声波变密度测井及资料解释

合集下载

地球物理测#(第二章)声波测井

地球物理测#(第二章)声波测井

地球物理测井—声波测井 注意
岩石的声学性质
在井下,纵波和横波都能在地层传播,而
横波不能在流体(气、液体)中传播,因为 泥浆中只能传播纵波。 它的切变模量=0
纵波可以在气体、液体和固体中传播。
地球物理测井—声波测井
2、岩石的声速特性
岩石的声学性质
声波在介质中的传播特性主要指声速、声幅和频率特性。
纵波速度
岩性不同 VP、VS的影响不同 弹性模量不同 VP、VS 不同
Vp增加
地球物理测井—声波测井
2、孔隙度的影响
声速测井(声时差测井)
流体的弹性模量和密度都不同于岩石骨架,相对讲,即使岩性相 同,其中的流体也不同。
孔隙度
传播速度
3、岩层的地质时代的影响
实际资料表明:厚度、岩性相同,岩层越老,则传播速度越快。
横波速度
E (1 ) Vp (1 )(1 2 ) E Vs 2 (1 )
σ—泊松比 ρ—介质密度
E—杨氏模量
地球物理测井—声波测井
纵横波比
岩石的声学性质
Vp
2(1 ) Vs (1 2 )
由于大多数岩石的泊松比等于0.25,所以岩石的纵横波速度比 为1.73。可见,岩石中传播的纵波比横波速度快。一般,岩石 的密度越大,传播速度越快,反之亦然。
A. 瑞利波(井壁泥浆的交界面上产生的波,与横波混在一起 不易区分。) 在弹性介质的自由表面上,可以形成类似于水波的面波,这 种波叫瑞利波(Rayleigh waves)如图所示,瑞利波具有以下特点: (1)产生在弹性介质的自由表面。 (2)质点运动轨迹为椭圆。 (3)质点运动方向相对于波的传播方向是倒卷的,波速约为横 波波速的80%~90%。

声波测井介绍

声波测井介绍
声波在不同介质中传播时,速度有很大差别,而且声波 幅度(能量)的衰减、频率的变化等声学特性也是不同的。 声波测井就是利用岩石等介质的这些声学特性来研究钻井地 质剖面、判断固井质量等问题的一种测井方法。
声波是近年来发展较快的一种测井方法。由最早的声速 测井、声幅测井发展到后来的长源距声波测井、变密度测井、 井下声波电视(BHTV)、噪声测井到现在的多极子阵列声波测 井、井周声波成像测井(CBIL)、超声波井眼成像仪等。特 别是声波测井与地震勘探的观测资料结合起来,在解决地下 地质构造、判断岩性、识别压力异常层位、探测和评价裂缝、 判断储集层中流体的性质方面,使声波测井成为结合测井和 物探的纽带,有着良好的发展前景。
在薄层左侧面上,存在作用力
;在其右侧面上,
由于声波在介质中传播了 以后,声压变化为
(为
负值),因而对此体积元右侧面的作用力为:
所以该薄层沿其传播方向运动的作用力为:
即:
根据牛顿第二定律,此力等于薄层的质量和其加速度的 乘积,所以有:
两边化简并对时间积分,有:
(1)
为积分常数,当没有声压作用时(t=0),薄层的运动速度为
等效声中心(声源)传播到距等效声源为r的某处,此时声波的 波阵面是以声源为球心,r为半径的球面。若声源发出的总功率
为W,则由声强的定义有:
从上式可以看出,对球面波来说,随着传播距离的增加, 波阵面上的声强按平方规律衰减。
对于柱面波,若柱状声源长度为 ,圆柱波阵面的半径为 , 声源声功率为 ,则波阵面上的声强为:
能量称为声功率,用W表示,单位为微瓦(W)。在声波传
播的波阵面上,单位面积上声功率的大小称为声强,声强通
常用J表示,单位为W /m2。
为了说明声压和声强的数学关系,先讨论由于声压引起

声波测井复习资料

声波测井复习资料

声波测井目的应用1、确定孔隙度—时差2、识别岩性—时差、幅度衰减3、油气识别—时差、幅度衰减、Vp/Vs4、裂缝识别(或渗透性)—低频斯通利波、波形、幅度衰减5、固井质量、钻井工程(弹性系数、地层压力、破裂压力)、采油开发(弹性系数、岩石强度、出砂指数)6、地震标定、构造确定、工程物探第一章1、Z=ρc称之为波阻抗或声阻抗2、弹性常数之间的转换关系表3、影响岩石声波速度的因素: 1. 岩性是影响声速的最主要因素2. 孔隙和流体性质对声波速度的影响3. 压力对声波速度的影响4. 温度对声波速度的影响5. 岩石生成的地质条件对声波速度的影响6. 埋藏深度对岩层速度的影响4、射线声学理论或几何声学理论:1.费尔马原理2.惠更斯原理3. 斯奈尔(Snell)定律5、滑行波作为首波接收的条件(见课本)6、声波测井声系源距的选择原则:(1)要保证滑行波作为首波而非泥浆直达波,源距选择不能过小。

(2)在实际测井中,由于声波在传播过程中存在着各种衰减,增大源距,声波衰减严重,易发生周波跳跃,因此在一定的发射声功率的条件下,源距选得又不能过长。

(3)波组分。

不同的测井目的,需要更多组分的波,在声功率允许下增大源距,以保证波组群能在时间域内有效分开。

7、声波在传播过程中能量衰减:波前扩展造成的声能衰减—几何扩散;声波在介质中的吸收造成的衰减;井下声波的衰减;泥浆对超声的衰减1)泥浆对超声的吸收衰减2)泥浆固相颗粒对超声的散射衰减8、声波测井换能器:声波的两种物理效应——磁致伸缩效应和压电效应当铁磁性材料的磁状态改变时,其尺寸也发生相应的改变,这种现象称为磁致伸缩效应。

有些多原子分子晶体材料在应力作用下发生形变时,会在晶体表面产生电荷,这种现象称为压电效应。

第二章、声波测井-声波传播特征1、斯通利波:不符合Snell反射折射定律,不是一般意义上反射波、折射波,其传播速度总是低于井中泥浆波速度,是沿井壁界面传播的一种面波(或诱导波)。

声波测井文档

声波测井文档

声波测井介绍声波测井是一种地球物理测井技术,通过发送声波信号,并根据信号的传播特性来获取地下地层的物理特征和构造信息。

声波测井的主要应用领域包括石油勘探、地质工程和地下水资源评价等。

在石油勘探领域,声波测井被广泛用于获取地下岩石的弹性属性,从而识别含油气层和评估油气储量。

声波测井的原理是利用声波在地层中传播的速度和振幅变化,分析得到地层的波速、密度等信息,进而推断地层的岩性和孔隙度等。

声波测井原理声波测井使用的是通过固体或流体介质中传播的声波信号。

在声波测井过程中,仪器向井中发送声波信号,然后接收并分析回波信号。

通过分析回波信号的传播时间、振幅和频率等属性,可以获得地层的物理特性。

声波在地层中的传播速度取决于地层的密度和弹性模量。

当声波从一种介质传播到另一种介质时,会发生折射和反射。

这些反射和折射的现象可以用来推断地层的变化,如岩性、孔隙度和饱和度等。

声波测井主要使用两种传播模式:纵波和横波。

纵波是沿着传播方向的压缩波,而横波是垂直于传播方向的波动。

纵波的传播速度比横波大,因此在实际测井中,主要使用纵波进行测量和分析。

声波测井仪器声波测井仪器通常由发射器、接收器和数据记录系统组成。

发射器用于产生声波信号,而接收器则用于接收回波信号。

数据记录系统用于存储和分析测量数据。

声波测井仪器的功能包括:1.发射声波信号,产生刺激并激发地层回波。

2.接收回波信号并转换为电信号。

3.对接收到的信号进行放大和处理。

4.记录和存储测量数据,并进行实时分析和解释。

现代的声波测井仪器通常可以进行多频段的测量,以获取更详细和准确的地层信息。

同时,一些高级仪器还具备图像处理功能,可以生成地层的可视化图像。

声波测井应用1.石油勘探:声波测井在石油勘探中起着重要的作用。

通过分析地层的声波传播特性,可以确定油气层的位置和性质,为油井的钻探和开发提供依据。

2.地质工程:声波测井用于地质工程中的岩石力学和岩层稳定性评估。

通过测量地层的声速和密度等特性,可以判断地层的强度和稳定性,为工程建设提供指导。

声波变密度测井及资料解释

声波变密度测井及资料解释

三、声波变密度测井的原理
发射器到第一个接收器的源距为3ft (0.91 m ),测得的曲线为CBL (水泥胶结测井)曲线, CBL测量的是套管波的幅度。由于传播的路径和 穿过的介质基本固定,因此波的衰减与介质的吸 收及不同介质界面上的反射系数有关。如果水泥 环与套管外壁胶结好,由于水泥环的声阻抗与套 管的差别小,声波传入水泥环,套管波的首波幅 度低。如果水泥环与套管胶结不好,其中残留有 泥浆,致使两者的声阻抗差别大,反射系数大, 大部分声波能量沿套管传播,套管波的首波幅度 大。如果套管外只有泥浆或空气时,套管波首波 幅度与胶结好的首波相比,其幅度可增加4~5倍, 因此可根据CBL测得的声波幅度曲线来判断水泥 固井质量的好坏。
四、声波变密度测井的施工要求
• 1、根据套管尺寸,选择通径为Ф116 mm或Ф150mm通井规通至目的井段以 下30m,确保井筒通畅,测量井段井液 为清水或泥浆(不含气泡); • 2、热清水洗井,将管内的脏物和死油洗 出; • 3、井场清洁、平整、无杂物堆放,有足 够空间摆放车辆。
五、声波变密度测井的资料分析
三 英 尺
三、声波变密度测井的原理
CBL曲线的应用:判断第一界面的固井质量
量。 声波相对幅度=A目的/A泥浆*100% A目的:目的井段的声波幅度; A泥浆:套管外全是泥浆,即自由套管井 段的声波幅度。 通常,相对幅度小,固井质量越好;反 之,相对幅度越大,固井质量越差。 一般将固井质量划分为三个等级: ①胶结质量良好,相对幅度<16%; ②胶结质量中等,相对幅度:16% ~40%; ③胶结质量不好,相对幅度>40%。 使用声波相对幅度的大小来判断固井质
磁定位曲线
接 箍 胶结不好
第二界面解释:胶结好
谢 谢!

声波变密度测井技术及其应用

声波变密度测井技术及其应用

声波变密度测井技术及其应用目前油田固井质量检查的主要方法是声波幅度测井和声波变密度测井。

声波变密度测井是由声幅测井发展而来的,其原理是利用水泥和泥浆(或水)声阻抗的较大差异对沿套管轴向传播的声波的衰减影响,来反映水泥与套管间、套管与地层的胶结质量。

井下仪器主要包括声系和电子线路两部分。

声系的功能是为了进行声波测井,它包括发射探头和接收探头,仪器的源距有两种,3ft和5ft,3ft的用于声幅测量,5ft的用于变密度测量。

电子线路可以挂接连续测斜仪、高分辨率声波、双侧向和双感应等探头,实现多探头组合测井。

一、声波变密度下井仪测井仪的声系由两个压电晶体组成,一个发射,一个接收。

声源的工作频率为20KHz,重复频率15-20Hz。

测井时,声源发出的声脉冲在井内各个方向传播,当传播到两种介质的交界面时,会发生声波的反射和折射。

井下仪电路主要由4个单元电路组成,即逻辑单元、接收单元、低压电源及信号衰减单元、发射控制及换档脉冲检测单元。

逻辑信号首先进入半峰值再生电路,检测出的逻辑信号进入逻辑形成电路,产生发射、接收直流逻辑方波,并形成同步脉冲。

同步脉冲与发射逻辑共同进入逻辑控制电路,产生各种控制信号,触发脉冲送发射电路,经换能器转换成声波信号,经地层传播,被接收换能器转换成电信号而送入预放级,经隔离选择,控制晶体发射、接收,然后接收信号经增益控制、发射干扰抑制等处理,最后与发射标志脉冲经电缆传输到地面。

二、声波变密度测井能够解决的问题1、全波列分析全波列测井包含声波的速度、幅度、频率等信息,我们主要对前12-14个波的幅度及到达时间进行分析。

一般情况下,前3个波与套管波有关,反映套管与水泥环的胶结状况;第4-6条相线与水泥环中传播的声波信号有关,它反映水泥环与地层的胶结状况。

2、声波变密度测井检查固井质量(1)套管外无水泥。

这种情况下,套管波反射能力很强,地层波较弱或没有,变密度的相线差别不大,基本均匀分布,套管接箍明显,固井声幅为高幅值。

声幅-变密度测井(比较好)

声幅-变密度测井(比较好)

CBL曲线幅度很低相 对幅度<20%.
VDL曲线缺少套管波, 出现明显的地层波, 显示为黑白相间的 起伏条带.
检查固井质量 局部胶结
指套管、水泥、地层之间只 有部分胶结,部分没有胶结的 情况,在实际井中出现的机会 较多,如图所示2235-2 242米井段是局部胶结的情 况,曲线特征: (1)TT与自由套管基本一致 (2)CBL比自由套管的低, 且不稳定。 (3)VDL显示的套管波比 自由套管的弱,套管波的右边 出现明显的地层波。
套管外径与自由套管声幅理论值
套管外径 (mm) 101.6 127 139.7 177.8 193.7 244.5 273.1 (in.) 4 5 51/2 7 75/8 95/8 103/4 自由套管声幅值
(mV)
89 76 69-72 62 59 51 48
第三部分
固井声幅测井资料定性评价
将套管波声幅曲线标准化,转化为相对声幅。 例如,对于以“毫伏”(mV)为单位的声幅曲线, 应转换成以自由段套管为100%的相对声幅曲线: U=A/Afp*100% 式中:
泥岩 空气
1800 330
555.5 3000
源距的选择ห้องสมุดไป่ตู้
CBL采用3英 尺的源距是为了 尽可能提高声波 幅度曲线对水泥 胶结变化的敏感 性。
声 波 幅 度 , 毫 伏
源距
VDL源距5英 尺地层波更明显, 易于评价水泥环 第二界面的交接 情况
声波衰减率dB/ft
CBL刻度
CBL/VDL测井仪器需要在与目的层同尺 寸的自由套管井段进行刻度。若声幅曲线的 单位为百分数(%),则自由套管的声幅值 应当为95~100%。若声幅曲线的单位为毫伏 (mV),则不同外径的套管的自由套管声 幅值必须符合该仪器规定的理论值。

测井技术方法及资料解释教程

测井技术方法及资料解释教程

3、用长电极梯度曲线(如4米梯度)定性分析储层含油性。
4、短电极的电位曲线用于跟踪井壁取心。
§1.2
•微电极测井 ML
普通电阻率测井
1、贴井壁测量,同时测量微梯度和微电位两条曲线。前者主要反映泥 饼附近的电阻率,后者反映冲洗带电阻率。 2、探测范围小(4cm和10cm),不受围岩和邻层的影响。 3、适用条件:井径10-40cm范围。 4、质量要求 1)泥岩低值、重合; 2)渗透性砂岩数值中等,正幅度差(盐水泥浆除外); 3)致密地层曲线数值高,没有幅度差 或正、负不定的幅度差。 4)除井眼垮塌和钻头直径超过微电极极板张开 最大幅度的井段外,不得出现大段平直现象。 测量示意图 冲洗带 泥饼
§1.2
•微电极测井应用
普通电阻率测井
1、详细划分地层剖面; 2、判断岩性,划分渗透层; 3、精确划分储层有效厚度; 4、确定冲洗带电阻率。 5、分析储层非均质性
§1.3
•基本原理
侧向(聚焦)测井
盐水泥浆、高阻薄层条件下, 普通电阻率测井失真,· · · · · · · ·
屏蔽电极
增加屏蔽电极,
记录初至波到达记录初至波到达两个接收器的时间差两个接收器的时间差仪器居中井壁规则仪器居中井壁规则t1tttt补偿声波测井补偿声波测井11井眼变化的补偿井眼变化的补偿22仪器倾斜影响的补偿仪器倾斜影响的补偿33深度误差的消除深度误差的消除21声速测井声波时差曲线的影响因素声波时差曲线的影响因素裂缝或层理发育的地层裂缝或层理发育的地层未胶结的纯砂岩气层高压气层未胶结的纯砂岩气层高压气层井眼扩径严重的盐岩层井眼扩径严重的盐岩层泥浆中含有天然气泥浆中含有天然气周波跳跃周波跳跃21声速测井??质量要求质量要求11渗透层不得出现无关的跳动出现周波跳跃测速应降至渗透层不得出现无关的跳动出现周波跳跃测速应降至1000m1000mhh以下重复测量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

介质1 介质2
α β
三、声波变密度测井的原理
滑行波的概念
当介质1中的声波速度v1小于介质2 中的声波速度v2时,即在v2>v1的条件 下,当大到某一角度时,为直角,此时 折射波将沿着界面在介质2中传播,这 样的折射波在声波测井中叫滑行波,或 称首波或头波,此时的入射角叫临界角。 并且,介质中波所传播到的各点都 可以看成新的波源,称为子波源;可以 认为每个子波源都可以向各个方向发出 微弱的波,称为子波;这种子波是以所 在介质的声波速度传播的。
三、声波变密度测井的原理
VDL曲线的应用:判断第二界面的固井质量
CBL测量的是套管波的首波幅度。首波幅度 的大小取决于水泥与套管外壁的胶结程度,因此 只能解决第一界面(套管外壁与水泥环的界面) 的问题,而水泥环与井壁(水泥环与地层)之间 是否胶结良好,即第二界面的问题时无法解决的。 第二个接收器源距为5ft(1.52m),接收的 是变密度测井(VDL)测井曲线,可以接收套管波、 水泥环波及地层波,可以检查套管井第一、第二 界面的胶结程度。测量时将声波幅度的大小转变 为光辉度的强弱,黑色的深浅表示信号幅度的大 小,因为测量时只保留信号幅度的正半周,将负 半周去掉,所以资料显示为黑、白相间的条纹。
2、水泥与套管和地层胶结都良好
在水泥与地层胶结都好 的井段,因为套管和固结水 泥的差别较小,套管与水泥 的阻抗很接近,大部分声波 能量穿过套管及水泥环进入 地层传播。因此,在变密度 图上套管波信号很弱或不存 在,图中已看不见,而地层 波信号很强。甚至某些快速 地层的地层波会出现在套管 的位置上。CBL声幅为低幅 值。
磁定位曲线
接 箍 胶结不好
第二界面解释:胶结好
谢 谢!
四、声波变密度测井的施工要求
• 1、根据套管尺寸,选择通径为Ф116 mm或Ф150mm通井规通至目的井段以 下30m,确保井筒通畅,测量井段井液 为清水或泥浆(不含气泡); • 2、热清水洗井,将管内的脏物和死油洗 出; • 3、井场清洁、平整、无杂物堆放,有足 够空间摆放车辆。
五、声波变密度测井的资料分析
介质1 介质2
α β
三、声波变密度测井的原理
发射器发射出声波后,一 部分声波在套管中以滑行波的 方式沿套管传播,形成套管波, 另一部分会产生折射传到水泥 环中传播,还有一部分穿过水 泥环传入地层,分别形成水泥 环波、地层波。 声波在介质中传播,其幅 度会逐渐衰减,声波幅度的衰 减在声波频率一定的情况下, 是和介质密度、弹性等因素有 关的。通过测量声波幅度的衰 减变化来认识地层特点以及水 泥胶结情况等。
三、声波变密度测井的原理
发射器到第一个接收器的源距为3ft (0.91 m ),测得的曲线为CBL (水泥胶结测井)曲线, CBL测量的是套管波的幅度。由于传播的路径和 穿过的介质基本固定,因此波的衰减与介质的吸 收及不同介质界面上的反射系数有关。如果水泥 环与套管外壁胶结好,由于水泥环的声阻抗与套 管的差别小,声波传入水泥环,套管波的首波幅 度低。如果水泥环与套管胶结不好,其中残留有 泥浆,致使两者的声阻抗差别大,反射系数大, 大部分声波能量沿套管传播,套管波的首波幅度 大。如果套管外只有泥浆或空气时,套管波首波 幅度与胶结好的首波相比,其幅度可增加4~5倍, 因此可根据CBL测得的声波幅度曲线来判断水泥 固井质量的好坏。
3、水泥与套管胶结好,与地层胶结差
在这种情况下,因 为套管和固结水泥的差 别较小,大部分声波能 量不在套管界面上反射 而是穿过套管与水泥环 的界面进入水泥环,由 于声波能量在水泥环中 被很大地衰减损耗,传 到地层中的声波能量很 小。所以变密度套管波 很弱,地层波也很弱。
一个声波变密度测井实例
声 波 变 密 度 测 井 成 果 图 第一界面解释:胶结好 CBL曲线 胶结中等 VDL 曲线
在水泥返高以上的这一段套管,称为自 由套管。测井时,该段的声波幅度最大,依 此作为CBL的评定标准,因此能够做到半定 量解释。
下面介绍几种用声波变密度测井判断水 泥胶结状态的典型事例。
1、 自

套 管
在自由套管井段,由于套管 外无水泥,界面波阻抗差别大, 所以套管波反射很强,大部分声 波能量沿套管传播,传到地层中 的声波能量很小,地层波较弱或 没有。因此在变密度图上出现强 套管波信号,声波在套管壁上反 复震荡形成前6至8个波全是套管 波。变密度相线的差别不大,基 本是均匀分布,在套管接箍位置 传播时间稍有增加,套管波幅度 变小,变密度曲线在接箍处有人 字纹显示。CBL声幅为高幅值。
声波变密度测井及资料解释
刘鑫


• 进行固井评价测井的目的 • 声波变密度测井的作用 • 声波变密度测井的原理 • 声波变密度测井的施工要求 • 声波变密度测井的资料分析
一、进行固井评价测井的目的
当完钻并下套管后,需要把套管和井壁间的环形空间
用水泥封固,以防井眼垮塌及渗透层之间的相互串通。由于
固井的效果受井深、温度、井眼尺寸、添加剂、水泥类型等 诸多因素的影响,对于某些井段即使用最佳方案进行固井作 业,也可能出现窜槽。固井失败的主要后果是会导致渗透层 之间流体的渗流。因此,固井质量评价是工程测井中重要的 一个作业,发现问题应及时修补。固井评价测井的主要方法 有“声幅测井”、“声波变密度测井”等。
二、声波变密度测井的作用
1、检查水泥与套管之间的胶3、找出套管外窜槽部位; 4、判断水泥返高位置。
三、声波变密度测井的原理
声波在介质中的传播
声波由一种介质向另一种介质传播, 在两种介质形成的界面上,将发生声波 的反射和折射。反射波的幅度取决于两 种介质的声阻抗。所谓声阻抗(Z)就是介 质密度和声波在该介质中传播速度的乘 积(Z=ρ .v)。两种介质的声阻抗差越大, 声能量就不易从介质1传导介质2中去。 通过界面在介质2中传播的折射波的能量 就越小。如果两介质声阻抗相近,声波 几乎都形成折射波通过界面在介质2中传 播,这时反射波的能量就非常小。
五 英 尺
声波变密度测井评价固井质量的依据
VDL显示为黑白相间的条带状记录 (辉度记录)。条带的宽度和亮度取 决于声幅的大小及声信号的频率,条 带的相对位置取决于地层性质。声波 幅度越大,黑色条带越黑,通过黑白 条带的亮暗就可以知道套管波、地层 波的幅度,这两个幅度分别反映了第 一、第二界面的胶结情况。 在前十几个波中,前四个波与套 管波有关,第五个至第八个波与地层 波有关。
三 英 尺
三、声波变密度测井的原理
CBL曲线的应用:判断第一界面的固井质量
量。 声波相对幅度=A目的/A泥浆*100% A目的:目的井段的声波幅度; A泥浆:套管外全是泥浆,即自由套管井 段的声波幅度。 通常,相对幅度小,固井质量越好;反 之,相对幅度越大,固井质量越差。 一般将固井质量划分为三个等级: ①胶结质量良好,相对幅度<16%; ②胶结质量中等,相对幅度:16% ~40%; ③胶结质量不好,相对幅度>40%。 使用声波相对幅度的大小来判断固井质
相关文档
最新文档