第一课时 利用空间向量求空间角
《利用向量法求空间角》教案

《利用向量法求空间角》教案一、教学目标1. 让学生理解空间向量的概念,掌握空间向量的基本运算。
2. 引导学生掌握利用向量法求空间角的方法,培养空间想象能力。
3. 通过对空间角的学习,提高学生解决实际问题的能力。
二、教学内容1. 空间向量的概念及基本运算2. 空间向量夹角的定义及计算方法3. 空间向量垂直的判定与性质4. 利用向量法求空间角的大小5. 应用实例解析三、教学重点与难点1. 教学重点:(1)空间向量的概念及基本运算(2)空间向量夹角的计算方法(3)利用向量法求空间角的大小2. 教学难点:(1)空间向量垂直的判定与性质(2)应用实例的解析四、教学方法1. 采用讲授法,系统地讲解空间向量及空间角的相关概念、性质和计算方法。
2. 利用多媒体课件,展示空间向量的几何形象,增强学生的空间想象力。
3. 结合具体实例,引导学生运用向量法求解空间角的大小,提高解决实际问题的能力。
4. 组织课堂讨论,鼓励学生提问、发表见解,提高学生的参与意识。
五、教学安排1. 第一课时:介绍空间向量的概念及基本运算2. 第二课时:讲解空间向量夹角的定义及计算方法3. 第三课时:讲解空间向量垂直的判定与性质4. 第四课时:讲解利用向量法求空间角的大小5. 第五课时:应用实例解析,巩固所学知识六、教学过程1. 导入:回顾上一节课的内容,通过提问方式检查学生对空间向量的理解和掌握情况。
2. 新课导入:介绍空间向量夹角的定义,解释其在几何中的意义。
3. 课堂讲解:详细讲解空间向量夹角的计算方法,包括夹角余弦值的求法。
4. 例题讲解:挑选典型例题,演示利用向量法求空间向量夹角的过程。
5. 课堂练习:学生独立完成练习题,巩固向量夹角的知识。
六、教学内容1. 空间向量夹角的定义2. 空间向量夹角的计算方法3. 空间向量夹角的应用实例七、教学重点与难点1. 教学重点:(1)空间向量夹角的定义及其计算方法(2)利用向量夹角解决实际问题2. 教学难点:(1)空间向量夹角的计算方法(2)空间向量夹角在实际问题中的应用八、教学方法1. 采用案例教学法,通过具体实例讲解空间向量夹角的含义和应用。
用空间向量求空间角课件(共22张PPT)

向量的加法与数乘
向量的加法满足平行四边形法则或三 角形法则,即$vec{a} + vec{b} = vec{b} + vec{a}$。
数乘是指实数与向量的乘积,满足分 配律,即$k(vec{a} + vec{b}) = kvec{a} + kvec{b}$。
向量的数量积
向量的数量积定义为$vec{a} cdot vec{b} = left| vec{a} right| times left| vec{b} right| times cos theta$,其中$theta$为两 向量的夹角。
数量积满足交换律和分配律,即$vec{a} cdot vec{b} = vec{b} cdot vec{a}$和$(lambdavec{a}) cdot vec{b} = lambda(vec{a} cdot vec{b})$。
03 向量的向量积与混合积
向量的向量积
定义
两个向量a和b的向量积是一个向量,记作a×b,其模长为 |a×b|=|a||b|sinθ,其中θ为a与b之间的夹角。
适用范围
适用于直线与平面不垂直的情况。
利用向量的混合积求二面角
1 2 3
定义
二面角是指两个平面之间的夹角。
计算公式
cosθ=∣∣a×b×c∣∣∣∣a∣∣∣∣b∣∣∣∣c∣∣,其中a、 b和c分别是三个平面的法向量,θ是两个平面之 间的夹角。
适用范围
适用于两个平面不平行的情况。
06 案例分析
案例一:利用空间向量求线线角
定义
线线角是指两条直线之间的夹角。
计算公式
cosθ=∣∣a⋅b∣∣∣∣a∣∣∣∣b∣∣∣, 其中a和b是两条直线的方向向量,
用向量法求空间角 人教课标版精品公开PPT课件

(3)二面角的平面角
利用向量求二面角的平面角有两种方法:
若AC、BD分别是二面角α-l-β的两个面内与棱l垂直 的异面直线,则二面角的大小就是向量_A→_C______、 _B→_D______的夹角(如图42-1所示).
则 A(1,0,0),E(0,2,1),B(1,2,0),C1(0,2,2). B→C1=(-1,0,2),A→E=(-1,2,1), cos〈B→C1,A→E〉=|B→BC→C1|1··A→|EA→E|= 1300.所以异面直线 BC1 与 AE
所成角的余弦值为 1300.
(2)直线与平面所成的角
3
则A→O1·B→C1=32,|A→O1|= 26,|B→C1|=
2,cos〈A→O1,B→C1〉=
2 26×
= 23, 2
∴BC1 与 AO1 的夹角为π6.
答案:A
1.长方体 ABCD-A1B1C1D1 中,AB=AA1=2,AD=1,E 为 CC1
的中点,则异面直线 BC1 与 AE 所成角的余弦值为( )
1. 两条异面直线所成的角
【例1】 长方体ABCDA1B1C1D1中,AB=4,AD=6,AA1=4,M是A1C1的中点, P在线段BC上,且CP=2,Q是DD1的中点,求异面直线AM与PQ所成角的余弦 值.
解 如图,建立空间直角坐标系 B-xyz,
则 A(4,0,0),M(2,3,4),P(0,4,0),Q(4,6,2),
uuur uuur uFuuEur uAuPuur
利用空间向量求角-课件

因E→F⊥P→C,D→G⊥P→C,
故 E-PC-D 的平面角 θ 的大小为向量E→F与D→G的夹角.
=
|DG||EF|
22,θ=4π,
即二面角 E-PC-D 的大小为π4.
跟踪训练
3.如图在直三棱柱ABC-A1B1C1中, AB=BC,D、E分别为BB1、AC1的中
2.求异面直线所成的角主要是转化为两个向量的夹 角,这时要特别注意二向量的方向及最后求出的角一定要 是锐角或直角.
3.线面角是求线与平面的法向量所成角的余角.
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/2/272021/2/27Saturday, February 27, 2021
•
•
16、业余生活要有意义,不要越轨。2021/2/272021/2/27Februar y 27, 2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/2/272021/2/272021/2/272021/2/27
谢谢观赏
You made my day!
我们,还在路上……
|A→M|= A→A1+A→1M2 = |A→A1|2+|A→1M|2=
1+14=
25,同理,|C→N|=
5 2.
设直线 AM 与 CN 所成的角为 α. 则 cos α=|AA→→MM|·|CC→→NN|=5412=25.
∴直线 AM 与 CN 所成的余弦值为25.
法二:如图,分别以D→A、D→C、D→D1 方向为 x 轴、y 轴、z 轴的正方向建立空 间直角坐标系.
A→B=∵(0M,→Ca1,0·A→),B=A→A0,1=M(→0C,01·,A→A1=2a0).,
∵M→C1·A→B=0,M→C1·A→A1=0, ∴MC1⊥平面 AA1B1B, ∴∠C1AM 是 AC1 与侧面 AA1B1B 所成的角.
利用向量法求空间角教案

利用向量法求空间角-经典教案教案章节一:向量基础教学目标:1. 理解向量的概念及其表示方法。
2. 掌握向量的运算规则,包括加法、减法、数乘和点乘。
教学内容:1. 向量的定义及表示方法。
2. 向量的运算规则:a) 向量加法:三角形法则和平行四边形法则。
b) 向量减法:向量减去另一个向量等于加上这个向量的相反向量。
c) 数乘:一个实数乘以一个向量,得到一个新的向量,其实数乘以原向量的模,新向量的方向与原向量相同。
d) 点乘:两个向量的点乘,得到一个实数,表示两个向量的夹角的余弦值。
教学活动:1. 通过实际操作,让学生直观地理解向量的概念和表示方法。
2. 通过例题,让学生掌握向量的运算规则。
教案章节二:空间向量教学目标:1. 理解空间向量的概念及其表示方法。
2. 掌握空间向量的运算规则,包括空间向量的加法、减法、数乘和点乘。
教学内容:1. 空间向量的定义及表示方法。
2. 空间向量的运算规则:a) 空间向量加法:三角形法则和平行四边形法则。
b) 空间向量减法:空间向量减去另一个空间向量等于加上这个空间向量的相反空间向量。
c) 空间向量的数乘:一个实数乘以一个空间向量,得到一个新的空间向量,其实数乘以原空间向量的模,新空间向量的方向与原空间向量相同。
d) 空间向量的点乘:两个空间向量的点乘,得到一个实数,表示两个空间向量的夹角的余弦值。
教学活动:1. 通过实际操作,让学生直观地理解空间向量的概念和表示方法。
2. 通过例题,让学生掌握空间向量的运算规则。
教案章节三:向量的投影教学目标:1. 理解向量的投影的概念及其计算方法。
2. 掌握向量的正交投影和斜投影的计算方法。
教学内容:1. 向量的投影的定义及计算方法。
2. 向量的正交投影和斜投影的计算方法:a) 向量的正交投影:将向量投影到垂直于某一平面的向量上,得到的投影向量与投影平面垂直。
b) 向量的斜投影:将向量投影到某一平面上,得到的投影向量与投影平面不垂直。
高考数学大一轮复习 第二节 第一课时 空间角的求法课件 理 苏教版

第十页,共40页。
∴M为PD的中点,∴M的坐标为(0,1,1).
∴ AC =(1,2,0), AM =(0,1,1),CD=(-1,0,0). 设平面ACM的一个法向量为n=(x,y,z),
第二十一页,共40页。
(2)由(1)知, AD1 =(0,3,3), AC =( 3,1,0), B1C1 =(0,1,0). 设 n=(x,y,z)是平面 ACD1 的一个法向量,则
n·AC =0,
n·AD1 =0,
即 3y3+x+3zy==00. ,
令 x=1,则 n=(1,- 3, 3).
设直线 B1C1 与平面 ACD1 所成角为 θ,则
连结 AB1,易知△AB1D 是直角三角形,且 B1D2=BB12+ BD2=BB21+AB2+AD2=21,即 B1D= 21.
在 Rt△AB1D 中,cos∠ADB1=BA1DD=
3= 21
721,即 cos(90°
-θ)=
721.从而 sin θ=
21 7.
即直线 B1C1 与平面 ACD1 所成角的正弦值为
第三页,共40页。
1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而
忽视了夹角为0,π2. 2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为
线面角的正弦值. 3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由
图形决定.由图形知二面角是锐角时cos
θ=
|n1·n2| |n1||n2|
∴cos〈
利用空间向量求空间角PPT教学课件

澶渊之盟
宋真宗赵恒 1004年,辽军大举南征时,亲自领兵到澶 渊抵御,并与辽签订了“澶渊之盟”。
下一页
寇准
寇准
北宋宰相。1004年,辽军大举南征时, 主战。
返回
西夏武士
西夏的建立
1038年,党项族首领元昊建立西夏 国。图为李元昊之墓
下一页
党项人
女男供供养养人人
下一页
西夏铜牛
下一页
西夏飞天壁画
nn
α
与平面垂直的直线叫做平面
的法线.因此平面的法向量
就是平面法线的方向向量
异面直线所成角
a, b分别是两直线l1 , l2的方向向量,
l1, l2的所成的角为 ,则
cos | a b |
|a||b|
l2
b a
l1
巩固性训练1
1.如图,已知正三棱柱ABC-A1B1C1的侧棱
长为2,底面连长为1.求异面直线AB1与
BC1夹角的余弦值.
解:取的中点O建立如图 所示的空间直角坐标系O-XYZ。
1
A(
2
,0,2)
3
B(0, 2
,2)
B1 (0,
3 2
,0)
C1
1(-
,0 ,0)
2
A
BC ∴
1 AB1 ( 2 ,
3 ,2) 2
1
=(-
1 2
,-
3 ,-2) 2
X
∴cos = AB1 • BC1 = 7
AB1 • BC1 10
m 设 =(x,y,z) 是平面PBC的一个法向量
∴ PB ⊥ m
PC ⊥ m
∴ PB • m =x-z=0
y
PC • m =x+y-z=0
利用向量法求空间角 ppt课件

(1)当 m 与 n 的夹 角不大于90°时,异 面直线a、b 所成的
角 与m 和 n
的夹角 相等
(2)当 m 与 n 的 夹角大于90°时,异 面直线a、b 所成的
角 与 m 和n
的夹角 互补
ma
m
a
a´
o•
b´
a´
o•
b´
b
n
b
n
PPT课件
13
cos cos m, n
sin = cos AB, n
PPT课件
15
二面角 (范围: 0, )
n2
n1
n2
n1
n1, n2
n1, n2
cos cos n1, n2
cos cos n1, n2
PPT课件
16
例3 如图,甲站在水库底面上的点A处,乙站在水坝斜面上的点
3
D y
8
点评:向量法求直线与平面所成角的正弦值的一般步骤
建系
求直线的方向向量 求平面的法向量
求直线的方向向量与平面的法向量 的夹角的余弦值
得直线与平面所成角的正弦值
PPT课件
9
例2 (2)点E、F分别为CD、DD1的中点,求二面角F-AE-D的
余弦值。
z
(2)由题意知 F(0,1, 1 ), E( 1 ,1,0) A1
2
AB
( AC
CD
DB)2
A
2
2
2
AC CD BD 2(ACCD AC DB CD DB)
a2 c2 b2 2 AC DB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
|e n|
为φ,两向量e与n的夹角为θ,则有sin φ=|cos θ|=③ |e||n| .
教材研读 栏目索引
3.二面角的求法 a.如图(1),AB,CD分别是二面角α-l-β的两个半平面α,β内与棱l垂直的异面射线 (A,C在棱l上),则二面角的大小θ=④ < AB,CD> .
|v1 v2|
|v1||v2|
求解.
考点突破 栏目索引
考点突破 栏目索引
易错警示 注意向量的夹角与异面直线所成的角的区别 当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当 异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.
考点突破 栏目索引
1-1 (2018课标全国Ⅱ理,9,5分)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=
n n
a b
0,求得.
0
2.方向向量和法向量均不为零向量且不唯一.
教材研读 栏目索引
1.判断正误(正确的打“√”,错误的打“✕”).
(1)两直线的方向向量所成的角就是两条直线所成的角. ( ✕ )
(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.
(✕)
(3)两个平面的法向量所成的角就是这两个平面所成的角. ( ✕ )
(4)两异面直线夹角的范围是
0,
π 2
,直线与平面所成角的范围是0,
π 2
,二面角
的范围是[0,π]. ( √ )
(5)若二面角α-l-β的两个半平面α,β的法向量n1,n2所成角为θ,则二面角α-l-β的
大小是π-θ. ( ✕ )
教材研读 栏目索引
2.直线l的方向向量为s=(-1,1,1),平面α的法向量为n=(2,x2+x,-x),若直线l∥平面 α,则x的值为 ( D ) A.-2 B.- 2 C. 2 D.± 2
(1)证明:依题意, AB=(1,0,0)是平面ADE的法向量,又 BF =(0,2,h),可得 BF ·AB =0, 又因为直线BF⊄平面ADE,所以BF∥平面ADE. (2)依题意, BD =(-1,1,0), BE =(-1,0,2), CE =(-1,-2,2). 设n=(x,y,z)为平面BDE的法向量,
教材研读 栏目索引
3.设u=(-2,2,t),v=(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t= ( C ) A.3 B.4 C.5 D.6
教材研读 栏目索引
4.如图所示,已知正方体ABCD-A1B1C1D1,E,F分别是正方形A1B1C1D1和ADD1A1 的中心,则EF和CD所成的角的度数是 ( B )
3
考点突破 栏目索引
解析 依题意,可以建立以A为原点,分别以 AB, AD, AE的方向为x轴,y轴,z轴正 方向的空间直角坐标系(如图),
可得A(0,0,0),B(1,0,0),C(1,2,0),D(0,1,0),E(0,0,2). 设CF=h(h>0),则F(1,2,h).
考点突破 栏目索引
=
-
1 2
,0,1,所以cos<
BM
,
AN
>=
BM |BM
AN ||AN|
=
4 6
= 30 .
5 10
22
考点突破 栏目索引
探究 将本例中的条件“BC=CA=CC1”改为“BC=CA=2CC1”,其余条件不
变,则BM与AN所成的角为 ( A )
A. π B. π
2
4
C. π D. π
3
6
答案 A 建系方式和例题相同,设BC=CA=2CC1=2,则A(2,0,0),B(0,2,0),M(1,
栏目索引
第一课时 利用空间向量空间 角
教材研读
1.两条异面直线所成角的求法
设a,b分别是两异面直线l1,l2的方向向量,则
a与b的夹角β
范围
[0,π]
求法
cos β= a b
|a||b|
教材研读 栏目索引
l1与l2所成的角θ
①
0,
π 2
|a b|
cos θ=|cos β|=② |a||b|
教材研读 栏目索引
b.如图(2)(3),n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大 小θ满足cos θ=⑤ -cos<n1,n2> 或⑥ cos<n1,n2> .
教材研读 栏目索引
常用结论
1.确定平面的法向量的方法
(1)直接法:观察是否有垂直于平面的法向量,若有可直接确定.
(2)待定系数法:取平面的两个相交向量a,b,设平面的法向量为n=(x,y,z),由
1,1),N(1,0,1), AN =(-1,0,1),BM =(1,-1,1),记BM与AN所成的角为θ,则cos θ=0,故
BM与AN所成的角为 π .
2
方法技巧
用向量法求异面直线所成角的步骤
(1)选好基底或建立空间直角坐标系;
(2)求出两直线的方向向量v1,v2;
(3)代入公式|cos<v1,v2>|=
A. 1
B. 2
C. 30
D. 2
10
5
10
2
考点突破 栏目索引
解析 以C为坐标原点,直线CA为x轴,直线CB为y轴,直线CC1为z轴建立空间
直角坐标系C-xyz,如图,设CA=1,则B(0,1,0),M
1 2
,
1 2
,1,A(1,0,0),N
1 2
,0,1
,故
BM
=
3
1 2
,-
1 2
,1 ,
AN
A.65° C.30°
B.45° D.135°
教材研读 栏目索引
5.过正方形ABCD的顶点A作线段PA⊥平面ABCD,若AB=PA,则平面ABP与平
面CDP所成的锐二面角为
.
答案 45°
考点突破
考点突破 栏目索引
考点一 异面直线所成的角
典例1 (2019广东惠州调研)在直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别 是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为 ( C )
3 ,则异面直线AD1与DB1所成角的余弦值为 ( C )
A.1 B. 5 C. 5 D. 2
5
6
5
2
考点突破 栏目索引
考点二 直线与平面所成的角
典例2 (2019天津,17,13分)如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB, AB=AD=1,AE=BC=2. (1)求证:BF∥平面ADE; (2)求直线CE与平面BDE所成角的正弦值; (3)若二面角E-BD-F的余弦值为1 ,求线段CF的长.