空间向量与空间的角

合集下载

2020年新高考数学核心知识点25.1 空间向量方法--空间的角(精讲精析篇)(学生版)

2020年新高考数学核心知识点25.1 空间向量方法--空间的角(精讲精析篇)(学生版)

专题25.1 空间向量方法--空间的角(精讲精析篇)提纲挈领点点突破热门考点01 异面直线所成的角1.两条异面直线所成的角①定义:设a,b是两条异面直线,过空间任一点O作直线a′∥a,b′∥b,则a′与b′所夹的锐角或直角叫做a与b所成的角.②范围:两异面直线所成角θ的取值范围是(0,2π.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos|cos|||||||a ba bθϕ⋅==⋅r rr r.【典例1】(2018·全国高考真题(理))在长方体1111ABCD A B C D-中,1AB BC==,13AA则异面直线1AD与1DB所成角的余弦值为( )A.15B5C5D2【典例2】(2019·广西高考模拟(理))在直三棱柱111ABC A B C-中,3,3,32AC BC AB===14AA=,则异面直线1A C与1BC所成角的余弦值为__________.【总结提升】向量法求两异面直线所成角的步骤(1)选好基底或建立空间直角坐标系;(2)求出两直线的方向向量v1,v2;(3)代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.提醒:两异面直线所成角θ的范围是⎝⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当两异面直线的方向向量的夹角为锐角或直角时,就是这两条异面直线所成的角;当两异面直线的方向向量的夹角为钝角时,其补角才是两异面直线所成的角.热门考点02 直线与平面所成角1.直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.【典例3】(2018·江苏高考真题)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.【典例4】(2020·天水市第一中学高三月考(理))如图,在三棱柱ABC A B C '''-中,已知CC '⊥平面ABC ,90ACB ∠=o ,3BC =,4AC CC ='=.(1) 求证:AC A B '⊥';(2) 求直线CC '与平面ABC '所成角的正弦值. 【规律方法】利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.热门考点03 二面角1.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB u u u r ,CD u u ur 〉.(2)如图2、3,12,n n u r u u r分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=<>(或12,n n π-<>).【典例5】(2019年高考全国Ⅲ卷理)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【典例6】(2017·北京高考真题(理))如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD P 平面MAC ,6PA PD ==4AB =.(1)求证:M 为PB 的中点; (2)求二面角B PD A --的大小;(3)求直线MC 与平面BDP 所成角的正弦值. 【规律方法】利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小.但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.热门考点04 空间角有关的探索性问题【典例7】(2019·浙江高二期中)如图所示的几何体中,PD 垂直于梯形ABCD 所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,12,12PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【典例8】(2019·河北名校联盟模拟)如图所示,在梯形ABCD 中,AB ∥CD,AD =DC =CB =1,∠BCD =120°,四边形BFED 是以BD 为直角腰的直角梯形,DE =2BF =2,平面BFED ⊥平面ABCD.(1)求证:AD⊥平面BFED.(2)在线段EF上是否存在一点P,使得平面P AB与平面ADE所成的锐二面角的余弦值为5728?若存在,求出点P的位置;若不存在,说明理由.【总结提升】与空间角有关的探索性问题主要为与两异面直线所成的角、直线与平面所成的角和二面角有关的存在性问题,常利用空间向量法求解.求解时,一般把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等问题,并注意准确理解和熟练应用夹角公式.其步骤是:(1)假设存在(或结论成立);(2)建立空间直角坐标系,设(求)出相关空间点的坐标;(3)构建有关向量;(4)结合空间向量,利用线面角或二面角的公式求解;(5)作出判断.热门考点05 利用向量求空间距离1.空间向量的坐标表示及运算(1)数量积的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),则①a±b=(a1±b1,a2±b2,a3±b3);②λa=(λa1,λa2,λa3);③a·b=a1b1+a2b2+a3b3.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0(a,b均为非零向量).(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则222212121||()()()ABd AB a a b b c c ==-+-+-u u u r.2. 点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.【典例9】(2019·安徽高考模拟(理))在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF的距离为( )A.3λB.2C.2λ D.5 【典例10】设正方体的棱长为2,则点到平面的距离是( )A. B. C. D.【典例11】(2018·四川省广安石笋中学校高考模拟(理))如图,在棱长为2的正方体中,M是线段AB 上的动点.证明:平面;若点M 是AB 中点,求二面角的余弦值;判断点M 到平面的距离是否为定值?若是,求出定值;若不是,请说明理由.【总结提升】1.点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法,如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →,得|BH →·n |=|n ·BM →|=|BH →|·|n |,所以|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.2.利用法向量求解空间线面角、面面角、距离等问题,关键在于“四破”:①破“建系关”,构建恰当的空间直角坐标系;②破“求坐标关”,准确求解相关点的坐标;③破“求法向量关”,求出平面的法向量;④破“应用公式关”.巩固提升1.(2019·四川高二期中(文))已知正方体1111ABCD A B C D 中,E ,F 分别为1BB ,1CC 的中点,那么异面直线AE ,1D F 所成角的余弦值为( ) A .45B .35C .23D .572.(2019·福建高二月考)设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记11D PD B=λ.当∠APC 为钝角时,λ的取值范围是________.3.(2019·浙江高三期中)如图,已知三棱台111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=o ,30BAC ∠=o ,11114AA CC BC AC ====,,E F 分别是11,ACBC 的中点.(1)证明:BC EF ⊥(2)求直线EB 与平面11BCC B 所成角的正弦值.4.(2018·全国高考真题(理))如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.5.(2019·首都师范大学附属中学高二期中)如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD BC ∥,AD AB ⊥,且3PB AB AD ===,1BC =.(1)若点F 为PD 上一点且13PF PD =,证明:CF P 平面PAB .(2)求二面角B PD A --的大小.6.(2018·北京高考真题(理))如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC =5,AC =1AA =2.(1)求证:AC ⊥平面BEF ; (2)求二面角B −CD −C 1的余弦值; (3)证明:直线FG 与平面BCD 相交.7.(2020·江苏淮阴中学高三期中)直三棱柱111ABC A B C -中, AB AC ⊥, 2AB =, 4AC =,12AA =, BD DC λ=u u u r u u u r .(1)若1λ=,求直线1DB 与平面11AC D 所成角的正弦值;(2)若二面角111B AC D --的大小为60︒,求实数λ的值.8.(2017·江苏高考真题) 如图,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B -A 1D -A 的正弦值.9. (2019·江苏高三期中)如图,正三棱柱111ABC A B C -的所有棱长均为2,点E 、F 分别在棱1AA 、1BB 上移动,且1AE AA λ=u u u r u u u r ,1(1)BF BB λ=-u u u r u u u r .(1)若12λ=,求异面直线CE 与1C F 所成角的余弦值; (2)若二面角A EF C --的大小为θ,且25sin θ=,求λ的值. 10.(2019·福建高二月考)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,棱长为2,M ,N 分别为A 1B ,AC 的中点.(1)证明:MN //B 1C ;(2)求A 1B 与平面A 1B 1CD 所成角的大小.11.(2019·天津高考真题(理))如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 12.(2018·上海交大附中高二月考)如图,在三棱柱111ABC A B C -中,11AAC C 边长为8的正方形,6AB =,110BC A B ==(1)求证:1AA ⊥平面ABC ;(2)求二面角111A BC B --的余弦值;(3)证明:在线段1BC 上存在点D ,使得1AD A B ⊥,并求1BD BC 的值. 13.(2019·湖北高三期中(理))如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,222AD AB BC ===,2PA =,点M 满足2MD PM =u u u u r u u u u r.(1)求证://PB 平面MAC ;(2)求直线PC 与平面MAC 所成角的正弦值.14.(2019·河北唐山一中高三期中(理))如图,在三棱柱111ABC A B C -中,122AA AB ==,13BAA π∠=,D 为1AA 的中点,点C 在平面11ABB A 内的射影在线段BD 上.(1)求证:1B D ⊥平面CBD ;(2)若BCD ∆是正三角形,求二面角1C BD C --的余弦值.15.(2019·宁夏银川一中高三月考(理))如图,在四棱锥S ABCD -中,侧棱SA ⊥底面ABCD ,底面ABCD 是直角梯形,AD ∥BC ,AB AD ⊥,且2SA AB BC ===,1AD =,M 是棱SB 的中点 .(Ⅰ)求证:AM ∥平面SCD ;(Ⅱ)求平面SCD 与平面SAB 所成锐二面角的余弦值;(Ⅲ)设点N 是线段CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值.16.(2019·安徽高三期末(文))如图,在四棱锥P ABCD -中,AC BD ⊥交于点O ,ABC 90=o V ,AD CD =,PO ⊥底面ABCD .()1求证:AC⊥底面PBD;()2若PBCV是边长为2的等边三角形,求O点到平面PBC的距离.。

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |❶, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |❷.3.二面角(1)若AB ,CD 分别是二面角α­l ­β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α ­l ­β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|❸,如图(2)(3).两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值.直线与平面所成角的范围为⎣⎡⎦⎤0,π2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值.利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互补,需要结合图形进行判断.二、常用结论解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2.如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角[典例精析]如图,在三棱锥P ­ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE ―→=(0,2,0),DB ―→=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨取z =1,可得n =(1,0,1).又MN ―→=(1,2,-1),可得MN ―→·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE . (2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH ―→=(-1,-2,h ), BE ―→=(-2,2,2). 由已知,得|cos 〈NH ―→,BE ―→〉|=|NH ―→·BE ―→||NH ―→||BE ―→|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12.所以线段AH 的长为85或12.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[提醒] 注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,此夹角就是异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.[题组训练]1.如图所示,在三棱柱ABC ­A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .30°B .45°C .60°D .90°解析:选C 以B 为坐标原点,以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系如图所示.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),∴EF ―→=(0,-1,1),BC 1―→=(2,0,2),∴EF ―→·BC 1―→=2,∴cos 〈EF ―→,BC 1―→〉=22×22=12,则EF 和BC 1所成的角是60°,故选C.2.如图,在四棱锥P ­ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 解:(1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD .又因为AC ∩P A =A ,所以BD ⊥平面P AC . (2)设AC ∩BD =O .因为∠BAD =60°,P A =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,射线OB ,OC 分别为x 轴,y 轴的正半轴建立空间直角坐标系O ­xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0), 所以PB ―→=(1,3,-2),AC ―→=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=|PB ―→·AC ―→||PB ―→||AC ―→|=622×23=64.即PB 与AC 所成角的余弦值为64. 考点二 直线与平面所成的角[典例精析](2019·合肥一检)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. [解] (1)证明:连接AC 交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,∴MN ∥EC . ∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴MN ∥平面EFC .∵BF ,DE 都与平面ABCD 垂直,∴BF ∥DE . ∵BF =DE ,∴四边形BDEF 为平行四边形,∴BD ∥EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴BD ∥平面EFC .又MN ∩BD =N ,∴平面BDM ∥平面EFC . (2)∵DE ⊥平面ABCD ,四边形ABCD 是正方形,∴DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz . 设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),∴DB ―→=(2,2,0),DM ―→=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DM ―→=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量.∵AE ―→=(-2,0,4),设直线AE 与平面BDM 所成的角为θ, 则sin θ=|cosn ,AE ―→|=|n ·AE ―→||n |·|AE ―→|=4515,∴直线AE 与平面BDM 所成角的正弦值为4515.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.[题组训练]1.在长方体ABCD ­A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.解析:建立如图所示的空间直角坐标系D ­xyz ,由于AB =2,BC =AA 1=1,所以A 1(1,0,1),B (1,2,0),C 1(0,2,1),D 1(0,0,1),所以A 1C 1―→=(-1,2,0),BC 1―→=(-1,0,1),D 1C 1―→=(0,2,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧A 1C 1―→·n =0, BC 1―→·n =0,即⎩⎪⎨⎪⎧-x +2y =0,-x +z =0,令x =2,得y =1,z =2,则n =(2,1,2).设D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1―→,n 〉|=|D 1C 1―→·n ||D 1C 1―→||n |=22×3=13,即D 1C 1与平面A 1BC 1所成角的正弦值为13.答案:132.如图,在直三棱柱ABC ­A 1B 1C 1中,BA =BC =5,AC =8,D 为线段AC 的中点.(1)求证:BD ⊥A 1D ;(2)若直线A 1D 与平面BC 1D 所成角的正弦值为45,求AA 1的长.解:(1)证明:∵三棱柱ABC ­A 1B 1C 1是直三棱柱,∴AA 1⊥平面ABC ,又BD ⊂平面ABC ,∴BD ⊥AA 1, ∵BA =BC ,D 为AC 的中点,∴BD ⊥AC ,又AC ∩AA 1=A ,AC ⊂平面ACC 1A 1,AA 1⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,∴BD ⊥A 1D . (2)由(1)知BD ⊥AC ,AA 1⊥平面ABC ,以D 为坐标原点,DB ,DC 所在直线分别为x 轴,y 轴,过点D 且平行于AA 1的直线为z 轴建立如图所示的空间直角坐标系D ­xyz .设AA 1=λ(λ>0),则A 1(0,-4,λ),B (3,0,0),C 1(0,4,λ),D (0,0,0), ∴DA 1―→=(0,-4,λ),DC 1―→=(0,4,λ),DB ―→=(3,0,0), 设平面BC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DC 1―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧4y +λz =0,3x =0,则x =0,令z =4,可得y =-λ,故n =(0,-λ,4)为平面BC 1D 的一个法向量. 设直线A 1D 与平面BC 1D 所成角为θ,则sin θ=|cosn ,DA 1―→|=|n ·DA 1―→||n |·|DA 1―→|=|4λ+4λ|λ2+16·λ2+16=45,解得λ=2或λ=8, 即AA 1=2或AA 1=8.考点三 二面角[典例精析]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B ­D ′A ­C 的余弦值.[解] (1)证明:由四边形ABCD 为菱形,得AC ⊥BD . 由AE =CF =54,得AE AD =CFCD ,所以EF ∥AC .因此EF ⊥DH ,从而EF ⊥D ′H . 由AB =5,AC =6,得DO =BO =AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14,所以OH =1,D ′H =DH =3,则OD ′2=OH 2+D ′H 2,所以D ′H ⊥OH . 又OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)以H 为坐标原点,HB ,HF ,HD ′分别为x 轴,y 轴,z 轴建立空间直角坐标系H ­xyz ,如图所示.则B (5,0,0),C (1,3,0),D ′(0,0,3),A (1,-3,0), (由口诀“起点同”,我们先求出起点相同的3个向量.) 所以AB ―→=(4,3,0), AD ′―→=(-1,3,3),AC ―→=(0,6,0). (由口诀“棱排前”,我们用行列式求出两个平面的法向量.) 由⎩⎪⎨⎪⎧ AD ′―→=(-1,3,3), AB ―→=(4,3,0),可得平面ABD ′的法向量n 1=(-3,4,-5),由⎩⎪⎨⎪⎧AD ′―→=(-1,3,3), AC ―→=(0,6,0),可得平面AD ′C 的法向量n 2=(-3,0,-1). 于是cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=7525.所以二面角B ­D ′A ­C 的余弦值为7525.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.[题组训练]如图所示,四棱锥P ­ABCD 中,P A ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F .(1)若G 为PD 的中点,求证:平面P AD ⊥平面CGF ; (2)若BC =2,P A =3,求二面角B ­CP ­D 的余弦值. 解:(1)证明:在△BCD 中,EB =ED =EC =BC , 故∠BCD =90°,∠CBE =∠BEC =60°.∵△DAB ≌△DCB ,∴∠BAD =∠BCD =90°,∠ABE =∠CBE =60°,∴∠FED =∠BEC =∠ABE =60°.∴AB ∥EF ,∴∠EFD =∠BAD =90°, ∴EF ⊥AD ,AF =FD . 又PG =GD ,∴GF ∥P A .又P A ⊥平面ABCD ,∴GF ⊥平面ABCD , ∵AD ⊂平面ABCD ,∴GF ⊥AD . 又GF ∩EF =F ,∴AD ⊥平面CGF .又AD ⊂平面P AD ,∴平面P AD ⊥平面CGF .(2)以A 为坐标原点,射线AB ,AD ,AP 分别为x 轴,y 轴,z 轴的正半轴建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (3,3,0),D (0,23,0),P (0,0,3),故CB ―→=(-1,-3,0), CP ―→=(-3,-3,3),CD ―→=(-3,3,0). 设平面BCP 的一个法向量为n 1=(1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·CB ―→=0,n 1·CP ―→=0,即⎩⎪⎨⎪⎧ -1-3y 1=0,-3-3y 1+3z 1=0,解得⎩⎨⎧y 1=-33,z 1=23,即n 1=⎝⎛⎭⎫1,-33,23. 设平面DCP 的一个法向量为n 2=(1,y 2,z 2),则⎩⎪⎨⎪⎧n 2·CD ―→=0,n 2·CP ―→=0,即⎩⎪⎨⎪⎧-3+3y 2=0,-3-3y 2+3z 2=0,解得⎩⎪⎨⎪⎧y 2=3,z 2=2,即n 2=(1,3,2). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=43169×8=24, 由图知二面角B ­CP ­D 为钝角, 所以二面角B ­CP ­D 的余弦值为-24. [课时跟踪检测]A 级1.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( )A.3030 B.3015 C.3010D.1515解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2), D 1N ―→=(1,0,-2),∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→||B 1M ―→|·|D 1N ―→|=|-1+4|1+1+4×1+4=3010. 2.如图,已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535B.277C.33D.24解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),∴DC 1―→=(0,3,1), D 1E ―→=(1,1,-1), D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·D 1C ―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∴cosDC 1―→,n=DC 1―→·n |DC 1―→|·|n|=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为33535.3.在直三棱柱ABC ­A 1B 1C 1中,AA 1=2,二面角B ­AA 1­C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B.6C.5D .2解析:选A 由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4, |AB 1―→|=22,|BC 1―→|=4, cosAB 1―→,BC 1―→=AB 1―→·BC ―→|AB 1―→|·|BC ―→|=24,故tanAB 1―→,BC 1―→=7.4.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35 B.56 C.3310D.3610解析:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝⎛⎭⎫12,-32,1, GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.5.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22解析:选B 以A 为坐标原点建立如图所示的空间直角坐标系A ­xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D ―→=(0,1,-1), A 1E ―→=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧ n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2). 又平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.6.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.解析:如图,以O 为坐标原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),∴OF ―→=(-1,0,3),DB ―→=(0,23,0), EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎪⎨⎪⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a , ∴n =(-a,0,1),∴cos 〈n ,OF ―→〉=n ·OF ―→|n ||OF ―→|=a +3a 2+1×10.∵直线OF 与平面BED 所成角的大小为45°, ∴|a +3|a 2+1×10=22, 解得a =2或a =-12(舍去),∴AE =2.答案:27.如图,已知四棱锥P ­ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F ­OE ­A 的余弦值为________.解析:以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O ­xyz , 由题知,OA =OB =2,则A (0,-2,0),B (2,0,0),P (0,0,2),E (1,-1,0),F (0,-1,1), OE ―→=(1,-1,0),OF ―→=(0,-1,1),设平面OEF 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·OE ―→=0,m ·OF ―→=0,即⎩⎪⎨⎪⎧x -y =0-y +z =0.令x =1,可得m =(1,1,1).易知平面OAE 的一个法向量为n =(0,0,1),则cos 〈m ,n 〉=m ·n|m ||n |=33.由图知二面角F ­OE ­A 为锐角, 所以二面角F ­OE ­A 的余弦值为33. 答案:338.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 解:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C , 所以DM ⊥平面BMC . 因为DM ⊂平面AMD , 所以平面AMD ⊥平面BMC .(2)以D 为坐标原点, DA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz .当三棱锥M ­ABC 的体积最大时,M 为CD 的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ―→=(-2,1,1),AB ―→=(0,2,0),DA ―→=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,又DA ―→是平面MCD 的一个法向量,所以cos 〈n ,DA ―→〉=n ·DA ―→|n ||DA ―→|=55,sin 〈n ,DA ―→〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.9.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­P A ­C 为30°,求PC 与平面P AM 所成角的正弦值.解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3.连接OB ,因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为OB ∩AC =O , 所以PO ⊥平面ABC .(2)以O 为坐标原点,OB ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系O ­xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP ―→=(0,2,23).取平面P AC 的一个法向量OB ―→=(2,0,0). 设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0). 设平面P AM 的法向量为n =(x ,y ,z ),令y =3a ,得z =-a ,x =3(a -4),所以平面P AM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB ―→,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB ―→,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =43或a =-4(舍去).所以n =⎝⎛⎭⎫-833,433,-43.又PC ―→=(0,2,-23),所以cos 〈PC ―→,n 〉=833+8334+12·643+163+169=34.所以PC 与平面P AM 所成角的正弦值为34. B 级1.如图,四棱柱ABCD ­A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B ­OB 1­C 的余弦值. 解:(1)证明:∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD , ∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD . ∵A 1O ∩CO =O ,∴BD ⊥平面A 1CO . ∵BD ⊂平面BB 1D 1D ,∴平面A 1CO ⊥平面BB 1D 1D .(2)∵A 1O ⊥平面ABCD ,CO ⊥BD ,∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB ―→,OC ―→, OA 1―→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°, ∴OB =OD =1,OA =OC =3, OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6),∴OB ―→=(1,0,0),BB 1―→=AA 1―→=(0,3,6), OB 1―→=OB ―→+BB 1―→=(1,3,6). 设平面OBB 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧OB ―→·n =0,OB 1―→·n =0,即⎩⎪⎨⎪⎧x =0,x +3y +6z =0.令y =2,得z =-1,∴n =(0,2,-1)是平面OBB 1的一个法向量. 同理可求得平面OCB 1的一个法向量m =(6,0,-1), ∴cosn ,m=n ·m|n |·|m |=13×7=2121,由图可知二面角B ­OB 1­C 是锐二面角, ∴二面角B ­OB 1­C 的余弦值为2121. 2.如图,在四棱锥P ­ABCD 中,底面ABCD 是直角梯形,∠ADC =90°,AB ∥CD ,AB =2CD .平面P AD ⊥平面ABCD ,P A =PD ,点E 在PC 上,DE ⊥平面P AC .(1)求证:P A ⊥平面PCD ;(2)设AD =2,若平面PBC 与平面P AD 所成的二面角为45°,求DE 的长.解:(1)证明:由DE ⊥平面P AC ,得DE ⊥P A ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,CD ⊥AD ,所以CD ⊥平面P AD ,所以CD ⊥P A , 又CD ∩DE =D ,所以P A ⊥平面PCD . (2)取AD 的中点O ,连接PO , 因为P A =PD ,所以PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD ,以O 为坐标原点建立如图所示的空间直角坐标系O ­xyz ,由(1)得P A ⊥PD ,由AD =2得P A =PD =2,PO =1,设CD =a ,则P (0,0,1),D (0,1,0),C (a,1,0),B (2a ,-1,0), 则BC ―→=(-a,2,0),PC ―→=(a,1,-1). 设m =(x ,y ,z )为平面PBC 的法向量,由⎩⎪⎨⎪⎧m ·BC ―→=0,m ·PC ―→=0,得⎩⎪⎨⎪⎧-ax +2y =0,ax +y -z =0,令x =2,则y =a ,z =3a ,故m =(2,a,3a )为平面PBC 的一个法向量,由(1)知n =DC ―→=(a,0,0)为平面P AD 的一个法向量. 由|cosm ,n|=|m ·n ||m ||n |=|2a |a 10a 2+4=22,解得a =105,即CD =105,所以在Rt △PCD 中,PC =2155,由等面积法可得DE =CD ·PD PC =33.3.如图,在三棱锥P ­ABC 中,平面P AB ⊥平面ABC ,AB =6, BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线P A 与平面ABC 所成的角为45°,求平面P AC 与平面PDE 所成的锐二面角大小.解:(1)证明:∵AC =26,BC =23,AB =6,∴AC 2+BC 2=AB 2,∴∠ACB =90°, ∴cos ∠ABC =236=33.又易知BD =2,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8, ∴CD =22,又AD =4, ∴CD 2+AD 2=AC 2,∴CD ⊥AB .∵平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,CD ⊂平面ABC , ∴CD ⊥平面P AB ,又PD ⊂平面P AB ,∴CD ⊥PD , ∵PD ⊥AC ,AC ∩CD =C , ∴PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直,∴可建立如图所示的空间直角坐标系D ­xyz ,∵直线P A 与平面ABC 所成的角为45°,即∠P AD =45°,∴PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4),∴CB ―→=(-22,2,0),AC ―→=(22,4,0),P A ―→=(0,-4,-4). ∵AD =2DB ,CE =2EB ,∴DE ∥AC , 由(1)知AC ⊥BC ,∴DE ⊥BC ,又PD ⊥平面ABC ,BC ⊂平面ABC ,∴PD ⊥BC , ∵PD ∩DE =D ,∴CB ⊥平面PDE ,∴CB ―→=(-22,2,0)为平面PDE 的一个法向量. 设平面P AC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·P A ―→=0,即⎩⎪⎨⎪⎧22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1, ∴n =(2,-1,1)为平面P AC 的一个法向量. ∴cos n ,CB ―→=-4-24×12=-32, ∴平面P AC 与平面PDE 所成的锐二面角的余弦值为32, 故平面P AC 与平面PDE 所成的锐二面角为30°.。

利用空间向量求空间角

利用空间向量求空间角

利用空间向量求空间角一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |❶, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |❷.3.二面角(1)若AB ,CD 分别是二面角α­l ­β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α ­l ­β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|❸,如图(2)(3).两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值.直线与平面所成角的范围为⎣⎡⎦⎤0,π2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值.利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互补,需要结合图形进行判断.二、常用结论解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2.如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角[典例精析]如图,在三棱锥P ­ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长.[解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE ―→=(0,2,0),DB ―→=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨取z =1,可得n =(1,0,1). 又MN ―→=(1,2,-1),可得MN ―→·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH ―→=(-1,-2,h ), BE ―→=(-2,2,2). 由已知,得|cos 〈NH ―→,BE ―→〉|=|NH ―→·BE ―→||NH ―→||BE ―→|=|2h -2|h 2+5×23=721,整理得10h 2-21h +8=0,解得h =85或h =12.所以线段AH 的长为85或12.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[提醒] 注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,此夹角就是异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.[题组训练]1.如图所示,在三棱柱ABC ­A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .30°B .45°C .60°D .90°解析:选C 以B 为坐标原点,以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系如图所示.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),∴EF ―→=(0,-1,1),BC 1―→=(2,0,2),∴EF ―→·BC 1―→=2,∴cos 〈EF ―→,BC 1―→〉=22×22=12,则EF 和BC 1所成的角是60°,故选C.2.如图,在四棱锥P ­ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 解:(1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD .又因为AC ∩P A =A ,所以BD ⊥平面P AC . (2)设AC ∩BD =O .因为∠BAD =60°,P A =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,射线OB ,OC 分别为x 轴,y 轴的正半轴建立空间直角坐标系O ­xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0), 所以PB ―→=(1,3,-2),AC ―→=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=|PB ―→·AC ―→||PB ―→||AC ―→|=622×23=64.即PB 与AC 所成角的余弦值为64. 考点二 直线与平面所成的角[典例精析](2019·合肥一检)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. [解] (1)证明:连接AC 交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,∴MN ∥EC . ∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴MN ∥平面EFC .∵BF ,DE 都与平面ABCD 垂直,∴BF ∥DE . ∵BF =DE ,∴四边形BDEF 为平行四边形,∴BD ∥EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴BD ∥平面EFC .又MN ∩BD =N ,∴平面BDM ∥平面EFC . (2)∵DE ⊥平面ABCD ,四边形ABCD 是正方形,∴DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz . 设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),∴DB ―→=(2,2,0),DM ―→=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DM ―→=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量. ∵AE ―→=(-2,0,4),设直线AE 与平面BDM 所成的角为θ, 则sin θ=|cosn ,AE ―→|=|n ·AE ―→||n |·|AE ―→|=4515,∴直线AE 与平面BDM 所成角的正弦值为4515.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.[题组训练]1.在长方体ABCD ­A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.解析:建立如图所示的空间直角坐标系D ­xyz ,由于AB =2,BC =AA 1=1,所以A 1(1,0,1),B (1,2,0),C 1(0,2,1),D 1(0,0,1),所以A 1C 1―→=(-1,2,0),BC 1―→=(-1,0,1),D 1C 1―→=(0,2,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧A 1C 1―→·n =0, BC 1―→·n =0,即⎩⎪⎨⎪⎧-x +2y =0,-x +z =0,令x =2,得y =1,z =2,则n =(2,1,2).设D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1―→,n 〉|=|D 1C 1―→·n ||D 1C 1―→||n |=22×3=13,即D 1C 1与平面A 1BC 1所成角的正弦值为13.答案:132.如图,在直三棱柱ABC ­A 1B 1C 1中,BA =BC =5,AC =8,D 为线段AC 的中点.(1)求证:BD ⊥A 1D ;(2)若直线A 1D 与平面BC 1D 所成角的正弦值为45,求AA 1的长.解:(1)证明:∵三棱柱ABC ­A 1B 1C 1是直三棱柱, ∴AA 1⊥平面ABC ,又BD ⊂平面ABC ,∴BD ⊥AA 1,∵BA =BC ,D 为AC 的中点,∴BD ⊥AC ,又AC ∩AA 1=A ,AC ⊂平面ACC 1A 1,AA 1⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,∴BD ⊥A 1D . (2)由(1)知BD ⊥AC ,AA 1⊥平面ABC ,以D 为坐标原点,DB ,DC 所在直线分别为x 轴,y 轴,过点D 且平行于AA 1的直线为z 轴建立如图所示的空间直角坐标系D ­xyz .设AA 1=λ(λ>0),则A 1(0,-4,λ),B (3,0,0),C 1(0,4,λ),D (0,0,0), ∴DA 1―→=(0,-4,λ),DC 1―→=(0,4,λ),DB ―→=(3,0,0), 设平面BC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DC 1―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧4y +λz =0,3x =0,则x =0,令z =4,可得y =-λ,故n =(0,-λ,4)为平面BC 1D 的一个法向量. 设直线A 1D 与平面BC 1D 所成角为θ,则sin θ=|cosn ,DA 1―→|=|n ·DA 1―→||n |·|DA 1―→|=|4λ+4λ|λ2+16·λ2+16=45,解得λ=2或λ=8, 即AA 1=2或AA 1=8. 考点三 二面角[典例精析]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF沿EF 折到△D ′EF 位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B ­D ′A ­C 的余弦值.[解] (1)证明:由四边形ABCD 为菱形,得AC ⊥BD . 由AE =CF =54,得AE AD =CFCD ,所以EF ∥AC .因此EF ⊥DH ,从而EF ⊥D ′H .由AB =5,AC =6,得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14,所以OH =1,D ′H =DH =3,则OD ′2=OH 2+D ′H 2,所以D ′H ⊥OH . 又OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)以H 为坐标原点,HB ,HF ,HD ′分别为x 轴,y 轴,z 轴建立空间直角坐标系H ­xyz ,如图所示.则B (5,0,0),C (1,3,0),D ′(0,0,3),A (1,-3,0), (由口诀“起点同”,我们先求出起点相同的3个向量.) 所以AB ―→=(4,3,0), AD ′―→=(-1,3,3),AC ―→=(0,6,0). (由口诀“棱排前”,我们用行列式求出两个平面的法向量.) 由⎩⎪⎨⎪⎧AD ′―→=(-1,3,3), AB ―→=(4,3,0),可得平面ABD ′的法向量n 1=(-3,4,-5),由⎩⎪⎨⎪⎧AD ′―→=(-1,3,3), AC ―→=(0,6,0),可得平面AD ′C 的法向量n 2=(-3,0,-1). 于是cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=7525.所以二面角B ­D ′A ­C 的余弦值为7525.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.[题组训练]如图所示,四棱锥P ­ABCD 中,P A ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F .(1)若G 为PD 的中点,求证:平面P AD ⊥平面CGF ; (2)若BC =2,P A =3,求二面角B ­CP ­D 的余弦值. 解:(1)证明:在△BCD 中,EB =ED =EC =BC , 故∠BCD =90°,∠CBE =∠BEC =60°.∵△DAB ≌△DCB ,∴∠BAD =∠BCD =90°,∠ABE =∠CBE =60°,∴∠FED =∠BEC =∠ABE =60°.∴AB ∥EF ,∴∠EFD =∠BAD =90°, ∴EF ⊥AD ,AF =FD . 又PG =GD ,∴GF ∥P A .又P A ⊥平面ABCD ,∴GF ⊥平面ABCD , ∵AD ⊂平面ABCD ,∴GF ⊥AD . 又GF ∩EF =F ,∴AD ⊥平面CGF .又AD ⊂平面P AD ,∴平面P AD ⊥平面CGF .(2)以A 为坐标原点,射线AB ,AD ,AP 分别为x 轴,y 轴,z 轴的正半轴建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (3,3,0),D (0,23,0),P (0,0,3),故CB ―→=(-1,-3,0), CP ―→=(-3,-3,3),CD ―→=(-3,3,0).设平面BCP 的一个法向量为n 1=(1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·CB ―→=0,n 1·CP ―→=0,即⎩⎨⎧-1-3y 1=0,-3-3y 1+3z 1=0,解得⎩⎨⎧y 1=-33,z 1=23,即n 1=⎝⎛⎭⎫1,-33,23. 设平面DCP 的一个法向量为n 2=(1,y 2,z 2),则⎩⎪⎨⎪⎧n 2·CD ―→=0,n 2·CP ―→=0,即⎩⎨⎧ -3+3y 2=0,-3-3y 2+3z 2=0,解得⎩⎨⎧y 2=3,z 2=2,即n 2=(1,3,2). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=43169×8=24, 由图知二面角B ­CP ­D 为钝角, 所以二面角B ­CP ­D 的余弦值为-24. [课时跟踪检测]A 级1.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( )A.3030 B.3015 C.3010D.1515解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2), D 1N ―→=(1,0,-2),∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→||B 1M ―→|·|D 1N ―→|=|-1+4|1+1+4×1+4=3010.2.如图,已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535B.277C.33D.24解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),∴DC 1―→=(0,3,1), D 1E ―→=(1,1,-1), D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·D 1C ―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∴cosDC 1―→,n=DC 1―→·n |DC 1―→|·|n|=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为33535.3.在直三棱柱ABC ­A 1B 1C 1中,AA 1=2,二面角B ­AA 1­C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B.6C.5D .2解析:选A 由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4, |AB 1―→|=22,|BC 1―→|=4,cosAB 1―→,BC 1―→=AB 1―→·BC ―→|AB 1―→|·|BC ―→|=24,故tanAB 1―→,BC 1―→=7.4.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35 B.56 C.3310D.3610解析:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝⎛⎭⎫12,-32,1, GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.5.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22解析:选B 以A 为坐标原点建立如图所示的空间直角坐标系A ­xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D ―→=(0,1,-1), A 1E ―→=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2). 又平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.6.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.解析:如图,以O 为坐标原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),∴OF ―→=(-1,0,3),DB ―→=(0,23,0), EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎨⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a , ∴n =(-a,0,1),∴cos 〈n ,OF ―→〉=n ·OF ―→|n ||OF ―→|=a +3a 2+1×10.∵直线OF 与平面BED 所成角的大小为45°,∴|a +3|a 2+1×10=22, 解得a =2或a =-12(舍去),∴AE =2.答案:27.如图,已知四棱锥P ­ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F ­OE ­A 的余弦值为________.解析:以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O ­xyz , 由题知,OA =OB =2,则A (0,-2,0),B (2,0,0),P (0,0,2),E (1,-1,0),F (0,-1,1), OE ―→=(1,-1,0),OF ―→=(0,-1,1),设平面OEF 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·OE ―→=0,m ·OF ―→=0,即⎩⎪⎨⎪⎧x -y =0-y +z =0.令x =1,可得m =(1,1,1).易知平面OAE 的一个法向量为n =(0,0,1), 则cos 〈m ,n 〉=m ·n|m ||n |=33.由图知二面角F ­OE ­A 为锐角, 所以二面角F ­OE ­A 的余弦值为33. 答案:338.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 解:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C , 所以DM ⊥平面BMC . 因为DM ⊂平面AMD , 所以平面AMD ⊥平面BMC .(2)以D 为坐标原点, DA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz .当三棱锥M ­ABC 的体积最大时,M 为CD 的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ―→=(-2,1,1),AB ―→=(0,2,0),DA ―→=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM ―→=0,n ·AB ―→=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2),又DA ―→是平面MCD 的一个法向量,所以cos 〈n ,DA ―→〉=n ·DA ―→|n ||DA ―→|=55,sin 〈n ,DA ―→〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.9.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­P A ­C 为30°,求PC 与平面P AM 所成角的正弦值.解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3.连接OB ,因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为OB ∩AC =O , 所以PO ⊥平面ABC .(2)以O 为坐标原点,OB ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系O ­xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP ―→=(0,2,23).取平面P AC 的一个法向量OB ―→=(2,0,0). 设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0). 设平面P AM 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧AP ―→·n =0, AM ―→·n =0,得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,令y =3a ,得z =-a ,x =3(a -4),所以平面P AM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB ―→,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB ―→,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32,解得a =43或a =-4(舍去).所以n =⎝⎛⎭⎫-833,433,-43.又PC ―→=(0,2,-23),所以cos 〈PC ―→,n 〉=833+8334+12·643+163+169=34.所以PC 与平面P AM 所成角的正弦值为34. B 级1.如图,四棱柱ABCD ­A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD=O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B ­OB 1­C 的余弦值. 解:(1)证明:∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD , ∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD . ∵A 1O ∩CO =O ,∴BD ⊥平面A 1CO . ∵BD ⊂平面BB 1D 1D , ∴平面A 1CO ⊥平面BB 1D 1D .(2)∵A 1O ⊥平面ABCD ,CO ⊥BD ,∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB ―→,OC ―→, OA 1―→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°, ∴OB =OD =1,OA =OC =3,OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6),∴OB ―→=(1,0,0),BB 1―→=AA 1―→=(0,3,6), OB 1―→=OB ―→+BB 1―→=(1,3,6). 设平面OBB 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧OB ―→·n =0,OB 1―→·n =0,即⎩⎨⎧x =0,x +3y +6z =0.令y =2,得z =-1,∴n =(0,2,-1)是平面OBB 1的一个法向量. 同理可求得平面OCB 1的一个法向量m =(6,0,-1), ∴cosn ,m=n ·m|n |·|m |=13×7=2121,由图可知二面角B ­OB 1­C 是锐二面角, ∴二面角B ­OB 1­C 的余弦值为2121. 2.如图,在四棱锥P ­ABCD 中,底面ABCD 是直角梯形,∠ADC =90°,AB ∥CD ,AB =2CD .平面P AD ⊥平面ABCD ,P A =PD ,点E 在PC 上,DE ⊥平面P AC . (1)求证:P A ⊥平面PCD ;(2)设AD =2,若平面PBC 与平面P AD 所成的二面角为45°,求DE 的长. 解:(1)证明:由DE ⊥平面P AC ,得DE ⊥P A ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,CD ⊥AD , 所以CD ⊥平面P AD ,所以CD ⊥P A , 又CD ∩DE =D ,所以P A ⊥平面PCD . (2)取AD 的中点O ,连接PO , 因为P A =PD ,所以PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD ,以O 为坐标原点建立如图所示的空间直角坐标系O ­xyz ,由(1)得P A ⊥PD ,由AD =2得P A =PD =2,PO =1,设CD =a ,则P (0,0,1),D (0,1,0),C (a,1,0),B (2a ,-1,0), 则BC ―→=(-a,2,0),PC ―→=(a,1,-1). 设m =(x ,y ,z )为平面PBC 的法向量,由⎩⎪⎨⎪⎧m ·BC ―→=0,m ·PC ―→=0,得⎩⎪⎨⎪⎧-ax +2y =0,ax +y -z =0,令x =2,则y =a ,z =3a ,故m =(2,a,3a )为平面PBC 的一个法向量,由(1)知n =DC ―→=(a,0,0)为平面P AD 的一个法向量. 由|cosm ,n|=|m ·n ||m ||n |=|2a |a 10a 2+4=22,解得a =105,即CD =105,所以在Rt△PCD 中,PC =2155,由等面积法可得DE =CD ·PD PC =33.3.如图,在三棱锥P ­ABC 中,平面P AB ⊥平面ABC ,AB =6, BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线P A 与平面ABC 所成的角为45°,求平面P AC 与平面PDE 所成的锐二面角大小.解:(1)证明:∵AC =26,BC =23,AB =6, ∴AC 2+BC 2=AB 2,∴∠ACB =90°,∴cos ∠ABC =236=33.又易知BD =2,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8, ∴CD =22,又AD =4, ∴CD 2+AD 2=AC 2,∴CD ⊥AB .∵平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,CD ⊂平面ABC , ∴CD ⊥平面P AB ,又PD ⊂平面P AB ,∴CD ⊥PD , ∵PD ⊥AC ,AC ∩CD =C , ∴PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直,∴可建立如图所示的空间直角坐标系D ­xyz ,∵直线P A 与平面ABC 所成的角为45°,即∠P AD =45°,∴PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4),∴CB ―→=(-22,2,0),AC ―→=(22,4,0),P A ―→=(0,-4,-4). ∵AD =2DB ,CE =2EB ,∴DE ∥AC , 由(1)知AC ⊥BC ,∴DE ⊥BC ,又PD ⊥平面ABC ,BC ⊂平面ABC ,∴PD ⊥BC , ∵PD ∩DE =D ,∴CB ⊥平面PDE ,∴CB ―→=(-22,2,0)为平面PDE 的一个法向量. 设平面P AC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·P A ―→=0,即⎩⎨⎧22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1,∴n =(2,-1,1)为平面P AC 的一个法向量. ∴cosn ,CB ―→=-4-24×12=-32,∴平面P AC 与平面PDE 所成的锐二面角的余弦值为32, 故平面P AC 与平面PDE 所成的锐二面角为30°.。

用空间向量求空间角课件(共22张PPT)

用空间向量求空间角课件(共22张PPT)

向量的加法与数乘
向量的加法满足平行四边形法则或三 角形法则,即$vec{a} + vec{b} = vec{b} + vec{a}$。
数乘是指实数与向量的乘积,满足分 配律,即$k(vec{a} + vec{b}) = kvec{a} + kvec{b}$。
向量的数量积
向量的数量积定义为$vec{a} cdot vec{b} = left| vec{a} right| times left| vec{b} right| times cos theta$,其中$theta$为两 向量的夹角。
数量积满足交换律和分配律,即$vec{a} cdot vec{b} = vec{b} cdot vec{a}$和$(lambdavec{a}) cdot vec{b} = lambda(vec{a} cdot vec{b})$。
03 向量的向量积与混合积
向量的向量积
定义
两个向量a和b的向量积是一个向量,记作a×b,其模长为 |a×b|=|a||b|sinθ,其中θ为a与b之间的夹角。
适用范围
适用于直线与平面不垂直的情况。
利用向量的混合积求二面角
1 2 3
定义
二面角是指两个平面之间的夹角。
计算公式
cosθ=∣∣a×b×c∣∣∣∣a∣∣∣∣b∣∣∣∣c∣∣,其中a、 b和c分别是三个平面的法向量,θ是两个平面之 间的夹角。
适用范围
适用于两个平面不平行的情况。
06 案例分析
案例一:利用空间向量求线线角
定义
线线角是指两条直线之间的夹角。
计算公式
cosθ=∣∣a⋅b∣∣∣∣a∣∣∣∣b∣∣∣, 其中a和b是两条直线的方向向量,

立体几何中的向量方法1:求空间角、距离

立体几何中的向量方法1:求空间角、距离

立体几何中的向量方法——求空间角、距离1.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求平面间夹角的大小如图所示,平面π1与π2相交于直线l ,点R 为直线l 上任意一点,过点R ,在平面π1上作直线l 1⊥l ,在平面π2上作直线l 2⊥l ,则l 1∩l 2=R .我们把直线l 1和l 2的夹角叫作平面π1与π2的夹角.已知平面π1和π2的法向量分别为n 1和n 2.当0≤〈n 1,n 2〉≤π2时,平面π1与π2的夹角等于〈n 1,n 2〉;当π2<〈n 1,n 2〉≤π时,平面π1与π2的夹角等于π-〈n 1,n 2〉. 2.点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.[难点正本 疑点清源]1.向量法通过空间坐标系把空间图形的性质代数化,避免了寻找平面角和垂线段等诸多麻烦,使空间点线面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、利用数量积的夹角公式计算.2.利用平面的法向量求二面角的大小时,当求出两半平面α、β的向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等,还是互补.3.求点到平面距离的方法:①垂面法:借助面面垂直的性质来作垂线,其中过已知点确定已知面的垂面是关键;②等体积法,转化为求三棱锥的高;③等价转移法;④法向量法.1.若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的正弦值为_______.答案 41133解析 ∵n·a =-8-3+3=-8,|n |=16+1+1=32, |a |=4+9+9=22,∴cos 〈n ,a 〉=n·a|n|·|a |=-832×22=-41133.又l 与α所成角记为θ,即sin θ=|cos 〈n ,a 〉|=41133. 2.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于________. 答案 30°解析 由题意得直线l 与平面α的法向量所在直线的夹角为60°,∴直线l 与平面α所成的角为90°-60°=30°.3.从空间一点P 向二面角α—l —β的两个面α,β分别作垂线PE ,PF ,垂足分别为E ,F ,若二面角α—l —β的大小为60°,则∠EPF 的大小为__________. 答案 60°或120°4. 如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO —A ′B ′C ′D ′,A ′C 的中点E 与AB 的中点F 的距离为________.答案22a 解析 由图易知A (a,0,0),B (a ,a,0),C (0,a,0),A ′(a,0,a ).∴F ⎝⎛⎭⎫a ,a 2,0,E ⎝⎛⎭⎫a 2,a 2,a 2. ∴EF =⎝⎛⎭⎫a -a 22+⎝⎛⎭⎫a 2-a 22+⎝⎛⎭⎫0-a 22 =a 24+a 24=22a .5.在棱长为2的正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中点,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于________.答案 155解析 以D 为原点,分别以DA 、DC 、DD1为x 轴、y 轴、z 轴建立空间直角坐标系,∴F (1,0,0),D 1(0,0,2),O (1,1,0),E (0,2,1),∴FD 1→=(-1,0,2), OE →=(-1,1,1),∴cos 〈FD 1→,OE →〉=1+25·3=155.题型一 求异面直线所成的角例1 如图,已知正方体ABCD —A 1B 1C 1D 1的棱长为2,点E 是正方形BCC 1B 1的中心,点F 、G 分别是棱C 1D 1、AA 1的中点,设点E 1、G 1分别是点E 、G 在平面DCC 1D 1内的正投影.(1)证明:直线FG 1⊥平面FEE 1;(2)求异面直线E 1G 1与EA 所成角的正弦值.思维启迪:本题可方便地建立空间直角坐标系,通过点的坐标得到向量坐标,然后求解. (1)证明 以D 为原点,DD 1→、DC →、DA →分别为z 轴、y 轴、x 轴的正向,12|DD 1→|为1个单位长度建立空间直角坐标系.由题设知点E 、F 、G 1、E 1的坐标分别为(1,2,1),(0,1,2),(0,0,1),(0,2,1), ∴FE 1→=(0,1,-1),FG 1→=(0,-1,-1),EE 1→=(-1,0,0), ∴FG 1→·EE 1→=0,FG 1→·FE 1→=0⇒FG 1→⊥EE 1→,FG 1→⊥FE 1→, 又∵EE 1∩FE 1=E 1.∴FG 1⊥平面FEE 1.(2)解 由题意知点A 的坐标为(2,0,0),又由(1)可知EA →=(1,-2,-1),E 1G 1→=(0,-2,0),∴cos 〈EA →,E 1G 1→〉=EA →·E 1G 1→|EA →|·|E 1G 1→|=63,∴sin 〈EA →,E 1G 1→〉=1-cos 2〈EA →,E 1G 1→〉=33.探究提高 用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来求解,而两异面直线所成角的范围是θ∈⎝⎛⎦⎤0,π2,两向量的夹角α的范围是[0,π],所以要注意二者的区别与联系,应有cos θ=|cos α|.如图所示,在长方体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=2.E 、F 分别是线段AB 、BC 上的点,且EB =BF =1.求直线EC 1与FD 1所成的角的余弦值.解 以A 为原点,AB →、AD →、AA 1→分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有D 1(0,3,2),E (3,0,0),F (4,1,0),C 1(4,3,2),于是EC 1→=(1,3,2),FD 1→=(-4,2,2),设EC 1与FD 1所成的角为β,则:cos β=|EC 1→·FD 1→||EC 1→|·|FD 1→|=1×(-4)+3×2+2×212+32+22×(-4)2+22+22=2114,∴直线EC 1与FD 1所成的角的余弦值为2114.题型二 求直线与平面的夹角例2 如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH是四棱锥的高,E 为AD 的中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线P A 与平面PEH 夹角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA ,HB ,HP 所在直线分别为x ,y ,z 轴,线段HA 的长为单位长度,建立空间直角坐标系(如图),则A (1,0,0),B (0,1,0).设C (m,0,0),P (0,0,n ) (m <0,n >0),则D (0,m,0),E ⎝⎛⎭⎫12,m 2,0.可得PE →=⎝⎛⎭⎫12,m 2,-n ,BC →=(m ,-1,0). 因为PE →·BC →=m 2-m2+0=0,所以PE ⊥BC .(2)解 由已知条件可得m =-33,n =1,故C ⎝⎛⎭⎫-33,0,0,D ⎝⎛⎭⎫0,-33,0,E ⎝⎛⎭⎫12,-36,0,P (0,0,1).设n =(x ,y ,z )为平面PEH 的法向量,则⎩⎪⎨⎪⎧ n ·HE →=0,n ·HP →=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0.因此可以取n =(1,3,0).又P A →=(1,0,-1),所以|cos 〈P A →,n 〉|=24.所以直线P A 与平面PEH 夹角的正弦值为24.探究提高 利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的投影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面的夹角.已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,且AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 夹角的大小.(1)证明 设P A =1,以A 为原点,AB ,AC ,AP 所在直线分别为x ,y ,z 轴的正方向建立空间直角坐标系如图所示,则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0,12),N (12,0,0),S (1,12,0).所以CM →=(1,-1,12),SN →=(-12,-12,0).因为CM →·SN →=-12+12+0=0,所以CM ⊥SN .(2)解 设平面CMN 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·CM →=x -y +12z =0n ·CN →=(x ,y ,z )·⎝⎛⎭⎫12,-1,0=12x -y =0.∴y =12x ,z =-x ,取x =2,则n =(2,1,-2)为平面CMN 的一个法向量.∴cos 〈n ·SN →〉=n ·SN →|n |·|SN →|=(2,1,-2)·⎝⎛⎭⎫-12,-12,022+1+(-2)2·⎝⎛⎭⎫-122+⎝⎛⎭⎫-122+02=-22.∴〈n ·SN →〉=135°, 故SN 与平面CMN 夹角的大小为45°. 题型三 求平面间的夹角例3 (2012·广东)如图所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(1)证明:BD ⊥平面P AC ;(2)若P A =1,AD =2,求平面BPC 与平面PCA 夹角的正切值.思维启迪:利用图中的P A ⊥平面ABCD 、ABCD 为矩形的条件建立空间直角坐标系,转化为向量问题.(1)证明 ∵P A ⊥平面ABCD ,BD 平面ABCD , ∴P A ⊥BD .同理由PC ⊥平面BDE 可证得PC ⊥BD . 又P A ∩PC =P ,∴BD ⊥平面P AC . (2)解 如图,分别以射线AB ,AD ,AP 为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系. 由(1)知BD ⊥平面P AC , 又AC 平面P AC , ∴BD ⊥AC .故矩形ABCD 为正方形,∴AB =BC =CD =AD =2. ∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,1). ∴PB →=(2,0,-1),BC →=(0,2,0),BD →=(-2,2,0). 设平面PBC 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PB →=0,n ·BC →=0, 即⎩⎪⎨⎪⎧2·x +0·y -z =0,0·x +2·y +0·z =0, ∴⎩⎪⎨⎪⎧z =2x ,y =0,取x =1得n =(1,0,2). ∵BD ⊥平面P AC ,∴BD →=(-2,2,0)为平面P AC 的一个法向量.cos 〈n ,BD →〉=n ·BD →|n |·|BD →|=-1010.设平面BPC 与平面PCA 夹角为α, ∴cos α=1010,sin α=1-cos 2α=31010.∴tan α=sin αcos α=3,即平面BPC 与平面PCA 夹角的正切值为3.探究提高 求平面间的夹角最常用的方法就是分别求出两个平面的法向量,然后通过两个平面的法向量的夹角得到所求角的大小,但要注意平面间的夹角的范围为⎣⎡⎦⎤0,π2.(2011·辽宁)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ;(2)求平面QBP 与平面BPC 的夹角的余弦值.(1)证明 如图,以D 为坐标原点,线段DA 的长为单位长,以DA 、DP 、DC 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1), PQ →=(1,-1,0).所以PQ →·DQ →=0,PQ →·DC →=0, 即PQ ⊥DQ ,PQ ⊥DC .又DQ ∩DC =D ,所以PQ ⊥平面DCQ .又PQ 平面PQC ,所以平面PQC ⊥平面DCQ .(2)解 依题意有B (1,0,1),CB →=(1,0,0),BP →=(-1,2,-1). 设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎪⎨⎪⎧n ·CB →=0,n ·BP →=0, 即⎩⎪⎨⎪⎧x =0,-x +2y -z =0.因此可取n =(0,-1,-2).同理,设m 是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP →=0,m ·PQ →=0,可取m =(1,1,1).所以cos 〈m ,n 〉=-155. 故平面QBP 与平面BCP 的夹角的余弦值为-155. 题型四 求空间距离例4 在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA =SC =23,M 、N 分别为AB 、SB 的中点,如图所示. 求点B 到平面CMN 的距离.思维启迪:由平面SAC ⊥平面ABC ,SA =SC ,BA =BC ,可知本题可以取AC 中点O 为坐标原点,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,用向量法求解.解 取AC 的中点O ,连接OS 、OB .∵SA =SC ,AB =BC , ∴AC ⊥SO ,AC ⊥BO .∵平面SAC ⊥平面ABC , 平面SAC ∩平面ABC =AC , ∴SO ⊥平面ABC ,又∵BO 平面ABC ,∴SO ⊥BO .如图所示,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (0,23,0),C (-2,0,0),S (0,0,22),M (1,3,0),N (0,3,2). ∴CM →=(3,3,0),MN →=(-1,0,2),MB →=(-1,3,0). 设n =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎪⎨⎪⎧CM →·n =3x +3y =0MN →·n =-x +2z =0,取z =1,则x =2,y =-6,∴n =(2,-6,1).∴点B 到平面CMN 的距离d =|n ·MB →||n |=423.探究提高 点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法.如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →, ∴|BH →·n |=|n ·BM →|=|BH →|·|n |,∴|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.(2012·大纲全国)已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E为CC 1的中点,则直线AC 1与平面BED 的距离为( )A .2B. 3C. 2D .1答案 D解析 以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(如图),则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,22),E (0,2,2),易知AC 1∥平面BDE .设n =(x ,y ,z )是平面BDE 的法向量.则⎩⎪⎨⎪⎧n ·BD →=2x +2y =0n ·DE →=2y +2z =0.取y =1,则n =(-1,1,-2)为平面BDE 的一个法向量. 又DA →=(2,0,0),∴点A 到平面BDE 的距离是d =|n ·DA →||n |=|-1×2+0+0|(-1)2+12+(-2)2=1. 故直线AC 1到平面BED 的距离为1.典例:(12分)如图,已知在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=1,直线BD 与平面AA 1B 1B 所成的角为30°,AE 垂直BD 于点E ,F 为A 1B 1的中点.(1)求异面直线AE 与BF 所成角的余弦值; (2)求平面BDF 与平面AA 1B 夹角的余弦值.审题视角 (1)研究的几何体为长方体,AB =2,AA 1=1. (2)所求的是异面直线所成的角和平面间的夹角. (3)可考虑用空间向量法求解. 规范解答解 (1)以A 为坐标原点,以AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(如图所示).[2分]由于AB =2,BD 与平面AA 1B 1B 的夹角为30°,即∠ABD =30°,∴AD =233,[3分]∴A (0,0,0),B (2,0,0),D ⎝⎛⎭⎫0,233,0,F (1,0,1).又AE ⊥BD ,故由平面几何知识得AE =1,从而E ⎝⎛⎭⎫12,32,0,[4分]因为AE →=⎝⎛⎭⎫12,32,0,BF →=(-1,0,1),∴AE →·BF →=⎝⎛⎭⎫12,32,0·(-1,0,1)=-12,|AE →|=1,|BF →|=2,[6分]设AE 与BF 所成角为θ1,则cos θ1=|AE →·BF →||AE →||BF →|=⎪⎪⎪⎪-121×2=24.[8分]故异面直线AE 与BF 所成角的余弦值为24. (2)设平面BDF 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧ n ·BF →=0n ·BD →=0,得⎩⎪⎨⎪⎧-x +z =0-2x +233y =0,∴z =x ,y =3x ,取x =1,得n =(1,3,1).[10分] 求得平面AA 1B 的一个法向量为m =AD →=⎝⎛⎭⎫0,233,0.设平面BDF 与平面AA 1B 的夹角的大小为θ2.则cos θ2=|cos 〈m ,n 〉|=|m·n||m||n |=|0+2+0|233×5=155.[12分]利用向量求空间角的步骤: 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法 向量)坐标.第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和 答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性 作用.(2)本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范. (3)将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.方法与技巧1.若利用向量求角,各类角都可以转化为向量的夹角来运算.(1)求两异面直线a 、b 的夹角θ,须求出它们的方向向量a ,b 的夹角,则cos θ= |cos 〈a ,b 〉|.(2)求直线l 与平面α的夹角θ可先求出平面α的法向量n 与直线l 的方向向量a 的夹角.则sin θ=|cos 〈n ,a 〉|. (3)求平面间夹角θ,可先求出两个平面的法向量n 1,n 2所成的角,则θ=〈n 1,n 2〉或π-〈n 1,n 2〉.2.求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段. 失误与防范1.利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2.求点到平面的距离,有时利用等积法求解可能更方便.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1 . 已知正方体ABCD —A 1B 1C 1D 1如图所示,则直线B 1D 和CD 1所成的角为( )A .60°B .45°C .30°D .90°答案 D解析 以A 为原点,AB 、AD 、AA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设正方体边长为1,则射线CD 1、B 1D 的方向向量分别是CD 1→=(-1,0,1),B 1D →=(-1,1,-1),cos 〈CD 1→,B 1D →〉=1+0-12×3=0,∴两直线所成的角为90°.2.在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( )A .4B .2C .3D .1答案 B解析 P 点到平面OAB 的距离为d =|OP →·n||n |=|-2-6+2|9=2,故选B.3 . 如图所示,已知正方体ABCD —A 1B 1C 1D 1,E 、F 分别是正方形A 1B 1C 1D 1和ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .90°答案 B解析 以D 为原点,分别以射线DA 、DC 、DD 1为x 轴、y 轴、z 轴的非负半轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝⎛⎭⎫12,12,1, F ⎝⎛⎭⎫12,0,12, EF →=⎝⎛⎭⎫0,-12,-12,DC →=(0,1,0), ∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.提醒 两异面直线的方向向量的夹角与异面直线所成的角相等或互补.4.在正方体ABCD —A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 的夹角的余弦值为( )A.12 B.23C.33D.22答案 B解析 以A 为原点建立如图所示的空间直角坐标系,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2. ∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23. 即所求的角的余弦值为23.二、填空题(每小题5分,共15分)5 . 如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是________.答案 60°解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°.6.长方体ABCD —A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为________.答案 3010解析 建立坐标系如图,则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2), ∴BC 1→=(-1,0,2),AE →=(-1,2,1),∴cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→||AE →|=3010. 7.设正方体ABCD —A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是________.答案 233解析 如图建立空间直角坐标系,则D 1(0,0,2),A 1(2,0,2), D (0,0,0),B (2,2,0), ∴D 1A 1→=(2,0,0), DA 1→=(2,0,2),DB →=(2,2,0),设平面A 1BD 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=2x +2z =0n ·DB →=2x +2y =0.令x =1,则n =(1,-1,-1),∴点D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.三、解答题(共22分)8.(10分)如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,P A 与平面ABD 所成的角为60°,在四边形ABCD 中,∠ADC =∠DAB =90°,AB =4,CD =1,AD =2.(1)建立适当的坐标系,并写出点B ,P 的坐标; (2)求异面直线P A 与BC 所成的角的余弦值. 解 (1)建立如图空间直角坐标系,∵∠ADC =∠DAB =90°,AB =4,CD =1,AD =2, ∴A (2,0,0),C (0,1,0),B (2,4,0).由PD ⊥平面ABCD ,得∠P AD 为P A 与平面ABCD 所成的角, ∴∠P AD =60°.在Rt △P AD 中,由AD =2,得PD =23,∴P (0,0,23).(2)∵P A →=(2,0,-23),BC →=(-2,-3,0),∴cos 〈P A →,BC →〉=2×(-2)+0×(-3)+(-23)×0413=-1313,∴P A 与BC 所成的角的余弦值为1313. 9.(12分)如图,在底面为直角梯形的四棱锥P —ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面P AC ;(2)求平面PBD 与平面ABD 的夹角的大小. (1)证明 如图,建立空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3), ∴AP →=(0,0,3),AC →=(23,6,0),BD →=(-23,2,0). ∴BD →·AP →=0,BD →·AC →=0.∴BD ⊥AP ,BD ⊥AC . 又∵P A ∩AC =A ,∴BD ⊥面P AC .(2)解 设平面ABD 的法向量为m =(0,0,1), 设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD →=0,n ·BP →=0.∵BP →=(-23,0,3), ∴⎩⎨⎧-23x +2y =0,-23x +3z =0解得⎩⎪⎨⎪⎧y =3x ,z =233x . 令x =3,则n =(3,3,2),∴cos 〈m ,n 〉=m·n |m||n |=12.∴平面PBD 与平面BDA 夹角的大小为60°.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为( )A.19 B.495 C.295 D.23答案 B解析 设正方体的棱长为2,以D 为坐标原点,DA 为x 轴,DC 为y轴,DD 1为z 轴建立空间直角坐标系,可知CM →=(2,-2,1),D 1N →=(2,2,-1),cos 〈CM →,D 1N →〉=-19,sin 〈CM →,D 1N →〉=459.2.在正三棱柱ABC —A 1B 1C 1中,AB =AA 1,则AC 1与平面BB 1C 1C 的夹角的正弦值为( )A.22B.155C.64D.63答案 C解析 建立如图所示的空间直角坐标系,设AB =2,则C 1(3,1,0)、A (0,0,2),AC 1→=(3,1,-2),平面BB 1C 1C 的一个法向量为n =(1,0,0),所以AC 1与平面BB 1C 1C 所成角的正弦值为|AC 1→·n ||AC 1→||n |=38=64.故选C.3.如图,设动点P 在棱长为1的正方体ABCD —A 1B 1C 1D 1的对角线BD 1上,记D 1PD 1B=λ.当∠APC为钝角时,则λ的取值范围是 ( )A.⎝⎛⎭⎫0,13B.⎝⎛⎭⎫0,12C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫13,1 答案 D解析 由题设可知,以DA →、DC →、DD 1→为单位正交基底,建立如图所示的空间直角坐标系,则有A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1). 由D 1B →=(1,1,-1)得D 1P →=λD 1B →=(λ,λ,-λ),所以P A →=PD 1→+D 1A →=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1), PC →=PD 1→+D 1C →=(-λ,-λ,λ)+(0,1,-1) =(-λ,1-λ,λ-1).显然∠APC 不是平角,所以∠APC 为钝角等价于cos ∠APC =cos 〈P A →,PC →〉=P A →·PC →|P A →||PC →|<0,这等价于P A →·PC →<0, 即(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)2=(λ-1)(3λ-1)<0,得13<λ<1.因此,λ的取值范围为⎝⎛⎭⎫13,1. 二、填空题(每小题5分,共15分)4.(2012·陕西)如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成的角的余弦值为________.答案55解析 不妨令CB =1,则CA =CC 1=2.可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1), ∴BC →1=(0,2,-1),AB →1=(-2,2,1),∴cos 〈BC →1,AB →1〉=BC →1·AB →1|BC →1||AB →1|=4-15×9=15=55>0.∴BC →1与AB →1的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55.5.(2012·大纲全国)三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长都相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为________.答案 66解析 连接A 1B 交AB 1于点O ,取A 1C 1的中点D ,连接B 1D 、DO .∵O 、D 分别为A 1B 、A 1C 1的中点,∴OD ∥BC 1,∴∠DOB 1或其补角即为异面直线AB 1与BC 1所成的角.设各棱长为a ,则DB 1=32a .∵∠A 1AB =60°,∴OB 1=AO =32a .又∵BC 1→=BB 1→+BC →=AA 1→+AC →-AB →, ∴BC 1→2=(AA 1→+AC →-AB →)2 =AA 1→2+2AA 1→·AC →+AC →2-2AA 1→·AB →-2AC →·AB →+AB →2 =a 2+2a 2cos 60°+a 2-2a 2cos 60°-2a 2cos 60°+a 2 =2a 2,∴|BC 1→|=2a .∴OD =12BC 1=22a .在△DOB 1中,由余弦定理得cos ∠DOB 1=⎝⎛⎭⎫32a 2+⎝⎛⎭⎫22a 2-⎝⎛⎭⎫32a 22·32a ·22a =66,∴AB 1与BC 1所成角的余弦值为66.6.在四面体P -ABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为________.答案 33a解析 根据题意,可建立如图所示的空间直角坐标系Pxyz ,则P (0,0,0),A (a,0,0),B (0,a,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的 距离.∵P A =PB =PC ,∴H 为△ABC 的外心. 又∵△ABC 为正三角形,∴H 为△ABC 的重心,可得H 点的坐标为⎝⎛⎭⎫a 3,a 3,a 3. ∴PH =⎝⎛⎭⎫a 3-02+⎝⎛⎭⎫a 3-02+⎝⎛⎭⎫a 3-02=33a .∴点P 到平面ABC 的距离为33a . 三、解答题7.(13分)(2012·北京)如图(1),在Rt △ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图(2).(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. (1)证明 ∵AC ⊥BC ,DE ∥BC ,∴DE ⊥AC . ∴DE ⊥A 1D ,DE ⊥CD ,∴DE ⊥平面A 1DC , 又A 1C 平面A 1DC ,∴DE ⊥A 1C . 又∵A 1C ⊥CD ,∴A 1C ⊥平面BCDE .(2)解 如图所示,以C 为坐标原点,建立空间直角坐标系C -xyz则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·A 1B →=0, n ·BE →=0. 又A 1B →=(3,0,-23),BE →=(-1,2,0),∴⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3,∴n =(2,1,3). 设CM 与平面A 1BE 所成的角为θ. ∵CM →=(0,1,3),∴sin θ=|cos 〈n ,CM →〉|=⎪⎪⎪⎪⎪⎪n ·CM →|n |·|CM →|=48×4=22. ∴CM 与平面A 1BE 所成角的大小为π4.(3)解 线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.理由如下: 假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ′,y ′,z ′),则m ·A 1D →=0,m ·DP →=0. 又A 1D →=(0,2,-23),DP →=(p ,-2,0),∴⎩⎨⎧2y ′-23z ′=0,px ′-2y ′=0.令x ′=2,则y ′=p ,z ′=p 3,∴m =⎝⎛⎭⎫2,p ,p 3. 平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.∴线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.。

向量法求空间距离和角

向量法求空间距离和角

—的平而角“a®牆用向量方法求空间角和距离在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解 法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向 量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,木专题将运用 向量方法简捷地解决这些问题.1求空间角问题空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角.(1)求异而直线所成的角.=arcsinli I/II H I法一、在Q 内N 丄/,在0内b 丄/,其方向如图,则二面角设方、乙分别为异而直线a 、b 的方向向量, a 则两异而直线所成的角 a — arccos 1 而Q 所成的角方向向量,;;是平而&的法 (3)求二而法二、设入云是二而角a-/-0的两个半平而的法向量,其方向一个指向内侧,另一个指向外侧,则二面角a-1-p的平而角a =arccos彳"22求空间距离问题构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异而直线间的距离、线而距离;而而距离都可化为点而距离来求.(1)求点而距离法一、设;;是平面Q的法向量,在a内取一点B,则A■ ■■I“・•到&的距离d =1 AB II cos 0\=空叫\n\法二、设AO丄a于O,利用AO丄a和点0在&内的向量表示,可确定点O的位置,从而求出I走1・(2)求异而直线的距离二 ___ ?—法一、找平而0使比0且砂0,则异而直线a、b的距离就转化为直线a到平面0的距离,又转化为点A到平面0的距离.法二、在a上取一点A,在b上取一点B,设方、b分别为异面直线a、b的方向向量,求;;(万丄方,齐丄乙),则・・D于点而距异而直线a、b的距离心而llcos弘空叫(此方法移植丨川(I )求异而直线DE 与FG 所成的角;rh 向量法求空间距离和角例1.如图,在棱长为2的正方体ABCD-gCQ 中,分别是棱4久心的中点•(II )求g 和ffiEFBD 所成的角;(III)求Q 到面EFBD 的距离解:(I )记异而直线DE 与g 所成的角为—则&等于向量码运的夹角或其补角,■ D E.FC 、|cos a =1—:_ I \DE\.\FC {\(II)缈初万冷万石)•(两霸頁艸坐标系D-小, —I 一 ・• II DE bl FC [丨呢= (1,0,2),面= (220)设面E 単翌進|=二・・・a 回風X^s£=("l ) A /5V5 5— _v 、 DE ・H = 0<DB • /z = 0得 7 = (-221)又 BC ; = (-2,0,2)记g 和而EFBD 所成的角为&则 sin 0 =1 cos 〈BC], n) 1=1 ."9 ? 1=I BC { II7? I 2 ・•・Bq 和面EFBD 所成的角为冬.4(III)点目到ffiEFBD 的距离d 等于向量丽;在而EFBD 的法向量上的投影的绝对值,BiTl 33.完成这3道小题后, 总结:例2・己知A BCD 是边长为1的正方形,四边形DA ・ q=0DC ・ q = 0向量法求空间距离和角设计说明:1・作为本专题的例1,首先选择以一个容易建立空间直角坐标系 的多而体 正方体为载体,来说明空间角和距离的向量求法易于学生理解.2.解决(1)后,可让学生进一步求这两条异而直线的距离,并让学生体会一下:如果用传统方法恐怕很难(不必多讲,高考对公垂线的作法不作要求).角、距离还是证明平行、垂直(是前者的特殊情况),都可用向量方法来解决, 向量方法可以人人学会,它程序化,不需技巧.AA'B'B 是矩形,平丄平面A3CD 。

2024届高考一轮复习数学课件(新教材人教A版强基版):向量法求空间角(一)

2024届高考一轮复习数学课件(新教材人教A版强基版):向量法求空间角(一)
则 λ 的值为___3___.
以D为坐标原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建 立空间直角坐标系(图略),正方体的棱长为2,
则A1(2,0,2),D1(0,0,2),E(0,2,1),A(2,0,0),
∴—D1→E =(0,2,-1),
—A1→F =—A1→A +A→F=—A1→A +λA→D=(-2λ,0,-2).
以 D 为原点,DA,DC,DD1 所在直线分别为 x 轴、y 轴、z 轴,建
立如图所示的空间直角坐标系,则 D1(0,0, 3),A(1,0,0),D(0,0,0),
B1(1,1, 3),所以A—D→1=(-1,0, 3),D—→B1=(1,1, 3).
设异面直线 AD1 与 DB1 所成的角为 θ,所以
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)两直线的方向向量所成的角就是两条直线所成的角.( × )
(2) 直 线 的 方 向 向 量 和 平 面 的 法 向 量 所 成 的 角 就 是 直 线 与 平 面 所 成 的
角.( × )
(3)两异面直线所成角的范围是 0,π2,直线与平面所成角的范围是
√ 0,π2.(
)
(4)直线的方向向量为u,平面的法向量为n,则线面角θ满足sin θ=
cos〈u,n〉.( × )
教材改编题
1.已知向量 m,n 分别是直线 l 和平面 α 的方向向量和法向量,若 cos〈m,n〉
=-12,则直线 l 与平面 α 所成的角为
√A.30°
C.120°
B.60° D.150°
A.
2 2
B.
15 5
√C. 46
6 D. 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

向量法求空间的距离和角

向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0,
2
设两条异面直线 m,的l 方向向量为 ,a,直b线
明志 勤奋 求实
所成m的, l角为 ,则
创新
l
l
a
b
m
a
b
m
a,b
cos cos a,b
a,b
cos cos a,b cos a,b
cos cos a,b
★再现型题组
明志 勤奋 求实 创新
直线和平面所成的角
直线l与平面α所 成的角θ.
范围:0,
2
na l
O
a,n
2
sin
sin
2
a,n
cos
a,n
明志 勤奋 求实 创新
al
O
n
a,n
2
sin
sin
a,nBiblioteka 2cosa,n
sin cos a,n
★再现型题组
明志 勤奋 求实 创新
二面角
范围:0,
明志 勤奋 求实 创新
n1
n2
空间向量与空间的角
山东省北镇中学 邵春成
高考再现:
明志 勤奋 求实 创新
明志 勤奋 求实 创新
明志 勤奋 求实 创新
明志 勤奋 求实 创新
明志 勤奋 求实 创新
明志 勤奋 求实 创新
明志 勤奋 求实 创新
明志 勤奋 求实 创新
★再现型题组
明志 勤奋 求实 创新
异面直线所成的角
范围:
明志 勤奋 求实 创新
明志 勤奋 求实 创新
★提高型题组
明志 勤奋 求实 创新
明志 勤奋 求实 创新
★反馈型题组
明志 勤奋 求实 创新
请同学们课下完成!
课堂小结
1.合理建立空间直角坐标系 2.套用准确的公式求解
明志 勤奋 求实 创新
特别的,二面角的求解:定向法,观察法 3.开放性问题,关键是确定最优的变量
l
l 的平面角 为,
n1,n2
cos cos n1, n2
n1 n2 | n1 || n2 |
明志 勤奋 求实 创新
n1
n2
l
l 的平面角 为, n1,n2
cos cos n1, n2
n1 n2 | n1 || n2 |
明志 勤奋 求实 创新
规律升华:
n1, n2 分别是二面角α-l-β的两个半平面α,β的法向量, 则二面角的大小θ=〈 n1,〉n2 (或π-〈 〉n1,)n2
因为 0,, 所以
cos cos n1, n2 n1 n2
n1 n2
或 cos cos n1, n2 n1 n2
n1 n2
★巩固型题组
明志 勤奋 求实 创新
明志 勤奋 求实 创新
相关文档
最新文档