二次根式优秀教案

合集下载

二次根式教案(优秀8篇)

二次根式教案(优秀8篇)
(二)、探索新知:
本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

二次根式教学设计(通用15篇)

二次根式教学设计(通用15篇)

二次根式教学设计〔通用15篇〕篇1:二次根式教学设计【知识与技能】1.理解二次根式的概念,并利用〔a≥0〕的意义解答详细题目.2.理解〔a≥0〕是非负数和( )2=a.3.理解 =a〔a≥0〕并利用它进展计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出〔a≥0〕是一个非负数,用详细数据结合算术平方根的意义导出( )2=a〔a≥0〕,最后运用结论严谨解题.3.通过详细数据的解答,探究并利用这个结论解决详细问题.【情感态度】通过详细的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如〔a≥0〕的式子叫做二次根式.2. 〔a≥0〕是一个非负数;( )2=a〔a≥0〕及其运用.【教学难点】利用“ 〔a≥0〕”解决详细问题.关键:用分类思想的方法导出a〔a≥0〕是一个非负数;用探究的方法导出一、情境导入,初步认识回忆:当a是正数时,表示a的算术平方根,即正数a的正的平方根.当a是零时,等于0,它表示零的平方根,也叫做零的.算术平方根.当a是负数时,没有意义.【教学说明】通过对算术平方根的回忆引入二次根式的概念.二、考虑探究,获取新知概括:〔a≥0〕表示非负数a的算术平方根,也就是说,〔a≥0〕是一个非负数,它的平方等于a.即有:〔1〕≥0;〔2〕( )2=a〔a≥0〕.形如〔a≥0〕的式子叫做二次根式.注意:在中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.考虑:等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的的值,看看有什么规律.概括:当a≥0时, =a;当a<0时, =-a.三、运用新知,深化理解1.x取什么实数时,以下各式有意义?2.计算以下各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回忆二次根式的概念及有关性质:〔1〕( )2=a〔a≥0〕;〔2〕当a≥0时, =a;当a<0时, =-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】老师引导学生回忆知识点,让学生大胆发言,进展知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取.2.完成练习册中本课时练习的“课时作业”局部.本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.篇2:二次根式乘法教学设计两个含有二次根式的代数式相乘,假如他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。

二次根式教案五篇

二次根式教案五篇

二次根式教案五篇二次根式教案篇1一、内容解析本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.二、目标和目标解析1.教学目标(1)经历探索二次根式的性质的过程,并理解其意义;(2)会运用二次根式的性质进行二次根式的化简;(3)了解代数式的概念.2.目标解析(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;(2)学生能灵活运用二次根式的性质进行二次根式的化简;(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.本节课的教学难点为:二次根式性质的灵活运用.四、教学过程设计1.探究性质1问题1 你能解释下列式子的含义吗?师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2 根据算术平方根的意义填空,并说出得到结论的依据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:(≥0).【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.例2 计算(1)(2)师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质1,学会灵活运用.2.探究性质2问题4 你能解释下列式子的含义吗?师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5 根据算术平方根的意义填空,并说出得到结论的依据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:(≥0)【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.例3 计算(1)(2)师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质2,学会灵活运用.3.归纳代数式的概念问题7 回顾我们学过的式子,如 ___________ (≥0),这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.4.综合运用(1)算一算:【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.(2)想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.(3)谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思(1)你知道了二次根式的哪些性质?(2)运用二次根式性质进行化简需要注意什么?(3)请谈谈发现二次根式性质的思考过程?(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.二次根式教案篇2一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的'形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1.教学目标(1)体会研究二次根式是实际的需要.(2)了解二次根式的概念.2. 教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.本节课的教学难点为:理解二次根式的双重非负性.四、教学过程设计1.创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______.(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____.师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.问题2 上面得到的式子,,分别表示什么意义?它们有什么共同特征?师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.【设计意图】为概括二次根式的概念作铺垫.2.抽象概括,形成概念问题3 你能用一个式子表示一个非负数的算术平方根吗?师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.追问:在二次根式的概念中,为什么要强调“a≥0”?师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.3.辨析概念,应用巩固例1 当时怎样的实数时,在实数范围内有意义?师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例2 当是怎样的实数时,在实数范围内有意义?呢?师生活动:先让学生独立思考,再追问.【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.问题4 你能比较与0的大小吗?师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.4.综合运用,巩固提高练习1 完成教科书第3页的练习.练习2 当x 是什么实数时,下列各式有意义.(1);(2);(3);(4) .【设计意图】辨析二次根式的概念,确定二次根式有意义的条件.【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.5.总结反思教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)本节课你学到了哪一类新的式子?(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?师生活动:教师引导,学生小结.【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.6.布置作业:教科书习题16.1第1,3,5, 7,10题.五、目标检测设计1. 下列各式中,一定是二次根式的是()A. B. C. D.【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.2. 当时,二次根式无意义.【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.3.当时,二次根式有最小值,其最小值是.【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.4.对于,小红根据被开方数是非负数,得出的取值范围是≥.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出的取值范围.【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.二次根式教案篇3一、教学目标1.了解二次根式的意义;2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3. 掌握二次根式的性质和,并能灵活应用;4.通过二次根式的计算培养学生的逻辑思维能力;5. 通过二次根式性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围.难点:确定二次根式中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算:通过练习使学生进一步理解平方根、算术平方根的概念.观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,表示的是算术平方根.(二)引入新课我们已遇到的这样的式子是我们这节课研究的内容,引出:新课:二次根式定义:式子叫做二次根式.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a0时才叫二次根式,是二次根式吗? 呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2) 是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的外在形态.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.例1 当a为实数时,下列各式中哪些是二次根式?分析:,,,、、、四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0例2 x是怎样的实数时,式子在实数范围有意义?解:略.说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.例3 当字母取何值时,下列各式为二次根式:(1) (2) (3) (4)分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时,是二次根式.(2)-3x0,x0,即x0时,是二次根式.(3) ,且x0,x0,当x0时,是二次根式.(4) ,即,故x-20且x-20, x2.当x2时,是二次根式.例4 下列各式是二次根式,求式子中的字母所满足的条件:(1) ; (2) ; (3) ; (4)分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.解:(1)由2a+30,得 .(2)由,得3a-10,解得 .(3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是,式子是二次根式. 所以所求字母x的取值范围是全体实数.(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.(三)小结(引导学生做出本节课学习内容小结)1.式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.2.式子中,被开方数(式)必须大于等于零.(四)练习和作业练习:1.判断下列各式是否是二次根式分析:(2) 中,,是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.2.a是怎样的实数时,下列各式在实数范围内有意义?五、作业教材P.172习题11.1;A组1;B组1.六、板书设计二次根式教案篇4第十六章二次根式代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,<,>”;②单个的数字或单个的字母也是代数式5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22×5,所以正整数的最小值为5.)6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:关键是逆用()2=a(a ≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2= n(n+)2(n-)2.)7.解:(1) . (2)宽:3 ;长:5 .8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.解:乙的解答是错误的.因为当a=时,=5,a-<0,所以≠a-,而应是 =-a.本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.练习(教材第4页)1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.习题16.1(教材第5页)1.解:(1)欲使有意义,则必有a+2≥0,∴a≥-2,∴当a≥-2时,有意义. (2)欲使有意义,则必有3-a≥0,∴a≤3,∴当a≤3时,有意义. (3)欲使有意义,则必有5a≥0,∴a≥0,∴当a≥0时,有意义. (4)欲使有意义,则必有2a+1≥0,∴a≥-,∴当a≥-时,有意义.2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.3.解:(1)设圆的半径为R,由圆的面积公式得S=πR2,所以R2=,所以R=± .因为圆的半径不能是负数,所以R=-不符合题意,舍去,故R= ,即面积为S的圆的半径为 . (2)设较短的边长为2x,则它的邻边长为3x.由长方形的面积公式得2x3x=S,所以x=±,因为x=-不符合题意,舍去,所以x=,所以2x=2=,3x=3=,即这个长方形的相邻两边的长分别为和.4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.5.解:由题意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合题意,舍去,∴r=,即r的值是.6.解:设AB=x,则AB边上的高为4x,由题意,得x4x=12,则x2=6,∴x=±.∵x=-不符合题意,舍去,∴x=.故AB的长为.7.解:(1)∵x2+1>0恒成立,∴无论x取任何实数,都有意义.(2)∵(x-1)2≥0恒成立,∴无论x取任何实数,都有意义. (3)∵即x>0,∴当x>0时, 在实数范围内有意义. (4)∵即x>-1,∴当x>-1时,在实数范围内有意义.8.解:设h=t2, 则由题意,得20=×22,解得=5,∴h=5t2,∴t= (负值已舍去).当h=10时,t= =,当h=25时,t= =.故当h=10和h=25时,小球落地所用的时间分别为 s和 s.9.解:(1)由题意知18-n≥0且为整数,则n≤18,n为自然数且为整数,∴符合条件的n的所有可能的值为2,9,14,17,18. (2)∵24n≥0且是整数,n为正整数,∴符合条件的n的最小值是6.10.解:V=πr2×10,r= (负值已舍去),当V=5π时, r= =,当V=10π时,r= =1,当V=20π时,r= =.如图所示,根据实数a,b在数轴上的位置,化简:+.〔解析〕根据数轴可得出a+b与a-b的正负情况,从而可将二次根式化简.解:由数轴可得:a+b<0,a-b>0,∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.[解题策略] 结合数轴得出字母的取值范围,再化简二次根式,此题体现了数形结合的思想.已知a,b,c为三角形的三条边,则+= .〔解析〕根据三角形三边的关系,先判断a+b-c与b-a-c的符号,再去根号、绝对值符号并化简.因为a,b,c为三角形的三条边,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.[解题策略] 此类化简问题要特别注意符号问题.化简:.〔解析〕题中并没有明确字母x的取值范围,需要分x≥3和x<3两种情况考虑.解:当x≥3时,=|x-3|=x-3;当x<3时,=|x-3|=-(x-3)=3-x.[解题策略] 化简时,先将它化成|a|,再根据绝对值的意义分情况进行讨论.5OM二次根式教案篇5教学目的1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

关于二次根式教案合集5篇

关于二次根式教案合集5篇

关于二次根式教案合集5篇二次根式教案篇11.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

乘法运算和二次根式的化简需要用到二次根式的性质.问题2 教材第6页“探究”栏目,计算结果如何?有何规律?师生活动学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.2.观察比较,理解法则问题3 简单的根式运算.师生活动学生动手操作,教师检验.问题4 二次根式的乘除成立的条件是什么?等式反过来有什么价值?师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质.让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.3.例题示范,学会应用例1 化简:(1)二次根式的乘除; (2)二次根式的乘除.师生活动提问:你是怎么理解例(1)的?如果学生回答不完善,再追问:这个问题中,就直接将结果算成二次根式的乘除可以吗?你认为本题怎样才达到了化简的效果?师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质二次根式的乘除将其移出根号外.再提问:你能仿照第(1)题的解答,能自己解决(2)吗?通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.例2 计算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除师生活动学生计算,教师检验.(1)在被开方数相乘的'时候,就可以考虑因数或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先写成二次根式的乘除再分解;(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到二次根式的乘除,然后利用二次根式的乘法法则,变成二次根式的乘除,由于二次根式的乘除可以判断二次根式的乘除,因此直接将x移出根号外.引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.4.巩固概念,学以致用练习:教科书第7页练习第1题. 第10页习题16.2第1题.巩固性练习,同时检验乘法法则的掌握情况.5.归纳小结,反思提高师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能说明二次根式的乘法法则是如何得出的吗?(2)你能说明乘法法则逆用的意义吗?(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.五、目标检测设计1.下列各式中,一定能成立的是( )A.二次根式的乘除B.二次根式的乘除C.二次根式的乘除D.二次根式的乘除考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.2.化简二次根式的乘除 ______________________________。

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)最简二次根式篇一教学建议1.教材分析本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法。

本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来联接。

(1)知识结构(2)重难点分析①本节的重点Ⅰ.概念Ⅰ.利用二次根式的性质把二次根式化简为。

重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算。

二次根式化简的最终目标就是;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为的基础上进行的。

因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步。

②本节的难点是化简二次根式的方法与技巧。

难点分析化简二次根式,实际上是二次根式性质的综合运用。

化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分。

所以对初学者来说,这一过程容易出现符号和计算出错的问题。

熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

③重难点的解决办法是对于这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断。

因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对概念理解后应用具体的实例归纳总结出把一个二次根式化为的方法,在观察对比中引导学生总结具体解决问题的方法技巧。

数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学二次根式教案【优秀8篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。

二次根式教案三篇

二次根式教案三篇

二次根式教案三篇二次根式教案三篇二次根式教案篇1 一、内容解析本节教材是在学生学习二次根式概念的根底上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和考虑得到二次根式的两个根本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个详细问题,让学生学生根据算术平方根的意义,就详细数字进展分析^p 得出结果,再分析^p 这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析^p ,确定本节课的教学重点为:理解二次根式的性质.二、目的和目的解析1.教学目的〔1〕经历探究二次根式的性质的过程,并理解其意义;〔2〕会运用二次根式的性质进展二次根式的化简;〔3〕理解代数式的概念.2.目的解析〔1〕学生能根据详细数字分析^p 和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;〔2〕学生能灵敏运用二次根式的性质进展二次根式的化简;〔3〕学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析^p二次根式的性质是二次根式化简和运算的重要根底.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵敏运用二次根式的性质进展二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的.灵敏运用存在一定的困难,打破这一难点需要老师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵敏运用的才能.本节课的教学难点为:二次根式性质的灵敏运用.四、教学过程设计1.探究性质1问题1 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕.【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的才能.例2 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质1,学会灵敏运用.2.探究性质2问题4 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的才能.例3 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质2,学会灵敏运用.3.归纳代数式的概念问题7 回忆我们学过的式子,如 ___________〔≥0〕,这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括才能.4.综合运用〔1〕算一算:【设计意图】设计有一定综合性的题目,考察学生的灵敏运用的才能,第〔2〕、〔3〕、〔4〕小题要特别注意结果的符号.〔2〕想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.〔3〕谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思〔1〕你知道了二次根式的哪些性质?〔2〕运用二次根式性质进展化简需要注意什么?〔3〕请谈谈发现二次根式性质的考虑过程?〔4〕想一想,到如今为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.二次根式教案篇2 活动1、提出问题一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。

精选二次根式教案4篇

精选二次根式教案4篇

精选二次根式教案4篇二次根式教案篇1教学设计思想新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。

本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。

然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。

本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。

教学目标知识与技能1.知道什么是二次根式,并会用二次根式的意义解题;2.熟记二次根式的性质,并能灵活应用;过程与方法通过二次根式的概念和性质的学习,培养逻辑思维能力;情感态度价值观1.经历将现实问题符号化的过程,发展应用的意识;2.通过二次根式性质的.介绍渗透对称性、规律性的数学美。

教学重点和难点重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;难点:确定二次根式中字母的取值范围。

教学方法启发式、讲练结合教学媒体多媒体课时安排1课时二次根式教案篇2教学目的1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

教学重点最简二次根式的定义。

教学难点一个二次根式化成最简二次根式的方法。

教学过程一、复习引入1.把下列各根式化简,并说出化简的根据:2.引导学生观察考虑:化简前后的根式,被开方数有什么不同?化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

3.启发学生回答:二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?二、讲解新课1.总结学生回答的内容后,给出最简二次根式定义:满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽的因数或因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.1二次根式
教学目标
知识技能
理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围。

数学思考
理解二次根式被开方数的取值范围的重要性。

解决问题
培养根据条件处理问题的能力及分类讨论问题。

情感态度
经历观察比较总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的快乐,并提高应用的意识。

教学重难点、关键
重点:会求二次根式中,被开方数所含字母的取值范围。

难点:理解二次根式的概念。

关键:利用“a(a≥0)”解决具体问题
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
一、情境引入
【问题情境】
1、面积为3的正方形的边长为,面积为S的正方形的边长为;
2、要修建一个面积为6.28 m2的圆形喷水池,它的半径为m(π取
3.14);
3、一个长方形的围栏,长是宽的2倍,面积为130m2,则它的宽为;
4、一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t2 .如果用含有h的式子表示t,则t = 。

【活动方略】
学生根据所学知识回答问题。

【设计意图】
由实际问题入手,设置情境问题,激发学生的兴趣,让学生从不同的式子中探寻规律,为二次根式的引入作好铺垫。

二、探索新知
【提出问题】
1、所填的结果有什么特点?
2、平方根的性质是什么?
3、如果把上面所填式子叫做二次根式,那么你能用数学符号表示二次根式吗? 教师提出问题。

学生总结出二次根式的概念。

【设计意图】
使学生有一个由浅入深的学习过程,并体会到学习的内容是融会贯通的。

三、范例点击
例1当x
例2当x 呢?
学生活动:合作交流,讨论解答。

【设计意图】
通过题目的练习,使学生加深对所学知识的理解,掌握解答二次根式取值范围的习题,避免一些常见错误。

四、反馈练习
课本 练习1,2
学生独立思考、独立解题。

教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
五、应用拓展
例3 当x 11x +在实数范围内有意义? 【思路点拨】
11x +在实数范围内有意义,中的≥0和11
x +中的x +1≠0。

解:依题意,得23010x x +≥⎧⎨
+≠⎩ 由①得:x ≥-32 由②得:x ≠-1
当x ≥-32且x ≠-111
x +在实数范围内有意义.
例4 已知y ,求x y
的值. 学生活动:合作交流,讨论解答。

【设计意图】
使学生进一步理解二次根式的概念,对二次根式的取值范围有更深刻的理解。

六、小结作业
1.问题:本节课主要学习些什么呢?
(1)二次根式的定义及被开方数的取值范围;
(2)被开方数的取值范围在计算中经常作为隐含条件给出,注意合理应用。

2.作业:课本 习题16.1 第1、5、7题
教师引导学生归纳小结,学生反思学习和解决问题的过程。

学生独立完成作业,教师批改、总结。

【设计意图】通过归纳总结,课外作业,使学生优化概念,内化知识。

相关文档
最新文档