极坐标与参数方程习题
极坐标与参数方程经典练习题-带详细解答汇编

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l的参数方程为122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB .2.已知直线l 经过点1(,1)2P ,倾斜角α=6π,圆C 的极坐标方程为)4πρθ=-.(1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+⎧⎨=-+⎩(α为参数),点Q的极坐标为7)4π。
(1)化圆C 的参数方程为极坐标方程;(2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。
5.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.6.(本小题满分10分) 选修4-4坐标系与参数方程在直角坐标系中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x ,(α为参数) M 是曲线1C 上的动点,点P 满足2=,(1)求点P 的轨迹方程2C ;(2)在以D 为极点,X 轴的正半轴为极轴的极坐标系中,射线3πθ=与曲线1C ,2C 交于不同于原点的点A,B 求AB7.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ⎛⎫-⎪⎝⎭,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)求直线OM 的极坐标方程.8.在直角坐标系中,曲线C 1的参数方程为:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2是极坐标方程为:cos ρθ=, (1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求PQ 的最小值.9.已知圆C 的极坐标方程为2cos ρθ=,直线l的参数方程为1221122x x t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数),点A的极坐标为24π⎛⎫⎪ ⎪⎝⎭,设直线l 与圆C 交于点P 、Q .(1)写出圆C 的直角坐标方程;(2)求AP AQ ⋅的值.10.已知动点P ,Q 都在曲线C :2cos 2sin x ty t=⎧⎨=⎩(β为参数)上,对应参数分别为t α=与2t α=(0<α<2π),M 为PQ 的中点。
极坐标与参数方程习题

极坐标与参数方程习题一、选择题1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( )A .0B .1C .-2D .83.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5πB 、⎪⎭⎫ ⎝⎛34,5πC 、⎪⎭⎫ ⎝⎛-32,5πD 、⎪⎭⎫ ⎝⎛--35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ)5.点()3,1-P ,则它的极坐标是( )A 、⎪⎭⎫ ⎝⎛3,2πB 、⎪⎭⎫ ⎝⎛34,2πC 、⎪⎭⎫ ⎝⎛-3,2πD 、⎪⎭⎫ ⎝⎛-34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩(θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ).A.1B.2C.3D.47.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线8.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( )A.-6B.16-C.6D.169.极坐标方程4cos ρθ=化为直角坐标方程是( )A .22(2)4x y -+= B.224x y += C.22(2)4x y +-= D.22(1)(1)4x y -+-=10.柱坐标(2,32π,1)对应的点的直角坐标是( ). A.(1,3,1-) B.(1,3,1-) C.(1,,1,3-) D.(1,1,3-)11.已知二面角l αβ--的平面角为θ,P 为空间一点,作PA α⊥,PB β⊥,A ,B 为垂足,且4PA =,5PB =,设点A 、B 到二面角l αβ--的棱l 的距离为别为,x y .则当θ变化时,点(,)x y 的轨迹是下列图形中的12.曲线24sin()4x πρ=+与曲线12221222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( )。
极坐标与参数方程经典练习题带详细解答

1.极坐标系与直角坐标系xoy 有相同的长度单位.以原点O 为极点.以x 轴正半轴为极轴.已知直线l 的参数方程为1222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).曲线C 的极坐标方程为2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两点.求弦长||AB .2.已知直线l 经过点1(,1)2P .倾斜角α=6π.圆C的极坐标方程为)4πρθ=-.(1)写出直线l 的参数方程.并把圆C 的方程化为直角坐标方程;(2)设l 与圆C 相交于两点A 、B.求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==.圆C 的极坐标方程为)4cos(2πθρ+=.(I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线.求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合.极轴与直角坐标系中x 轴的正半轴重合.且两坐标系有相同的长度单位.圆C 的参数方程为12cos 12sin x y αα=+⎧⎨=-+⎩(α为参数).点Q的极坐标为7)4π。
(1)化圆C 的参数方程为极坐标方程;(2)直线l 过点Q 且与圆C 交于M.N 两点.求当弦MN 的长度为最小时.直线l 的直角坐标方程。
5.在极坐标系中.点M 坐标是)2,3(π.曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点.极轴为x 轴的正半轴建立平面直角坐标系.斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B .并求||||MB MA ⋅的值. 6.(本小题满分10分) 选修4-4坐标系与参数方程 在直角坐标系中.曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x .(α为参数) M 是曲线1C 上的动点.点P 满足OM 2=.(1)求点P 的轨迹方程2C ;(2)在以D 为极点.X 轴的正半轴为极轴的极坐标系中.射线3πθ=与曲线1C .2C 交于不同于原点的点A,B 求AB7.在平面直角坐标系xOy 中.以O 为极点.x 轴正半轴为极轴建立极坐标系.曲线C 的极坐V 标方程为πcos =13ρθ⎛⎫-⎪⎝⎭.M.N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程.并求M.N 的极坐标;(2)求直线OM 的极坐标方程.8.在直角坐标系中.曲线C 1的参数方程为:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数).以原点为极点.x 轴的正半轴为极轴.并取与直角坐标系相同的长度单位.建立极坐标系.曲线C 2是极坐标方程为:cos ρθ=. (1)求曲线C 2的直角坐标方程;(2)若P.Q 分别是曲线C 1和C 2上的任意一点.求PQ 的最小值.9.已知圆C 的极坐标方程为2cos ρθ=.直线l的参数方程为1221122x x t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数).点A的极坐标为4π⎫⎪⎪⎝⎭.设直线l 与圆C 交于点P 、Q . (1)写出圆C 的直角坐标方程;(2)求AP AQ ⋅的值.10.已知动点P .Q 都在曲线C :2cos 2sin x ty t=⎧⎨=⎩(β为参数)上.对应参数分别为t α=与2t α=(0<α<2π).M 为PQ 的中点。
极坐标参数方程高考练习含答案非常好的练习题

极坐标参数方程高考练习含答案非常好的练习题公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]极坐标与参数方程高考精练(经典39题)1.在极坐标系中,以点(2,)2C π为圆心,半径为3的圆C 与直线:()3l R πθρ=∈交于,A B两点.(1)求圆C 及直线l 的普通方程.(2)求弦长AB .2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α=)作平行于()4R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点.(Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程;(Ⅱ)求|BC|的长.3.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.4.已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值.5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t ty ta x ,3⎩⎨⎧=+=.在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=.(Ⅰ)求圆C 在直角坐标系中的方程;(Ⅱ)若圆C 与直线l 相切,求实数a 的值.6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π,半径r=1,P 在圆C 上运动。
(I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。
极坐标与参数方程大题及答案

极坐标与参数方程大题及答案一、极坐标问题1.求解方程$r = 2\\cos(\\theta)$的直角坐标方程。
首先,根据极坐标到直角坐标的转换公式:$$x = r\\cos(\\theta)$$$$y = r\\sin(\\theta)$$将$r = 2\\cos(\\theta)$代入上述两式,得到:$$x = 2\\cos(\\theta)\\cos(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = 2\\cos^2(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$2.将直角坐标方程x2+y2−4x=0转换为极坐标方程。
首先,我们可以将直角坐标方程中的x2和y2替换成r2,从而得到:r2+y2−4x=0然后,将直角坐标方程中的x和y替换成$r\\cos(\\theta)$和$r\\sin(\\theta)$,得到:$$r^2 + (r\\sin(\\theta))^2 - 4(r\\cos(\\theta)) = 0$$将上述方程化简,得到极坐标方程为:$$r^2 + r^2\\sin^2(\\theta) - 4r\\cos(\\theta) = 0$$3.将极坐标方程$r = \\sin(\\theta)$转换为直角坐标方程。
使用极坐标到直角坐标的转换公式,将$r = \\sin(\\theta)$代入,得到:$$x = \\sin(\\theta)\\cos(\\theta)$$$$y = \\sin^2(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = \\frac{1}{2}\\sin(2\\theta)$$$$y = \\sin^2(\\theta)$$二、参数方程问题1.求解方程$\\frac{x + y}{x - y} = 2$的参数方程。
极坐标与参数方程练习题

1极坐标与参数方程一、选择题:1.已知点M 的极坐标为⎪⎭⎫⎝⎛35π,,下列所给出的四个坐标中能表示点M 的坐标是 ( ) A.53,-⎛⎝ ⎫⎭⎪π B.543,π⎛⎝ ⎫⎭⎪ C.523,-⎛⎝ ⎫⎭⎪π D.⎪⎭⎫ ⎝⎛-355π, 2.直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是 ( ) A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心3.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是 ( ) A.线段 B.双曲线的一支 C.圆 D.射线4.实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为 ( ) A.27 B.4 C.29 D.5 5.在极坐标系中,与圆θρsin 4=相切的一条直线方程为 ( )A .2sin =θρB .2cos =θρC .4cos =θρD .4cos -=θρ二、填空题:6.点()22-,的极坐标为7.极点到直线()cos sin 3ρθθ+=的距离是8.极坐标方程2sin 2cos 0ρθθ-⋅=表示的曲线是9.直线l 过点()5,10M ,倾斜角是3π,且与直线032=--y x 交于M ,则0MM 的长为 10.已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线极坐标方程是11.已知动园:),,(0sin 2cos 222是参数是正常数θθθb ,a b a by ax y x ≠=--+,则圆心的轨迹是12.设0>r ,那么直线()是常数θθθr y x =+sin cos 与圆()是参数ϕϕϕ⎩⎨⎧==sin cos r y r x 的位置关系是213.若动点(x ,y )在曲线14222=+by x (b >0)上变化,则x 2 + 2y 的最大值为 三、解答题: 14.上截得的弦长。
为参数)被双曲线(求直线13222=-⎩⎨⎧=+=y x t ty t x15.点P 在椭圆221169x y +=上,求点P 到直线3424x y -=的最大距离和最小距离。
极坐标与参数方程题型及答案

极坐标与参数方程题型及答案数学选择题:1. 下列哪个极坐标表示点(3, 5)?A. (5, 53.13°)B. (3, 53.13°)C. (5, 37.12°)D. (3, 37.12°)答案:A2. 唯一表示点(-4, 60°)的极坐标是A. (4, 60°)B. (4, 120°)C. (-4, 60°)D. (-4, 240°)答案:C3. 参数方程x = 2cosθ、y = 3sinθ (0 ≤ θ ≤ π/2) 表示的图形是A. 长方形B. 正方形C. 长椭圆D. 圆答案:C4. 必要条件方程x = 1 + cosθ、y = 2 + sinθ (0 ≤ θ ≤ 2π)表示的图形是A. 点B. 圆C. 椭圆D. 双曲线答案:B填空题:1. 将极坐标(4, 240°)转化为直角坐标形式,其对应的坐标为(______, ______)。
答案:(-2, -3.46)2. 给出参数方程x = 2cosθ、y = 5sinθ (0 ≤ θ ≤ π/2) 所表示直线的斜率,其斜率为 _______。
答案:2.5判断题:1. 下列哪些图形可以由参数方程表示?I. 点 II. 圆 III. 双曲线 IV. 三角形A. I、II、IIIB. I、II、IVC. II、III、IVD. I、II、III、IV答案:B2. 唯一表示点(4, 30°)的极坐标是(4, π/6) 。
答案:正确简答题:1. 极坐标系表示的是平面直角坐标系的哪些信息不同?答案:极坐标系表示的是点与极点之间的距离和点与极轴的夹角,而直角坐标系则表示的是点在x、y轴之间的坐标。
2. 怎样将一个极坐标转换为另一个等价的极坐标?答案:若(r, θ)为一个点在极坐标系中的坐标,则其等效于(r, θ + 2kπ) (k 为整数)。
3. 参数方程x = cosθ、y = sinθ 表示的图形是什么?有何特点?答案:参数方程x = cosθ、y = sinθ 表示的是单位圆,其特点是对于任意θ值,点到原点的距离都是1。
极坐标与参数方程练习(含答案)

极坐标与参数方程练习1.把点P 的直角坐标(—6,2)化为极坐标为________.5)6π 2.已知点A 的极坐标为⎝⎛⎭⎫2,2π3,则它的直角坐标是________.(-1,3) 3.极坐标为⎝⎛⎭⎫32,π的点M 的直角坐标是________.⎝⎛⎭⎫-32,0 4.曲线的极坐标方程ρ=4sin θ化为直角坐标方程为________.x 2+(y -2)2=45.极坐标方程ρsin ⎝⎛⎭⎫θ+π3=4化为直角坐标系方程是________80y +-= 6.极坐标系中,曲线ρ=-4sin θ和ρcos θ=1相交于点A ,B ,则||AB =_____________.2 37.在极坐标系中,圆ρ=2cos θ的圆心的极坐标是______,(1,0)8.已知圆的极坐标方程为ρ=2cos θ,则圆心的直角坐标是_____;半径长为________.(1,0) 19.若直线ρsin ⎝⎛⎭⎫θ+π4=22,与直线3x +ky =1垂直,则常数k =____________.-3 10.在极坐标系中,点()1,0到直线ρ()cos θ+sin θ=2的距离为________.2211.极坐标系中,圆ρ2+2ρcos θ-3=0上的动点到直线ρcos θ+ρsin θ-7=0的距离的最大值是________.42+212.已知圆的极坐标方程ρ=2cos θ,直线的极坐标方程为ρcos θ-2ρsin θ+7=0,则圆心到直线距离为__________.85513.在极坐标系中,点A ⎝⎛⎭⎫1,π4到直线ρsin θ=-2的距离是________..2+2214.在极坐标系中,过点A ⎝⎛⎭⎫4,-π2引圆ρ=4sin θ的一条切线,则切线长为______. 15.参数方程:⎩⎪⎨⎪⎧ x =3cos φy =2sin φ (φ为参数)化为 普通方程为________ 22194x y +=16.在直角坐标系中圆C 的参数方程为⎩⎪⎨⎪⎧ x =2cos θy =2+2sin θ(θ为参数),则圆C 的普通方程为________,x 2+(y -2)2=417.已知圆C 的参数方程为⎩⎪⎨⎪⎧ x =cos θ+1y =sin θ,(θ为参数),则点P ()4,4与圆C 上的点的最远距离是_________.618.直线⎩⎪⎨⎪⎧x =-2+t y =1-t (t 为参数)被圆(x -3)2+(y +1)2=25所截得的弦长为________..82 19.若直线l 1:⎩⎪⎨⎪⎧ x =1-2t ,y =2+kt (t 为参数)与直线l 2:⎩⎪⎨⎪⎧ x =s ,y =1-2s (s 为参数)垂直,则k =________.-1 20.若直线3x +4y +m =0与圆⎩⎪⎨⎪⎧ x =1+cos θy =-2+sin θ (θ为参数)没有公共点,则实数m 的取值范围是________________ (-∞,0)∪(10,+∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
!极坐标与参数方程习题一、选择题1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( )A .0B .1C .-2D .83.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( ).A 、⎪⎭⎫⎝⎛-3,5πB 、⎪⎭⎫⎝⎛34,5π C 、⎪⎭⎫⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ)5.点()3,1-P ,则它的极坐标是( )A 、⎪⎭⎫⎝⎛3,2π B 、⎪⎭⎫⎝⎛34,2π C 、⎪⎭⎫⎝⎛-3,2π D 、⎪⎭⎫ ⎝⎛-34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ).】7.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线8.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( ) B.16-D.169.极坐标方程4cos ρθ=化为直角坐标方程是( )A .22(2)4x y -+= B.224x y += C.22(2)4x y +-= D.22(1)(1)4x y -+-=10.柱坐标(2,32π,1)对应的点的直角坐标是( ). )A.(1,3,1-)B.(1,3,1-)C.(1,,1,3-)D.(1,1,3-)11.已知二面角l αβ--的平面角为θ,P 为空间一点,作PA α⊥,PB β⊥,A ,B 为垂足,且4PA =,5PB =,设点A 、B 到二面角l αβ--的棱l 的距离为别为,x y .则当θ变化时,点(,)x y 的轨迹是下列图形中的12.曲线24sin()4x πρ=+与曲线1221222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( )。
/A 、 相交过圆心B 、相交C 、相切D 、相离二、填空题13.在极坐标()θρ, ()πθ20<≤中,曲线θρsin 2=与1cos -=θρ的交点的极坐标为____________.3333(A ) (B ) (C )(D )14.在极坐标系中,圆2ρ=上的点到直线()6sin 3cos =+θθρ的距离的最小值是 .15. 圆C :x =1+cos θy =sin θ⎧⎨⎩(θ为参数)的圆心到直线l:x =3t y =13t⎧-⎪⎨-⎪⎩(t 为参数)的距离为 .16. A :(极坐标参数方程选做题)以直角坐标系的原点为极点,x 轴的正半轴为极轴,已知曲线1C 、2C 的极坐标方程分别为0,3πθθ==,曲线3C 的参数方程为2cos 2sin x y θθ=⎧⎨=⎩(θ为参数,且,22ππθ⎡⎤∈-⎢⎥⎣⎦),则曲线1C 、2C 、3C 所围成的封闭图形的面积是 . ·三、解答题17.在直角坐标系xOy 中,直线l 的方程为x-y+4=0,曲线C 的参数方程为x y sin ααα⎧=⎪⎨=⎪⎩(为参数).(I )已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴 正 半轴为极轴)中,点P 的极坐标为(4,2π),判断点P 与直线l 的位置关系; (II )设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.18.在平面直角坐标系xOy 中,椭圆C 方程为5cos (3sin x y ϕϕϕ=⎧⎨=⎩为参数)(Ⅰ)求过椭圆的右焦点,且与直线42(3x tt y t=-⎧⎨=-⎩为参数)平行的直线l 的普通方程。
&(Ⅱ)求椭圆C 的内接矩形ABCD 面积的最大值。
19.坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合.直线l 的参数方程为:⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 21231(t 为参数),曲线C 的极坐标方程为:θρcos 4=. (1)写出曲线C 的直角坐标方程,并指明C 是什么曲线; (2)设直线l 与曲线C 相交于Q P ,两点,求PQ 的值.20.在直角坐标系xoy 中,直线l 的参数方程是()21x tt y t =⎧⎨=+⎩为参数,在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的极坐标方程是2cos ρθ=(I )求圆C 的直角坐标方程; (II )求圆心C 到直线l 的距离。
21.在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点M的极坐标为4π⎛⎫⎪⎝⎭,曲线C的参数方程为1,,x y αα⎧=+⎪⎨=⎪⎩(α为参数).。
(1)求直线OM 的直角坐标方程;(2)求点M 到曲线C 上的点的距离的最小值.22.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系。
已知点P 的极坐标为4π⎫⎪⎭,直线l 过点P ,且倾斜角为23π,方程2213616x y +=所对应的切线经过伸缩变换1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩后的图形为曲线C(Ⅰ)求直线l 的参数方程和曲线C 的直角坐标系方程 (Ⅱ)直线l 与曲线C 相交于两点,A B ,求PA PB ⋅的值。
23.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建坐标系,已知曲线θθρcos 2sin :2a C =)0(>a ,已知过点)4,2(--P 的直线l 的参数方程为:⎪⎪⎩⎪⎪⎨⎧+-=+-=t y t x 224222, 直线l 与曲线C 分别交于N M ,.(Ⅰ)写出曲线C 和直线l 的普通方程; ~(Ⅱ)若|||,||,|PN MN PM 成等比数列,求a 的值.试卷答案⎪⎭⎫ ⎝⎛43,2π16.23π 17.解:(I )把极坐标系下的点(4,)2P π化为直角坐标,得P (0,4)。
因为点P 的直角坐标(0,4)满足直线l 的方程40x y -+=,。
所以点P 在直线l 上,(II )因为点Q 在曲线C 上,故可设点Q的坐标为,sin )αα, 从而点Q 到直线l 的距离为2cos()4)6d παπα++===++,由此得,当cos()16πα+=-时,d18.(1)由已知得椭圆的右焦点为()4,0,已知直线的参数方程可化为普通方程:220x y -+=,所以12k =,于是所求直线方程为240x y -+=。
(2)460sin cos 30sin S xy ϕϕ===2ϕ, 当22πϕ=时,面积最大为3019.^(2)把⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 21231代入x y x 422=+,整理得05332=+-t t ,---6分 设其两根分别为,,21t t 则5,332121==+t t t t ,---8分 所以721=-=t t PQ .----10分20.(1)圆C 的直角坐标方程是22+-2=0x y x ;(2)圆心C 到直线35l d 的距离。
21.解:(Ⅰ)由点M 的极坐标为π42,4⎛⎫⎪⎝⎭,得点M 的直角坐标为(4,4), 所以直线OM 的直角坐标方程为x y =.%(Ⅱ)由曲线C 的参数方程12,2x y αα⎧=+⎪⎨⎪⎩(α为参数),化成普通方程为:2)1(22=+-y x , 圆心为A (1,0),半径为2=r .由于点M 在曲线C 外,故点M 到曲线C 上的点的距离最小值为25||-=-r MA .22.23.(Ⅰ)22,2y ax y x ==-.(Ⅱ)直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+-=t y tx 224222(t 为参数),代入22y ax =, 得到222)8(4)0t a t a -+++=, 则有121222(4),8(4)t t a t t a +=+⋅=+.因为2||||||MN PM PN =⋅,所以2212121212()()4t t t t t t t t -=+-⋅=⋅. 解得 1a =.。