a x a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于第一激发态,其位置几率分布最大处是A.x a =±/2,B.x a =±,C.x =0,D.4/a x ±=. 32.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 33.线性谐振子的能级为CA.(/),(,,,...)n n +=12123 ω. B.(),(,,,....)n n +=1012 ω. C.(/),(,,,...)n n +=12012ω. D.(),(,,,...)n n +=1123 ω. 34.线性谐振子的第一激发态的波函数为ψαα()exp()x N x x=-122122,其位置几率分布最大处为 A.x =0. B.x =±μω. C.x =μω. D.x =±μω.35.线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 36.线性谐振子的能量本征方程是AA.[]-+= 222222212μμωψψd dx x E .B.[]--= 22222212μμωψψd dx x E .C.[] 22222212μμωψψd dx x E -=-.D.[] 222222212μμωψψd dx x E +=-.37.氢原子的能级为DA.- 2222e n s μ.B.-μ22222e n s .C.242n e s μ -. D. -μe n s 4222 .38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为DA.r r R nl )(2. B.22)(r r R nl . C.rdr r R nl )(2. D.dr r r R nl22)(. 39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为A.),(ϕθlmY . B. 2),(ϕθlm Y . C. Ωd Y lm ),(ϕθ. D. Ωd Y lm 2),(ϕθ. 40.波函数ψ和φ是平方可积函数,则力学量算符 F为厄密算符的定义是C A.ψφτφψτ***F d F d =⎰⎰. B.ψφτφψτ** ( )F d F d =⎰⎰.C.( ) **F d Fd ψφτψφτ=⎰⎰. D.***F d Fd ψφτψφτ=⎰⎰.41. F和 G 是厄密算符,则 A. FG必为厄密算符. B. FG GF -必为厄密算符. C.i FG GF ()+必为厄密算符. D. i FG GF ()-必为厄密算符.42.已知算符 xx =和 pi x x =- ∂∂,则AA. x和 p x 都是厄密算符. B. xp x 必是厄密算符. C. xp p x x x +必是厄密算符. D. xpp x x x -必是厄密算符. 43.自由粒子的运动用平面波描写,则其能量的简并度为 A.1. B. 2. C. 3. D. 4.44.二维自由粒子波函数的归一化常数为(归到δ函数)A.1212/()/π .B.12/()π .C.1232/()/π .D.122/()π45.角动量Z 分量的归一化本征函数为CA.12πϕ exp()im . B.)ex p(21r k i⋅π. C.12πϕexp()im . D.)ex p(21r k i ⋅π.46.波函数)ex p()(cos )1(),(ϕθϕθim P N Y ml lm m lm -=A. 是 L2的本征函数,不是 L z 的本征函数. B.不是 L 2的本征函数,是 L z 的本征函数.C 是 L2、 L z 的共同本征函数. D. 即不是 L 2的本征函数,也不是L z 的本征函数. 47.若不考虑电子的自旋,氢原子能级n=3的简并度为 A. 3. B. 6. C. 9. D. 12. 48.氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为n 2,这种性质是A. 库仑场特有的.B.中心力场特有的.C.奏力场特有的.D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为W r dr R r dr 323222()=,则其几率分布最大处对应于Bohr 原子模型中的圆轨道半径是 A.a 0. B. 40a . C. 90a . D. 160a . 51.设体系处于ψ=--123231102111R Y R Y 状态,则该体系的能量取值及取值几率分别为A.E E 321434,;,. B.E E 321232,;,-. C.E E 321232,;,. D.E E 323414,;,. 52.接51题,该体系的角动量的取值及相应几率分别为A.21 ,.B. ,1.C.212,. D.212,.53. 接51题,该体系的角动量Z 分量的取值及相应几率分别为A.01434,;,- . B. 01434,;,. C.01232,;, -. D. 01232,;,-- . 54. 接51题,该体系的角动量Z 分量的平均值为A.14 .B. -14 .C. 34 .D. -34 .55. 接51题,该体系的能量的平均值为A.-μe s 4218 .B.-3128842μe s .C.-2925642μe s . D.-177242μe s. 56.体系处于ψ=C kx cos 状态,则体系的动量取值为A. k k ,-.B. k .C. - k .D. 12 k.57.接上题,体系的动量取值几率分别为A. 1,0.B. 1/2,1/2.C. 1/4,3/4/ .D. 1/3,2/3. 58.接56题, 体系的动量平均值为A.0.B. k .C. - k .D. 12 k.59.一振子处于ψψψ=+c c 1133态中,则该振子能量取值分别为A.3252 ωω,.B. 1252 ωω,.C. 3272 ωω,.D. 1252 ωω,.60.接上题,该振子的能量取值E E 13,的几率分别为A.2321,c c . B.232121c c c +,232123c c c +. C.23211c c c +,23213c c c +. D.31,c c .61.接59题,该振子的能量平均值为A.ω232123215321c c c c ++. B. 5 ω. C. 92 ω. D.ω232123217321c c c c ++.62.对易关系[ ,()]pf x x 等于(f x ()为x 的任意函数) A.i f x '().B.i f x ().C.-i f x '(). D.-i f x (). 63. 对易关系[ ,exp()]piy y 等于A.)exp(iy .B. i iy exp().C.- exp()iy .D.-i iy exp().64.对易关系[, ]x px 等于 A.i . B. -i . C. . D. - .65. 对易关系[, ]L yx 等于 A.i z. B. z . C.-i z . D.- z . 66. 对易关系[, ]L zy 等于A.-i x. B. i x . C. x . D.- x . 67. 对易关系[, ]L zz 等于 A.i x. B. i y . C. i . D. 0. 68. 对易关系[, ]x py 等于A. .B. 0.C. i .D. - . 69. 对易关系[ , ]p p y z 等于A.0.B. i x. C. i p x . D. p x . 70. 对易关系[ ,]L L x z 等于 A.i L y. B.-i L y. C. L y. D.- L y.71. 对易关系[ , ]L L z y等于A.i L x. B. -i L x. C.L x . D. -L x .72. 对易关系[ , ]L L x 2等于 A. L x . B. i L x . C.i L L z y ( )+. D. 0. 73. 对易关系[ , ]L L z 2等于 A. L z . B. i L z . C.i L L x y ( )+. D. 0.74. 对易关系[, ]L px y 等于A.i L z .B. -i L z .C. i p z .D. -i p z . 75. 对易关系[,]p L z x 等于 A.-i py . B.i py . C.-i L y. D.i L y.76. 对易关系[ , ]L p zy 等于A.-i px . B. i p x . C. -i L x. D. i L x. 77.对易式[ , ]L x y 等于A.0.B. -i z. C. i z . D. 1. 78. 对易式[ , ]F F m n 等于(m,n 为任意正整数)A. Fm n+. B. Fm n-. C. 0. D. F. 79.对易式[ , ]F G 等于A. FG. B. GF . C. FG GF -. D. FG GF +. 80. .对易式[,]F c 等于(c 为任意常数)A.cF. B. 0. C. c . D. F ˆ. 81.算符 F和 G 的对易关系为[ , ]F G ik =,则 F 、 G 的测不准关系是 A.( )( )∆∆F G k 2224≥. B. ( )( )∆∆FG k 2224≥. C.( )( )∆∆F G k 2224≥. D. ( )( )∆∆F G k 2224≥. 82.已知[ , ]xp i x = ,则 x 和 p x 的测不准关系是 A.( )( )∆∆x p x 222≥ . B. ( )( )∆∆x p 2224≥ . C. ( )( )∆∆x p x 222≥ . D.( )( )∆∆xp x 2224≥ . 83. 算符L x和 L y 的对易关系为[ , ] L L i L x y z= ,则Lx、 L y 的测不准关系是A.( )( ) ∆∆L L L x y z 22224≥. B.( )( ) ∆∆L L L x y 22224≥ . C.( )( ) ∆∆FG L z 22224≥ . D.( )( ) ∆∆F G L 22224≥ . 84.电子在库仑场中运动的能量本征方程是A.[]-∇+= 2222μψψze r E s .B. []-∇+= 22222μψψze r E s.C.[]-∇-= 2222μψψze r E s .D.[]-∇-= 22222μψψze r E s .85.类氢原子体系的能量是量子化的,其能量表达式为A.-μz e n s 22222 . B.-μ224222z e n s . C.-μze n s 2222 . D. -μz e n s 24222 .86. 在一维无限深势阱U x x ax x a (),,,=<<∞≤≥⎧⎨⎩000中运动的质量μ为的粒子,其状态为 ψππ=42aa x a x sin cos ,则在此态中体系能量的可测值为 A.22222229,2a a μπμπ , B. πμπμ2222222 a a , , C.323222222πμπμ a a ,,D.524222222πμπμ aa ,. 87.接上题,能量可测值E 1、E 3出现的几率分别为 A.1/4,3/4. B. 3/4,1/4. C.1/2, 1/2. D. 0,1. 88.接86题,能量的平均值为A.52222πμ a ,B.2222πμ a ,C.72222πμ a ,D.5222πμ a .89.若一算符 F 的逆算符存在,则[ , ]F F -1等于A. 1.B. 0.C. -1.D. 2.90.如果力学量算符 F 和 G 满足对易关系[ , ]F G =0, 则A. F和 G 一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值. B. F和 G 一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C. F和 G 不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D. F和 G 不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.91.一维自由粒子的能量本征值A. 可取一切实数值.B.只能取不为负的一切实数.C.可取一切实数,但不能等于零.D.只能取不为正的实数.92.对易关系式[ , ()]p p f x x x 2等于A.-i p f x x '()2.B. i p f x x '()2 .C.-i p f x x ()2.D. i p f x x ()2.93.定义算符yx L i L L ˆˆˆ±=±, 则[ ,]L L +-等于A.z L ˆ .B.2 L z .C.-2 L z .D.z L ˆ-. 94.接上题, 则[,]L L z +等于A. L +.B. L z .C. -+ L .D. -L z .95. 接93题, 则[ ,]L L z -等于A. L -.B. L z .C. -- L .D. -L z .96.氢原子的能量本征函数ψθϕθϕnlm nl lm r R r Y (,,)()(,)=A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.B.只是体系能量算符、角动量Z 分量算符的本征函数,不是角动量平方算符的本征函数.C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数.D.是体系能量算符、角动量平方算符、角动量Z 分量算符的共同本征函数. 97.体系处于ψ=+c Y c Y 111210态中,则ψA.是体系角动量平方算符、角动量Z 分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z 分量算符的本征函数.D.即不是体系角动量平方算符的本征函数,也不是角动量Z 分量算符的本征函数. 98.对易关系式[ ,]FG H 等于A.[ , ] [ , ]F H G F G H +.B. [ , ] F H GC. [ , ]F G H .D. [ , ] [ , ]F H G F G H -.99.动量为p '的自由粒子的波函数在坐标表象中的表示是)'ex p(21)('x p ix Pπψ=,它在动量表象中的表示是A.δ(')p p -.B.δ(')p p +.C.δ()p .D.δ(')p .100.力学量算符 x对应于本征值为x '的本征函数在坐标表象中的表示是 A.δ(')x x -. B.δ(')x x +. C.δ()x . D.δ(')x . 101.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是BA.⎪⎪⎪⎪⎪⎭⎫⎝⎛ 02/22/2.B.⎪⎪⎪⎪⎪⎭⎫⎝⎛- 02/22/2.C.222200//⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.D.222200//-⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.102.线性谐振子的能量本征函数ψ1()x 在能量表象中的表示是B A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 001. B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 010. C. 1000⎛⎝ ⎫⎭⎪⎪⎪⎪. D.0100⎛⎝ ⎫⎭⎪⎪⎪⎪. 103. 线性谐振子的能量本征函数)()(10x b x a ψψψ+=在能量表象中的表示是A.⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ 0//2222b a b b a a . B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++0//02222b a b b a a . C. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 0b a . D. 00a b ⎛⎝ ⎫⎭⎪⎪⎪⎪. 104.在(, L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中 L z 的平均值为 A. . B. - . C. 2 . D. 0.105.算符 Q 只有分立的本征值{}Q n ,对应的本征函数是{()}u x n ,则算符 (,)F x i x ∂∂在 Q 表象中的矩阵元的表示是B A.F u x F x i x u x dx mn n m =⎰*()(,)() ∂∂. B.F u x F x i x u x dx mn m n =⎰*()(,)() ∂∂. C.F u x F x i x u x dx mnn m =⎰()(,)()* ∂∂. D.F u x F x i x u x dxmn m n =⎰()(,)()*∂∂.106.力学量算符在自身表象中的矩阵表示是A. 以本征值为对角元素的对角方阵. B 一个上三角方阵. C.一个下三角方阵. D.一个主对角线上的元素等于零的方阵.107.力学量算符xˆ在动量表象中的微分形式是 A.-i p x∂∂. B.i p x ∂∂. C.-i p x 2∂∂. D.i p x 2∂∂.108.线性谐振子的哈密顿算符在动量表象中的微分形式是A.p p 22222212μμω∂∂+ . B.p p 2222212μμω∂∂-. C.22222212p p ∂∂μωμ -. D.--p p 2222212μμω∂∂.109.在 Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是 A. ±1. B. 0. C. ±i . D. 1±i .110.接上题, F 的归一化本征态分别为A.22112211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.B. 1111⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.C. 12111211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.D.22102201⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪,. 111.幺正矩阵的定义式为A.S S +-=. B.S S +=*. C.S S =-. D.S S *=-. 112.幺正变换A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.113.算符()( )/axip=+μωμω212,则对易关系式[ , ]a a +等于 A. [ , ]a a +=0. B. [ , ]a a +=1. C. [ , ]a a +=-1. D.[ , ]a a i +=. 114.非简并定态微扰理论中第n 个能级的表达式是(考虑二级近似)A.E H H E E nnn mn nmm()()()''0200++-∑. B.E H H E E nnn mn nmm()()()'''0200++-∑.C.E H H E E nnn mn mnm()()()'''0200++-∑. D.E H H E E nnn mn mnm()()()''0200++-∑.115. 非简并定态微扰理论中第n 个能级的一级修正项为 A.H mn '. B.H nn '. C.-H nn '. D.H nm '.116. 非简并定态微扰理论中第n 个能级的二级修正项为A.H EE mnnmm'()()200-∑. B.''()()H EE mnnmm200-∑. C.''()()H EE mnmnm200-∑. D.H EE mnmnm'()()200-∑.117. 非简并定态微扰理论中第n 个波函数一级修正项为A.H EE mnnmmm '()()()000-∑ψ. B.''()()()H E E mn nmm m000-∑ψ.C.''()()()H E E mn mnm m000-∑ψ. D.H EE mnmnm m'()()()000-∑ψ.118.沿x 方向加一均匀外电场ε,带电为q 且质量为μ的线性谐振子的哈密顿为A. H d dx x q x =-++ 22222212μμωε.B. H d dx x q x =-++ 2222212μμωε.C. H d dx x q x =-+- 2222212μμωε. D. H d dx x q x =-+- 22222212μμωε.119.非简并定态微扰理论的适用条件是A.H E E mkkm'()()001-<<. B.H E E mk km'()()001+<<. C.H mk '<<1. D.E E km()()001-<<.120.转动惯量为I ,电偶极矩为 D 的空间转子处于均匀电场ε中,则该体系的哈密顿为A.ε ⋅+=D I L H 2ˆˆ2.B. ε ⋅+-=D I L H 2ˆˆ2.C. ε⋅-=D I L H 2ˆˆ2. D. ε ⋅--=D I L H 2ˆˆ2.121.非简并定态微扰理论中,波函数的一级近似公式为A.ψψψn n nm nmmm H E E =+-∑()()()()''0000. B.ψψψn n mn nmmm H E E =+-∑()()()()''0000.C.ψψψn n mn mnmm H E E =+-∑()()()()''0000. D.ψψψn n nm mnmm H E E =+-∑()()()()''0000.122.氢原子的一级斯塔克效应中,对于n =2的能级由原来的一个能级分裂为 A. 五个子能级. B. 四个子能级. C. 三个子能级. D. 两个子能级. 123.一体系在微扰作用下,由初态Φk 跃迁到终态Φm 的几率为A.202' )'ex p('1⎰tmk mkdt t i H ω . B.2' )'ex p('⎰tmk mkdt t i H ω.C.22')' ex p(1⎰tmk mkdt t i Hω . D.2' )'ex p(⎰tmk mkdt t i Hω.124.用变分法求量子体系的基态能量的关键是A. 写出体系的哈密顿. B 选取合理的尝试波函数.C 计算体系的哈密顿的平均值.D 体系哈密顿的平均值对变分参数求变分. 125.Stern-Gerlach 实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋.126. S 为自旋角动量算符,则[ , ]S S y x 等于 A.2i . B.i. C. 0 .D.-i S z.127. σ为Pauli 算符,则[ , ]σσx z 等于A.-i y σ. B.i y σ. C.2i y σ. D.-2i y σ.128.单电子的自旋角动量平方算符 S2的本征值为 A.142 . B.342 . C.322 . D.122 .129.单电子的Pauli 算符平方的本征值为 A. 0. B. 1. C. 2. D. 3. 130.Pauli 算符的三个分量之积等于 A. 0. B. 1. C. i . D. 2i .131.电子自旋角动量的x 分量算符在S z 表象中矩阵表示为A. S x =⎛⎝ ⎫⎭⎪ 21001.B. S i i x =-⎛⎝ ⎫⎭⎪ 200.C. S x =⎛⎝ ⎫⎭⎪ 20110.D.S x =-⎛⎝ ⎫⎭⎪21001. 132. 电子自旋角动量的y 分量算符在S z 表象中矩阵表示为A. S y =⎛⎝ ⎫⎭⎪ 21001.B. S i y =-⎛⎝ ⎫⎭⎪ 20110.C. S i i i y =-⎛⎝ ⎫⎭⎪ 200.D.S i i y =⎛⎝ ⎫⎭⎪ 200. 133. 电子自旋角动量的z 分量算符在S z 表象中矩阵表示为A. S z =⎛⎝ ⎫⎭⎪ 21001.B. S z =-⎛⎝ ⎫⎭⎪ 20110.C. S z =-⎛⎝ ⎫⎭⎪ 21001.D.S i z=-⎛⎝ ⎫⎭⎪ 21001. 134. , J J 12是角动量算符, J J J =+12,则[ , ] J J 212等于 A. J 1. B.- J 1. C. 1 . D. 0 . 135.接上题, [ , ] J J z 12等于 A.i J J xy( )11+. B.i J z1. C.Jz1. D. 0.136.接134题, ]ˆ,ˆ[12z J J 等于 A.i J J x y ( )11+. B.i J z1. C.J z 1. D. 0.137.一电子处于自旋态χχχ=+-a s b s z z 1212//()()中,则s z 的可测值分别为A.0, .B. 0,- .C. 22,.D.22,-.138.接上题,测得s z 为 22,-的几率分别是A.a b ,.B.a b 22,. C.a b 2222/,/. D. a a b b a b 222222/(),/()++.139.接137题, s z 的平均值为A. 0.B. )(222b a - . C. )22/()(2222b a b a +- . D. .140.在s z 表象中,χ=⎛⎝ ⎫⎭⎪3212//,则在该态中s z 的可测值分别为A. ,-.B. /,2.C. /,/22-.D. ,/-2. 141.接上题,测量s z 的值为 /,/22-的几率分别为 A.3212/,/. B.1/2,1/2. C.3/4,1/4. D.1/4, 3/4. 142.接140题,s z 的平均值为A. /2.B. /4.C.- /4.D.- /2. 143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系.B.氢原子中的电子、质子、中子组成的体系是全同粒子体系.C.光子和电子组成的体系是全同粒子体系.D.α粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数A.是对称的.B.是反对称的.C.具有确定的对称性.D.不具有对称性. 145.分别处于p 态和d 态的两个电子,它们的总角动量的量子数的取值是A. 0,1,2,3,4.B.1,2,3,4.C. 0,1,2,3.D.1,2,3.146. 下列各物体哪个是绝对黑体 (B)(A)不辐射任何光线的物体 (B)不能反射任何光线的物体 (C)不能反射可见光的物体 (D)不辐射可见光的物体147. 金属的光电效应的红限依赖于:(C )(A)入射光的频率 (B)入射光的强度 (C)金属的逸出功 (D)入射光的频率和金属的逸出功148. 关于不确定(测不准)关系有以下几种理解:(1) 粒子的动量不可能确定 (2) 粒子的坐标不可能确定(3) 粒子的动量和坐标不可能同时确定 (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是:( )(A) (1),(2) (B) (2),(4) (C) (3),(4) (D) (4),(1) 149. 完全描述微观粒子运动状态的是:( )(A) 薛定谔方程 (B)测不准关系 (C)波函数 (D) 能量 150. 完全描述微观粒子运动状态变化规律的是:( )(A)波函数 (B) 测不准关系 (C) 薛定谔方程 (D) 能级151,卢瑟福粒子实验证实了[ ];斯特恩-盖拉赫实验证实了[ ];康普顿效应证实了[ ];戴维逊-革末实验证实了[ ].(A)光的量子性. (B) 玻尔的能级量子化假设. (C)X 射线的存在. (D)电子的波动性(E)原子的有核模型. (F) 原子的自旋磁矩取向量子化.152. 关于光电效应有下列说法:(1)任何波长的可见光照射到任何金属表面都能产生光电效应;(2)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,释出的光电子的最大初动能也不同;(3)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,单位时间释出的光电子数一定相等;(4)若入射光的频率均大于一给定金属的红限,则当入射光频率不变而强度增大一倍时,该金属的饱和光电流也增大一倍. 其中正确的是:( )(A) (1),(2),(3) (B) (2),(3),(4) (C) (2),(3) (D) (2),(4) 153. 已知氢原子从基态激发到某一定态所需能量为10.19eV,若氢原子从能量为-0.85eV 的状态跃迁到上述定态时,所发射的光子的能量为:( )(A)2.56eV (B)3.41eV (C) 4.25eV (D) 9.95eV 154. 若光子与电子的波长相等,则它们:( )(A)动量及总能量均相等 (B) 动量及总能量均不相等 (C)动量相等,总能量不相等 (D)动量不相等,总能量相等155.量子力学能够正确地描述______的运动规律( ) A.宏观物体 B.微观粒子 C.高速运动 D.低速运动156、下列选项中不属于波函数标准条件的是( ) A 连续性; B 有限性; C 周期性;D 单值性。
量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。
2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。
3. 描述量子隧道效应,并解释它在实际应用中的重要性。
三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。
求该粒子的能量E。
2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。
求该电子的动量分布。
答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。
这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。
2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。
例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。
3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。
量子力学考研试题及答案

量子力学考研试题及答案一、单项选择题(每题5分,共20分)1. 量子力学中,波函数的平方代表粒子的什么物理量?A. 动量B. 能量C. 位置D. 概率密度答案:D2. 以下哪项是海森堡不确定性原理的表述?A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程描述的是:A. 经典力学B. 电磁学C. 量子力学D. 热力学答案:C4. 泡利不相容原理适用于:A. 光子B. 电子C. 质子D. 中子答案:B二、填空题(每题5分,共20分)1. 根据量子力学,一个粒子的波函数可以表示为 \(\psi(x, t)\),其中 \(x\) 代表粒子的________,\(t\) 代表时间。
答案:位置2. 量子力学中的波粒二象性表明,粒子既表现出________的性质,也表现出粒子的性质。
答案:波动3. 量子力学中,一个粒子的能量可以表示为 \(E =\frac{p^2}{2m}\),其中 \(p\) 代表粒子的________。
答案:动量4. 量子力学中的隧道效应是指粒子可以穿过________的势垒。
答案:经典物理认为不可能三、简答题(每题10分,共30分)1. 简述德布罗意波的概念及其在量子力学中的意义。
答案:德布罗意波是指物质粒子(如电子)具有波动性,其波长与粒子的动量成反比。
在量子力学中,这一概念是波函数理论的基础,它表明粒子的行为不能完全用经典力学来描述,而是需要用波动方程来描述。
2. 描述一下量子力学中的量子态叠加原理。
答案:量子态叠加原理是指一个量子系统可以同时处于多个可能状态的叠加,直到进行测量时,系统才会坍缩到其中一个特定的状态。
这一原理是量子力学的核心特征之一,它导致了量子力学的非经典行为和概率解释。
3. 解释什么是量子纠缠,并给出一个实际应用的例子。
答案:量子纠缠是指两个或多个量子粒子之间存在的一种非经典的强关联,即使它们相隔很远,一个粒子的状态改变会即时影响到另一个粒子的状态。
量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。
A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。
答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。
答案:±1/23. 薛定谔方程描述的是粒子的_________。
答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。
答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。
答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。
答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。
在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。
波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。
2. 请简要说明量子力学中的不确定性原理。
答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。
量子力学(第1-4章)考试试题

第一至四章 例题一、单项选择题1、普朗克在解决黑体辐射时提出了 【 】A 、能量子假设B 、光量子假设C 、定态假设D 、自旋假设2、若nn n a A ψψ=ˆ,则常数n a 称为算符A ˆ的 【 】 A 、本征方程 B 、本征值 C 、本征函数 D 、守恒量3、证实电子具有波动性的实验是 【 】A 、 戴维孙——革末实验B 、 黑体辐射C 、 光电效应D 、 斯特恩—盖拉赫实验4、波函数应满足的标准条件是 【 】A 、 单值、正交、连续B 、 归一、正交、完全性C 、 连续、有限、完全性D 、 单值、连续、有限 5、已知波函数 )exp()()exp()(1Et ir Et i rϕϕψ+-=, )exp()()exp()(22112t E i r t E i rϕϕψ+-=,)exp()()exp()(213Et ir Et i r-+-=ϕϕψ,)exp()()exp()(22114t E ir t E i r-+-=ϕϕψ其中定态波函数是 【 】 A 、ψ2 B 、ψ1和ψ2 C 、ψ3 D 、3ψ和ψ46、在一维无限深势阱⎩⎨⎧≥∞<=a x ax x U ,,0)(中运动的质量为μ的粒子的能级为 【 】A. πμ22222 n a B. πμ22224 n a C. πμ22228 n a D. πμ222216 n a. 7、量子力学中用来表示力学量的算符是 【 】 A 、线性算符 B 、厄米算符 C 、幺正算符 D 、线性厄米算符8、]ˆ ,ˆ[x p x= 【 】 A 、0 B 、 i C 、 i - D 、29、守恒量是 【 】A 、处于定态中的力学量B 、处于本征态中的力学量C 、与体系哈密顿量对易的力学量D 、其几率分布不随时间变化的力学量10、某体系的能量只有两个值1E 和2E ,则该体系的能量算符在能量表象中的表示为【 】A 、⎥⎦⎤⎢⎣⎡1221E E E E B 、⎥⎦⎤⎢⎣⎡2100E E C 、⎥⎦⎤⎢⎣⎡0021E E D 、⎥⎦⎤⎢⎣⎡2211E E E E 11、)(r nlmψ为氢原子归一化的能量本征函数,则=''⎰τψψd m l n nlm 【 】A 、0B 、1C 、m m l l ''δδD 、m l lm ''δδ 二、填空题 1、19世纪末20世纪初,经典物理遇到的困难有(举三个例子) 。
量子力学选择题试题一

1. 量子力学只适应于【 】A.微观客体B.低速微观客体C.宏观物体D.宏观物体和微观客体2.算符A 本征态是指【 】A.在该态上测量力学量A 没有确定值B.算符A 为厄米算符C.在该态上多次测量力学量A 有唯一确定值D.一个确定的状态3.定态是指【 】A.波函数形式为Et i e r -)(ψ的态B.波函数形式为r p i e t ∙-)(ψ的态C.波函数形式为)(21x p Et i x e-- π的态 D.波函数形式为)ˆ(23)2(1x p Et i e ∙-- π的态4.波函数和体系状态的关系是【 】A.波函数完全确定体系状态B.只有定态波函数才能唯一确定体系状态C.因不确定常数因子的影响,波函数不能完全确定体系状态D.因不确定相因子的影响,波函数不能完全确定体系状态5.波函数确定则【 】A.所有力学量的取值概率完全确定B.某些力学量的取值可以完全确定C.只有体系能量完全确定D.波函数与力学量取值无关6.可测量的物理量在量子力学中可以用厄密算符表示,原因是【 】A.厄米算符作用在波函数上得到复数乘以该波函数B.厄米算符是幺正算符C. 厄密算符的本征值都是实数D.厄密算符的本征值取值概率一定7. 中心力场中体系守恒量有【 】A.只有能量B.动量和角动量C.只有角动量D.能量和角动量8.两个电子体系的自旋波函数是A. )2()1(βαB. )1()2(βαC. )]2()1([21βα+D. )]1()2()2()1([21βαβα+9.下列说法错误的是【 】A.电子是费米子B.电子自旋在z 方向的分量是2±C. 电子是玻色子D. 电子满足Pauli 不相容原理10.下列说法错误的是【 】A.Pauli 矩阵是厄米矩阵B.y y σσσ、、x 的本征值都是1± C.在各种表象下y y σσσ、、x 的表示形式不变 D.在不同表象下y y σσσ、、x 的表示不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子力学选择题1.能量为100ev 的自由电子的DeBroglie 波长是A A.1.2A 0.B.1.5A 0.C.2.1A 0.D.2.5A 0. 2.能量为0.1ev 的自由中子的DeBroglie 波长是A.1.3A 0.B.0.9A 0.C.0.5A 0.D.1.8A 0.3.能量为0.1ev ,质量为1g 的质点的DeBroglie 波长是A.1.4A 0.B.1.9⨯1012-A 0.⨯1012-A 0.D.2.0A 0. 4.温度T=1k 时,具有动能E k TB =32(k B 为Boltzeman 常数)的氦原子的DeBroglie 波长是A.8A 0.B.5.6A 0.C.10A 0.D.12.6A 0.5.用Bohr-Sommerfeld 的量子化条件得到的一维谐振子的能量m 为( ,2,1,0=n )AA.E n n = ω.B.E n n =+()12 ω.C.E n n =+()1 ω.D.E n n =2 ω.6.在0k 附近,钠的价电子的能量为3ev ,其DeBroglie 波长是 A.5.2A 0.B.7.1A 0.C.8.4A 0.D.9.4A 0.7.钾的脱出功是2ev ,当波长为3500A 0的紫外线照射到钾金属表面时,光电子的最大能量为A. 0.25⨯1018-J.B.1.25⨯1018-J.C.0.25⨯1016-J.D.1.25⨯1016-J.8.当氢原子放出一个具有频率ω的光子,反冲时由于它把能量传递给原子而产生的频率改变为A.2μc .B. 22μc .C. 222μc .D. 22μc .pton 效应证实了A.电子具有波动性.B.光具有波动性.C.光具有粒子性.D.电子具有粒子性. 10.Davisson 和Germer 的实验证实了A.????电子具有波动性.B.光具有波动性.C.光具有粒子性.D.电子具有粒子性.11.粒子在一维无限深势阱U x x a x x a (),,,=<<∞≤≥⎧⎨⎩000中运动,设粒子的状态由ψπ()sinx C x a =描写,其归一化常数C 为BA.1a .B.2a .C.12a .D.4a .12.设ψδ()()x x =,在dx x x +-范围内找到粒子的几率为DA.δ()x .B.δ()x dx .C.δ2()x .D.δ2()x dx .13.设粒子的波函数为ψ(,,)x y z ,在dx x x +-范围内找到粒子的几率为CA.ψ(,,)x y z dxdydz 2.B.ψ(,,)x y z dx 2.C.dx dydz z y x )),,((2⎰⎰ψ.D.dx dy dz x yz ψ(,)⎰⎰⎰2.14.设ψ1()x 和ψ2()x 分别表示粒子的两个可能运动状态,则它们线性迭加的态c x c x 1122ψψ()()+的几率分布为DA.c c 112222ψψ+.B.c c 112222ψψ++2*121ψψc c . C.c c 112222ψψ++2*1212ψψc c .D.c c 112222ψψ++c c c c 12121212****ψψψψ+.15.波函数应满足的标准条件是A.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限. 16.有关微观实物粒子的波粒二象性的正确表述是 A.波动性是由于大量的微粒分布于空间而形成的疏密波. B.微粒被看成在三维空间连续分布的某种波包. C.单个微观粒子具有波动性和粒子性. D.A,B,C. 17.已知波函数ψ1=-+u x i Et u x i Et ()exp()()exp() ,ψ21122=-+u x i E t u x iE t ()exp()()exp(),ψ312=-+-u x i Et u x iEt ()exp()()exp() ,ψ41122=-+-u x i E t u x i E t ()exp()()exp().其中定态波函数是A.ψ2.B.ψ1和ψ2.C.ψ3.D.ψ3和ψ4. 18.若波函数ψ(,)x t 归一化,则A.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都是归一化的波函数.B.ψ(,)exp()x t i θ是归一化的波函数,而ψ(,)exp()x t i -δ不是归一化的波函数.C.ψ(,)exp()x t i θ不是归一化的波函数,而ψ(,)exp()x t i -δ是归一化的波函数.D.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都不是归一化的波函数.(其中θδ,为任意实数) 19.波函数ψ1、ψψ21=c (c 为任意常数), A.ψ1与ψψ21=c 描写粒子的状态不同.B.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是1:c .C.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是2:1c. D.ψ1与ψψ21=c 描写粒子的状态相同.20.波函数ψ(,)(,)exp()x t c p t ipx dp =⎰12π 的傅里叶变换式是CA.c p t x t ipx dx (,)(,)exp()=⎰12π ψ.B.c p t x t i px dx (,)(,)exp()*=⎰12π ψ. C.c p t x t i px dx (,)(,)exp()=-⎰12π ψ.D.c p t x t i px dx (,)(,)exp()*=-⎰12π ψ.21.量子力学运动方程的建立,需满足一定的条件:(1)方程中仅含有波函数关于时间的一阶导数.(2)方程中仅含有波函数关于时间的二阶以下的导数.(3)方程中关于波函数对空间坐标的导数应为线性的.(4)方程中关于波函数对时间坐标的导数应为线性的.(5)方程中不能含有决定体系状态的具体参量.(6)方程中可以含有决定体系状态的能量.则方程应满足的条件是 A.(1)、(3)和(6).B.(2)、(3)、(4)和(5).C.(1)、(3)、(4)和(5).D.(2)、(3)、(4)、(5)和(6).22.两个粒子的薛定谔方程是A.∑=ψ∇=ψ21212221),,(2),,(iitrrtrrtiμ∂∂),,(),,(2121trrtrrUψ+B.∑=ψ∇=ψ21212221),,(2),,(iitrrtrrtμ∂∂),,(),,(2121trrtrrUψ+C.∑=ψ∇=ψ21212221),,(2),,(iiitrrtrrtμ∂∂),,(),,(2121trrtrrUψ+D.∑=ψ∇=ψ21212221),,(2),,(iiitrrtrrtiμ∂∂),,(),,(2121trrtrrUψ+23.几率流密度矢量的表达式为CA.J=∇ψ-2μ()**ψψ∇ψ.B.Ji=∇ψ-2μ()**ψψ∇ψ.C.Ji=-∇ψ2μ()**ψ∇ψψ.D.J=-∇ψ2μ()**ψ∇ψψ.24.质量流密度矢量的表达式为CA.J=∇ψ-2()**ψψ∇ψ.B.Ji=∇ψ-2()**ψψ∇ψ.C.Ji=-∇ψ2()**ψ∇ψψ.D.J=-∇ψ2()**ψ∇ψψ.25.电流密度矢量的表达式为CA.Jq=∇ψ-2μ()**ψψ∇ψ.B.Jiq=∇ψ-2μ()**ψψ∇ψ.C.Jiq=-∇ψ2μ()**ψ∇ψψ.D.Jq=-∇ψ2μ()**ψ∇ψψ.26.下列哪种论述不是定态的特点DA.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱U xx ax a(),,=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为D A.πμ22224na,B.πμ22228na,C.πμ222216na,D.πμ222232na.28.在一维无限深势阱U xx ax a(),,=<∞≥⎧⎨⎩中运动的质量为μ的粒子的能级为CA.πμ22222na,B.πμ22224na,C.πμ22228na,D.πμ222216na.29.在一维无限深势阱U x x b x b (),/,/=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为A A.πμ22222 n b ,B.πμ2222 n b ,C.πμ22224 n b ,D.πμ22228 n b .30.在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于基态,其位置几率分布最大处是 A.x =0,B.x a =,C.x a =-,D.x a =2.31.在一维无限深势阱U x x a x a(),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于第一激发态,其位置几率分布最大处是A.x a =±/2,B.x a =±,C.x =0,D.4/a x ±=. 32.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 33.线性谐振子的能级为CA.(/),(,,,...)n n +=12123 ω.B.(),(,,,....)n n +=1012 ω.C.(/),(,,,...)n n +=12012ω.D.(),(,,,...)n n +=1123 ω. 34.线性谐振子的第一激发态的波函数为ψαα()exp()x N x x=-122122,其位置几率分布最大处为A.x =0.B.x =±μω.C.x =μω.D.x =±μω.35.线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 36.线性谐振子的能量本征方程是AA.[]-+= 222222212μμωψψd dx x E .B.[]--= 22222212μμωψψd dx x E .C.[] 22222212μμωψψd dx x E -=-.D.[] 222222212μμωψψd dx x E +=-.37.氢原子的能级为DA.- 2222e n s μ.B.-μ22222e n s .C.242n e s μ -.D.-μe n s 4222 .38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为DA.r r R nl )(2.B.22)(r r R nl .C.rdr r R nl )(2.D.dr r r R nl 22)(. 39.在极坐标系下,氢原子体系在不同方向上找到电子的几率为A.),(ϕθlmY .B.2),(ϕθlm Y .C.Ωd Y lm ),(ϕθ.D.Ωd Y lm 2),(ϕθ.40.波函数ψ和φ是平方可积函数,则力学量算符 F为厄密算符的定义是C A.ψφτφψτ*** F d F d =⎰⎰.B.ψφτφψτ** ( )F d F d =⎰⎰.C.( ) **F d Fd ψφτψφτ=⎰⎰.D.***F d Fd ψφτψφτ=⎰⎰.41. F和 G 是厄密算符,则 A. FG必为厄密算符.B. FG GF -必为厄密算符.C.i FG GF ()+必为厄密算符. D.i FG GF ()-必为厄密算符.42.已知算符 x x =和pi x x =- ∂∂,则AA. x和 p x 都是厄密算符.B. xp x 必是厄密算符.C. xp p x x x +必是厄密算符. D. xpp x x x -必是厄密算符. 43.自由粒子的运动用平面波描写,则其能量的简并度为 A.1.B.2.C.3.D.4.44.二维自由粒子波函数的归一化常数为(归到δ函数)A.1212/()/π .B.12/()π .C.1232/()/π .D.122/()π45.角动量Z 分量的归一化本征函数为CA.12πϕ exp()im .B.)ex p(21r k i ⋅π.C.12πϕexp()im .D.)ex p(21r k i ⋅π.46.波函数)ex p()(cos )1(),(ϕθϕθim P N Y ml lm m lm -= A.????是 L2的本征函数,不是 L z 的本征函数.B.不是 L 2的本征函数,是L z 的本征函数. C 是 L2、 L z 的共同本征函数.D.即不是 L 2的本征函数,也不是L z 的本征函数. 47.若不考虑电子的自旋,氢原子能级n=3的简并度为 A.3.B.6.C.9.D.12. 48.氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为n 2,这种性质是A.????库仑场特有的.B.中心力场特有的.C.奏力场特有的.D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为W r dr R r dr 323222()=,则其几率分布最大处对应于Bohr 原子模型中的圆轨道半径是A.a 0.B.40a .C.90a .D.160a .51.设体系处于ψ=--123231102111R Y R Y 状态,则该体系的能量取值及取值几率分别为A.E E 321434,;,.B.E E 321232,;,-.C.E E 321232,;,.D.E E 323414,;,. 52.接51题,该体系的角动量的取值及相应几率分别为A.21 ,.B. ,1.C.212 ,.D.212,. 53.接51题,该体系的角动量Z 分量的取值及相应几率分别为A.01434,;,- .B.01434,;,.C.01232,;, -.D.01232,;,-- . 54.接51题,该体系的角动量Z 分量的平均值为A.14 .B.-14 .C.34 .D.-34 .55.接51题,该体系的能量的平均值为A.-μe s 4218 .B.-3128842μe s .C.-2925642μe s .D.-177242μe s . 56.体系处于ψ=C kx cos 状态,则体系的动量取值为A. k k ,-.B. k .C.- k .D.12 k.57.接上题,体系的动量取值几率分别为 A.1,0.B.1/2,1/2.C.1/4,3/4/.D.1/3,2/3. 58.接56题,体系的动量平均值为A.0.B. k .C.- k .D.12 k.59.一振子处于ψψψ=+c c 1133态中,则该振子能量取值分别为A.3252 ωω,.B.1252 ωω,.C.3272 ωω,.D.1252 ωω,.60.接上题,该振子的能量取值E E 13,的几率分别为A.2321,c c .B.232121c c c +,232123c c c +.C.23211c c c +,23213c c c +.D.31,c c .61.接59题,该振子的能量平均值为A.????ω 232123215321c c c c ++.B.5 ω.C.92 ω.D.ω 232123217321c c c c ++.62.对易关系[ ,()]p f x x 等于(f x ()为x 的任意函数)A.i f x '().B.i f x ().C.-i f x '().D.-i f x (). 63.对易关系[ ,exp()]p iy y 等于A.)exp(iy .B.i iy exp().C.- exp()iy .D.-i iy exp(). 64.对易关系[,]x p x 等于 A.i .B.-i .C. .D.- . 65.对易关系[,]L y x 等于A.i z.B. z .C.-i z .D.- z . 66.对易关系[, ]L zy 等于A.-i x.B.i x .C. x .D.- x . 67.对易关系[, ]L zz 等于 A.i x.B.i y.C.i .D.0. 68.对易关系[, ]x py 等于A. .B.0.C.i .D.- . 69.对易关系[ , ]pp y z 等于A.0.B.i x.C.i p x .D.p x . 70.对易关系[ ,]L L x z 等于 A.i L y.B.-i L y.C.L y.D.- L y.71.对易关系[ , ]L L z y等于A.i L x.B.-i L x.C.L x .D.-L x .72.对易关系[ , ]L L x 2等于 A. L x .B.i L x .C.i L L z y ( )+.D.0. 73.对易关系[ , ]L L z 2等于 A. L z .B.i L z .C.i L L x y ( )+.D.0. 74.对易关系[, ]L px y 等于A.i L z .B.-i L z.C.i p z .D.-i p z. 75.对易关系[,]p L z x 等于 A.-i py .B.i py .C.-i L y.D.i L y.76.对易关系[ , ]L p zy 等于A.-i px .B.i p x .C.-i L x.D.i L x. 77.对易式[ , ]L x y 等于A.0.B.-i z.C.i z .D.1. 78.对易式[ , ]F F m n 等于(m,n 为任意正整数)A. Fm n+.B. Fm n-.C.0.D. F. 79.对易式[ , ]F G 等于A. FG.B. GF .C. FG GF -.D. FG GF +. 80..对易式[,]F c 等于(c 为任意常数)A.cF.B.0.C.c .D.F ˆ. 81.算符 F和 G 的对易关系为[ , ]F G ik =,则 F 、 G 的测不准关系是 A.( )( )∆∆F G k 2224≥.B.( )( )∆∆F G k 2224≥. C.( )( )∆∆F G k 2224≥.D.( )( )∆∆F G k 2224≥. 82.已知[ , ]x p i x = ,则 x和 p x 的测不准关系是 A.( )( )∆∆x p x 222≥ .B.( )( )∆∆x p 2224≥ .C.( )( )∆∆x p x 222≥ .D.( )( )∆∆x p x 2224≥ . 83.算符 L x 和 L y 的对易关系为[ , ] L L i L x y z = ,则 L x、 L y 的测不准关系是A.( )( ) ∆∆L L L x yz 22224≥ .B.( )( ) ∆∆L L L x y 22224≥ . C.( )( ) ∆∆F G L z 22224≥.D.( )( ) ∆∆F G L 22224≥ . 84.电子在库仑场中运动的能量本征方程是A.[]-∇+= 2222μψψze r E s .B.[]-∇+= 22222μψψze r E s.C.[]-∇-= 2222μψψze r E s .D.[]-∇-= 22222μψψze r E s .85.类氢原子体系的能量是量子化的,其能量表达式为A.-μz e n s 22222 .B.-μ224222z e n s .C.-μze n s 2222 .D.-μz e n s 24222 .86.在一维无限深势阱U x x ax x a (),,,=<<∞≤≥⎧⎨⎩000中运动的质量μ为的粒子,其状态为 ψππ=42aa x a x sin cos ,则在此态中体系能量的可测值为 A.22222229,2a a μπμπ ,B.πμπμ2222222 a a ,,C.323222222πμπμ a a ,,D.524222222πμπμ a a ,. 87.接上题,能量可测值E 1、E 3出现的几率分别为A.1/4,3/4.B.3/4,1/4.C.1/2,1/2.D.0,1. 88.接86题,能量的平均值为A.52222πμ a ,B.2222πμ a ,C.72222πμ a ,D.5222πμ a .89.若一算符 F 的逆算符存在,则[ , ]F F -1等于A.1.B.0.C.-1.D.2.90.如果力学量算符 F 和 G 满足对易关系[ , ]F G =0,则A. F和 G 一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值. B. F和 G 一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值. C. F和 G 不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值. D. F和 G 不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值. 91.一维自由粒子的能量本征值A.????可取一切实数值.B.只能取不为负的一切实数.C.可取一切实数,但不能等于零.D.只能取不为正的实数.92.对易关系式[ , ()]p p f x x x 2等于A.-i p f x x '()2.B.i p f x x '()2.C.-i p f x x ()2.D.i p f x x ()2. 93.定义算符yx L i L L ˆˆˆ±=±,则[ ,]L L +-等于A.z L ˆ .B.2 L z .C.-2 L z .D.z L ˆ-. 94.接上题,则[ ,]L L z +等于 A. L +.B. L z .C.-+ L .D.-L z . 95.接93题,则[ ,]L L z -等于 A. L -.B. L z .C.-- L .D.-L z .96.氢原子的能量本征函数ψθϕθϕnlm nl lm r R r Y (,,)()(,)=A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.B.只是体系能量算符、角动量Z 分量算符的本征函数,不是角动量平方算符的本征函数.C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数.D.是体系能量算符、角动量平方算符、角动量Z 分量算符的共同本征函数. 97.体系处于ψ=+c Y c Y 111210态中,则ψA.是体系角动量平方算符、角动量Z 分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z 分量算符的本征函数.D.即不是体系角动量平方算符的本征函数,也不是角动量Z 分量算符的本征函数. 98.对易关系式[ ,]FG H 等于A.[ , ] [ , ]F H G F G H +.B.[ , ] F H GC. [ , ]F G H .D.[ , ] [ , ]F H G F G H -.99.动量为p '的自由粒子的波函数在坐标表象中的表示是)'ex p(21)('x p ix Pπψ=,它在动量表象中的表示是A.δ(')p p -.B.δ(')p p +.C.δ()p .D.δ(')p .100.力学量算符 x对应于本征值为x '的本征函数在坐标表象中的表示是 A.δ(')x x -.B.δ(')x x +.C.δ()x .D.δ(')x .101.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是BA.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 02/22/2.B.⎪⎪⎪⎪⎪⎭⎫⎝⎛- 02/22/2.C.222200//⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.D.222200//-⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.102.线性谐振子的能量本征函数ψ1()x 在能量表象中的表示是BA.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 001.B.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 010.C.1000⎛⎝ ⎫⎭⎪⎪⎪⎪.D.0100⎛⎝ ⎫⎭⎪⎪⎪⎪. 103.线性谐振子的能量本征函数)()(10x b x a ψψψ+=在能量表象中的表示是A.⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ 0//2222b a b b a a .B.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++0//02222b a b b a a .C.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 0b a .D.00a b ⎛⎝ ⎫⎭⎪⎪⎪⎪. 104.在(, L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中 L z 的平均值为 A. .B.- .C.2 .D.0.105.算符 Q 只有分立的本征值{}Q n ,对应的本征函数是{()}u x n ,则算符 (,)F x i x ∂∂在Q 表象中的矩阵元的表示是B A.F u x F x i x u x dx mn n m =⎰*()(,)() ∂∂.B.F u x F x i x u x dx mn m n =⎰*()(,)() ∂∂. C.F u x F x i x u x dx mnn m =⎰()(,)()* ∂∂.D.F u x F x i x u x dxmn m n =⎰()(,)()*∂∂.106.力学量算符在自身表象中的矩阵表示是A. 以本征值为对角元素的对角方阵.B 一个上三角方阵.C.一个下三角方阵. D.一个主对角线上的元素等于零的方阵.107.力学量算符xˆ在动量表象中的微分形式是 A.-i p x∂∂.B.i p x ∂∂.C.-i p x 2∂∂.D.i p x 2∂∂. 108.线性谐振子的哈密顿算符在动量表象中的微分形式是A.p p 22222212μμω∂∂+ .B.p p 2222212μμω∂∂-.C.22222212p p ∂∂μωμ -.D.--p p 2222212μμω∂∂. 109.在 Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是 A.±1.B.0.C.±i .D.1±i .110.接上题,F 的归一化本征态分别为A.22112211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.B.1111⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.C.12111211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.D.22102201⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪,. 111.幺正矩阵的定义式为 A.SS +-=.B.S S +=*.C.S S =-.D.S S *=-.112.幺正变换A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.113.算符()( )/axip=+μωμω212,则对易关系式[ , ]a a +等于 A.[ , ]a a +=0.B.[ , ]a a +=1.C.[ , ]a a +=-1.D.[ , ]a a i +=.114.非简并定态微扰理论中第n 个能级的表达式是(考虑二级近似)A.E H H E E nnn mn nmm()()()''0200++-∑.B.E H H E E nnn mn nmm()()()'''0200++-∑.C.E H H E E nnn mn mnm()()()'''0200++-∑.D.E H H E E nnn mn mnm()()()''0200++-∑.115.非简并定态微扰理论中第n 个能级的一级修正项为 A.H mn '.B.H nn '.C.-H nn '.D.H nm '.116.非简并定态微扰理论中第n 个能级的二级修正项为A.H EE mnnmm'()()200-∑.B.''()()H EE mnnmm200-∑.C.''()()H EE mnmnm200-∑.D.H EE mnmnm'()()200-∑.117.非简并定态微扰理论中第n 个波函数一级修正项为A.H EE mnnmm m '()()()000-∑ψ.B.''()()()H E E mn nmm m000-∑ψ.C.''()()()H E E mn mnm m000-∑ψ.D.H EE mnmnm m'()()()000-∑ψ.118.沿x 方向加一均匀外电场ε,带电为q 且质量为μ的线性谐振子的哈密顿为A. H d dx x q x =-++ 22222212μμωε.B. H d dx x q x =-++ 2222212μμωε.C. H d dx x q x =-+- 2222212μμωε.D. H d dx x q x =-+- 22222212μμωε.119.非简并定态微扰理论的适用条件是A.H E E mkkm'()()001-<<.B.H E E mk km'()()001+<<.C.H mk '<<1.D.E E km()()001-<<.120.转动惯量为I ,电偶极矩为D 的空间转子处于均匀电场ε中,则该体系的哈密顿为A.ε ⋅+=D I L H 2ˆˆ2.B.ε ⋅+-=D I L H 2ˆˆ2.C.ε⋅-=D I L H 2ˆˆ2.D.ε ⋅--=D I L H 2ˆˆ2.121.非简并定态微扰理论中,波函数的一级近似公式为A.ψψψn n nm nm mm H E E =+-∑()()()()''0000.B.ψψψn n mn nm mm H E E =+-∑()()()()''0000.C.ψψψn nmn mnmmH E E =+-∑()()()()''0000.D.ψψψn nnm mnmm H E E =+-∑()()()()''0000.122.氢原子的一级斯塔克效应中,对于n =2的能级由原来的一个能级分裂为 A.????五个子能级.B.四个子能级.C.三个子能级.D.两个子能级. 123.一体系在微扰作用下,由初态Φk 跃迁到终态Φm 的几率为A.22' )'ex p('1⎰t mk mkdt t i H ω .B.2' )'ex p('⎰tmk mkdt t i H ω.C.22')' ex p(1⎰tmk mkdt t i Hω .D.2' )'ex p(⎰tmk mkdt t i Hω.124.用变分法求量子体系的基态能量的关键是 A.????写出体系的哈密顿.B 选取合理的尝试波函数.C 计算体系的哈密顿的平均值.D 体系哈密顿的平均值对变分参数求变分. 125.Stern-Gerlach 实验证实了A.????电子具有波动性.B.光具有波动性.C.原子的能级是分立的.D.电子具有自旋.126. S 为自旋角动量算符,则[ , ]SS y x 等于A.2i .B.i .C.0.D.-i S z.127. σ为Pauli 算符,则[ , ]σσx z 等于A.-i y σ.B.i y σ.C.2i y σ.D.-2i y σ.128.单电子的自旋角动量平方算符 S2的本征值为 A.142 .B.342 .C.322 .D.122 .129.单电子的Pauli 算符平方的本征值为 A.0.B.1.C.2.D.3.130.Pauli 算符的三个分量之积等于 A.0.B.1.C.i .D.2i .131.电子自旋角动量的x 分量算符在S z 表象中矩阵表示为A. S x =⎛⎝ ⎫⎭⎪ 21001.B. S i i x =-⎛⎝ ⎫⎭⎪ 200.C. S x =⎛⎝ ⎫⎭⎪ 20110.D.S x =-⎛⎝ ⎫⎭⎪21001. 132.电子自旋角动量的y 分量算符在S z 表象中矩阵表示为A. S y =⎛⎝ ⎫⎭⎪ 21001.B. S i y =-⎛⎝ ⎫⎭⎪ 20110.C. S i i i y =-⎛⎝ ⎫⎭⎪ 200.D.S i i y =⎛⎝ ⎫⎭⎪200. 133.电子自旋角动量的z 分量算符在S z 表象中矩阵表示为A. S z =⎛⎝ ⎫⎭⎪ 21001.B. S z =-⎛⎝ ⎫⎭⎪ 20110.C. S z =-⎛⎝ ⎫⎭⎪ 21001.D.S i z =-⎛⎝ ⎫⎭⎪21001. 134. , J J 12是角动量算符,J J J =+12,则[ , ] J J 212等于 A. J 1.B.- J 1.C.1.D.0. 135.接上题,[ , ] J J z 12等于 A.i J J xy( )11+.B.i J z1.C.Jz1.D.0.136.接134题,]ˆ,ˆ[12z J J 等于A.i J J x y ( )11+.B.i J z 1.C.J z1.D.0.137.一电子处于自旋态χχχ=+-a s b s z z 1212//()()中,则s z 的可测值分别为A.0, .B.0,- .C. 22,.D. 22,-.138.接上题,测得s z 为22,-的几率分别是 A.a b ,.B.a b 22,.C.a b 2222/,/.D.a a b b a b 222222/(),/()++.139.接137题,s z 的平均值为A. 0.B.)(222b a - .C.)22/()(2222b a b a +- .D. .140.在s z 表象中,χ=⎛⎝ ⎫⎭⎪3212//,则在该态中s z 的可测值分别为A. ,-.B. /,2.C. /,/22-.D. ,/-2. 141.接上题,测量s z 的值为 /,/22-的几率分别为 A.3212/,/.B.1/2,1/2.C.3/4,1/4.D.1/4,3/4. 142.接140题,s z 的平均值为A. /2.B. /4.C.- /4.D.- /2. 143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系.B.氢原子中的电子、质子、中子组成的体系是全同粒子体系.C.光子和电子组成的体系是全同粒子体系.D.α粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数 A.是对称的.B.是反对称的.C.具有确定的对称性.D.不具有对称性. 145.分别处于p 态和d 态的两个电子,它们的总角动量的量子数的取值是A.???0,1,2,3,4.B.1,2,3,4.C.0,1,2,3.D.1,2,3.146.下列各物体哪个是绝对黑体(B)(A)不辐射任何光线的物体(B)不能反射任何光线的物体(C)不能反射可见光的物体(D)不辐射可见光的物体 147.金属的光电效应的红限依赖于:(C)(A)入射光的频率(B)入射光的强度(C)金属的逸出功(D)入射光的频率和金属的逸出功 148.关于不确定(测不准)关系有以下几种理解: (1)粒子的动量不可能确定(2)粒子的坐标不可能确定(3)粒子的动量和坐标不可能同时确定(4)不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是:()(A)(1),(2)(B)(2),(4)(C)(3),(4)(D)(4),(1) 149.完全描述微观粒子运动状态的是:() (A)薛定谔方程(B)测不准关系(C)波函数(D)能量 150.完全描述微观粒子运动状态变化规律的是:() (A)波函数(B)测不准关系(C)薛定谔方程(D)能级151,卢瑟福粒子实验证实了[];斯特恩-盖拉赫实验证实了[];康普顿效应证实了[];戴维逊-革末实验证实了[].(A)光的量子性.(B)玻尔的能级量子化假设.(C)X 射线的存在.(D)电子的波动性(E)原子的有核模型.(F)原子的自旋磁矩取向量子化. 152.关于光电效应有下列说法:(1)任何波长的可见光照射到任何金属表面都能产生光电效应;(2)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,释出的光电子的最大初动能也不同;(3)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,单位时间释出的光电子数一定相等;(4)若入射光的频率均大于一给定金属的红限,则当入射光频率不变而强度增大一倍时,该金属的饱和光电流也增大一倍.其中正确的是:()(A)(1),(2),(3)(B)(2),(3),(4)(C)(2),(3)(D)(2),(4)153.已知氢原子从基态激发到某一定态所需能量为10.19eV,若氢原子从能量为-0.85eV 的状态跃迁到上述定态时,所发射的光子的能量为:()(A)2.56eV(B)3.41eV(C)4.25eV(D)9.95eV 154.若光子与电子的波长相等,则它们:()(A)动量及总能量均相等(B)动量及总能量均不相等(C)动量相等,总能量不相等(D)动量不相等,总能量相等155.量子力学能够正确地描述______的运动规律()A.宏观物体B.微观粒子C.高速运动D.低速运动156、下列选项中不属于波函数标准条件的是() A 连续性;B 有限性;C 周期性;D 单值性。