用向量法计算空间角
《利用向量法求空间角》教案

《利用向量法求空间角》教案一、教学目标1. 让学生理解空间向量的概念,掌握空间向量的基本运算。
2. 引导学生掌握利用向量法求空间角的方法,培养空间想象能力。
3. 通过对空间角的学习,提高学生解决实际问题的能力。
二、教学内容1. 空间向量的概念及基本运算2. 空间向量夹角的定义及计算方法3. 空间向量垂直的判定与性质4. 利用向量法求空间角的大小5. 应用实例解析三、教学重点与难点1. 教学重点:(1)空间向量的概念及基本运算(2)空间向量夹角的计算方法(3)利用向量法求空间角的大小2. 教学难点:(1)空间向量垂直的判定与性质(2)应用实例的解析四、教学方法1. 采用讲授法,系统地讲解空间向量及空间角的相关概念、性质和计算方法。
2. 利用多媒体课件,展示空间向量的几何形象,增强学生的空间想象力。
3. 结合具体实例,引导学生运用向量法求解空间角的大小,提高解决实际问题的能力。
4. 组织课堂讨论,鼓励学生提问、发表见解,提高学生的参与意识。
五、教学安排1. 第一课时:介绍空间向量的概念及基本运算2. 第二课时:讲解空间向量夹角的定义及计算方法3. 第三课时:讲解空间向量垂直的判定与性质4. 第四课时:讲解利用向量法求空间角的大小5. 第五课时:应用实例解析,巩固所学知识六、教学过程1. 导入:回顾上一节课的内容,通过提问方式检查学生对空间向量的理解和掌握情况。
2. 新课导入:介绍空间向量夹角的定义,解释其在几何中的意义。
3. 课堂讲解:详细讲解空间向量夹角的计算方法,包括夹角余弦值的求法。
4. 例题讲解:挑选典型例题,演示利用向量法求空间向量夹角的过程。
5. 课堂练习:学生独立完成练习题,巩固向量夹角的知识。
六、教学内容1. 空间向量夹角的定义2. 空间向量夹角的计算方法3. 空间向量夹角的应用实例七、教学重点与难点1. 教学重点:(1)空间向量夹角的定义及其计算方法(2)利用向量夹角解决实际问题2. 教学难点:(1)空间向量夹角的计算方法(2)空间向量夹角在实际问题中的应用八、教学方法1. 采用案例教学法,通过具体实例讲解空间向量夹角的含义和应用。
用空间向量求空间角课件(共22张PPT)

向量的加法与数乘
向量的加法满足平行四边形法则或三 角形法则,即$vec{a} + vec{b} = vec{b} + vec{a}$。
数乘是指实数与向量的乘积,满足分 配律,即$k(vec{a} + vec{b}) = kvec{a} + kvec{b}$。
向量的数量积
向量的数量积定义为$vec{a} cdot vec{b} = left| vec{a} right| times left| vec{b} right| times cos theta$,其中$theta$为两 向量的夹角。
数量积满足交换律和分配律,即$vec{a} cdot vec{b} = vec{b} cdot vec{a}$和$(lambdavec{a}) cdot vec{b} = lambda(vec{a} cdot vec{b})$。
03 向量的向量积与混合积
向量的向量积
定义
两个向量a和b的向量积是一个向量,记作a×b,其模长为 |a×b|=|a||b|sinθ,其中θ为a与b之间的夹角。
适用范围
适用于直线与平面不垂直的情况。
利用向量的混合积求二面角
1 2 3
定义
二面角是指两个平面之间的夹角。
计算公式
cosθ=∣∣a×b×c∣∣∣∣a∣∣∣∣b∣∣∣∣c∣∣,其中a、 b和c分别是三个平面的法向量,θ是两个平面之 间的夹角。
适用范围
适用于两个平面不平行的情况。
06 案例分析
案例一:利用空间向量求线线角
定义
线线角是指两条直线之间的夹角。
计算公式
cosθ=∣∣a⋅b∣∣∣∣a∣∣∣∣b∣∣∣, 其中a和b是两条直线的方向向量,
第8讲 向量法求空间角

30
聚焦必备知识 突破核心命题 限时规范训练
训练 2 (2022·全国甲卷)在四棱锥 P -ABCD 中,PD⊥底面 ABCD,CD ∥AB,AD=DC=CB=1,AB=2,DP= 3.
(1)证明:BD⊥PA; (2)求 PD 与平面 PAB 所成的角的正弦值.
31
聚焦必备知识 突破核心命题 限时规范训练
则cos θ=__□1__|c_o_s__〈__u_,__v_〉__|___=_□_2__||uu_|·|_vv_||__.
2.直线与平面所成的角 如图,直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,
直线AB的方向向量为u,平面α的法向量为n,则sin θ=_□_3_|_co_s__〈__u_,__n_〉__|
∴A→B1=(-2 2, 3, 2), C→B1=(- 2, 3, 2),C→B=(0, 3,0).
28
聚焦必备知识 突破核心命题 限时规范训练
设平面 BCC1B1 的法向量为 n=(x,y,z),
则nn··CC→→BB1==00,,即-3y=2x+0, 3y+ 2z=0,
令 x=1,则 y=0,z=1,∴n=(1,0,1).
AC 所在直线为 y 轴,AA1 所在直线为 z 轴建立空间直角坐标系,如图所示,
则 A(0,0,0),A1(0,0,2),B( 3,1,0),C1(0,2,2),∴A→1B=( 3,1,
-2),A→C1=(0,2,2),
∴|cos〈A→1B,A→C1〉|
=
(
3)2+31×2+0+(1-×22)-2×2×202+22+22=14,
12
聚焦必备知识 突破核心命题 限时规范训练
设平面 A′BCD′的法向量为 n=(x,y,z),
利用向量法求空间角教案

利用向量法求空间角-经典教案教案章节一:向量基础教学目标:1. 理解向量的概念及其表示方法。
2. 掌握向量的运算规则,包括加法、减法、数乘和点乘。
教学内容:1. 向量的定义及表示方法。
2. 向量的运算规则:a) 向量加法:三角形法则和平行四边形法则。
b) 向量减法:向量减去另一个向量等于加上这个向量的相反向量。
c) 数乘:一个实数乘以一个向量,得到一个新的向量,其实数乘以原向量的模,新向量的方向与原向量相同。
d) 点乘:两个向量的点乘,得到一个实数,表示两个向量的夹角的余弦值。
教学活动:1. 通过实际操作,让学生直观地理解向量的概念和表示方法。
2. 通过例题,让学生掌握向量的运算规则。
教案章节二:空间向量教学目标:1. 理解空间向量的概念及其表示方法。
2. 掌握空间向量的运算规则,包括空间向量的加法、减法、数乘和点乘。
教学内容:1. 空间向量的定义及表示方法。
2. 空间向量的运算规则:a) 空间向量加法:三角形法则和平行四边形法则。
b) 空间向量减法:空间向量减去另一个空间向量等于加上这个空间向量的相反空间向量。
c) 空间向量的数乘:一个实数乘以一个空间向量,得到一个新的空间向量,其实数乘以原空间向量的模,新空间向量的方向与原空间向量相同。
d) 空间向量的点乘:两个空间向量的点乘,得到一个实数,表示两个空间向量的夹角的余弦值。
教学活动:1. 通过实际操作,让学生直观地理解空间向量的概念和表示方法。
2. 通过例题,让学生掌握空间向量的运算规则。
教案章节三:向量的投影教学目标:1. 理解向量的投影的概念及其计算方法。
2. 掌握向量的正交投影和斜投影的计算方法。
教学内容:1. 向量的投影的定义及计算方法。
2. 向量的正交投影和斜投影的计算方法:a) 向量的正交投影:将向量投影到垂直于某一平面的向量上,得到的投影向量与投影平面垂直。
b) 向量的斜投影:将向量投影到某一平面上,得到的投影向量与投影平面不垂直。
利用向量法求空间角-教案

利用向量法求空间角-经典教案第一章:向量法概述1.1 向量的概念向量的定义向量的表示方法向量的几何性质1.2 向量的运算向量的加法向量的减法向量的数乘向量的点积向量的叉积1.3 向量法在空间角求解中的应用向量法求解空间角的基本思路向量法与传统解法的比较第二章:空间向量基本定理2.1 空间向量基本定理的定义空间向量基本定理的表述空间向量基本定理的意义2.2 空间向量基本定理的证明向量加法的平行性质向量数乘的分配性质向量点积的性质2.3 空间向量基本定理的应用利用空间向量基本定理求解空间角空间向量基本定理在其他几何问题中的应用第三章:空间向量的线性运算3.1 空间向量的线性组合线性组合的定义线性组合的运算规则3.2 空间向量空间的线性相关性线性相关的定义线性相关的判定条件3.3 空间向量空间的基底基底的概念基底的选取方法第四章:空间向量的内积与距离4.1 空间向量的内积内积的定义内积的运算规则4.2 空间向量的距离距离的定义距离的运算规则4.3 空间向量的内积与距离的应用利用内积与距离求解空间角内积与距离在其他几何问题中的应用第五章:空间向量的外积与向量积5.1 空间向量的外积外积的定义外积的运算规则5.2 空间向量积向量积的定义向量积的运算规则5.3 空间向量的外积与向量积的应用利用外积与向量积求解空间角外积与向量积在其他几何问题中的应用第六章:空间向量法求解空间角6.1 空间向量的加法与减法空间向量的加法运算空间向量的减法运算运算过程中的注意事项6.2 空间向量的数乘空间向量的数乘定义数乘对向量几何性质的影响6.3 空间向量的点积点积的定义与运算规则点积的性质与应用6.4 空间向量的叉积叉积的定义与运算规则叉积的性质与应用第七章:空间向量法在立体几何中的应用7.1 立体几何中的基本概念点、线、面的关系立体几何中的各类角度定义7.2 利用空间向量法求解立体几何问题求解空间角的步骤与方法向量法在立体几何中的应用案例7.3 空间向量法在立体几何教学中的意义提高学生的空间想象能力培养学生的逻辑思维能力第八章:空间向量法在现实生活中的应用8.1 空间向量在导航与定位中的应用导航与定位的基本原理空间向量在导航与定位中的应用案例8.2 空间向量在运动规划中的应用运动规划的基本概念空间向量在运动规划中的应用案例8.3 空间向量在其他现实生活中的应用建筑设计中的空间向量应用航空航天领域的空间向量应用第九章:空间向量法的拓展与延伸9.1 空间向量与线性代数的关系线性代数基本概念回顾空间向量与线性代数之间的联系9.2 空间向量法在其他学科中的应用物理学中的空间向量应用计算机科学中的空间向量应用9.3 空间向量法的进一步研究空间向量法的优化与发展空间向量法在未来的研究方向第十章:空间向量法教学实践与反思10.1 空间向量法教学设计教学目标与内容的安排教学方法与手段的选择10.2 空间向量法教学效果评估学生学习情况的分析教学方法的调整与改进10.3 空间向量法教学反思教学过程中的优点与不足对未来教学的展望与计划重点和难点解析重点一:向量的概念与表示方法向量是既有大小,又有方向的量,通常用箭头表示。
向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |
利用向量法求空间角》教案

利用向量法求空间角一、教学目标1. 让学生掌握空间向量的基本概念和性质。
2. 让学生学会使用向量法求解空间角。
3. 培养学生解决实际问题的能力。
二、教学内容1. 空间向量的基本概念和性质。
2. 向量法求解空间角的基本步骤。
3. 实际问题中的应用案例。
三、教学方法1. 采用讲授法,讲解空间向量的基本概念和性质。
2. 采用演示法,展示向量法求解空间角的步骤。
3. 采用案例教学法,分析实际问题中的应用。
四、教学步骤1. 引入空间向量的概念,讲解其基本性质。
2. 讲解向量法求解空间角的基本步骤。
3. 分析实际问题中的应用案例,引导学生运用向量法解决问题。
五、课后作业1. 复习本节课所学内容,整理笔记。
2. 完成课后练习题,巩固所学知识。
3. 选择一个实际问题,尝试运用向量法解决。
六、教学评价1. 课堂讲解:观察学生对空间向量概念和性质的理解程度。
2. 课后作业:检查学生对向量法求解空间角的掌握情况。
3. 实际问题解决:评估学生在实际问题中的应用能力。
七、教学资源1. 教案、PPT、教材等相关教学资料。
2. 计算机、投影仪等教学设备。
3. 实际问题案例库。
八、教学时间1课时(45分钟)九、教学重点与难点1. 空间向量的基本概念和性质。
2. 向量法求解空间角的基本步骤。
3. 实际问题中的应用案例。
十、教学PPT内容1. 空间向量的基本概念和性质。
2. 向量法求解空间角的基本步骤。
3. 实际问题中的应用案例。
十一、教学案例案例一:求解空间直角坐标系中两向量的夹角。
案例二:求解空间四边形的对角线夹角。
案例三:求解空间旋转体的主轴与旋转轴的夹角。
十二、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对空间向量法的理解和应用能力。
十三、教学拓展1. 研究空间向量在几何中的应用。
2. 探索向量法在物理学、工程学等领域的应用。
十四、教学建议1. 注重学生空间想象能力的培养。
2. 鼓励学生积极参与课堂讨论,提高课堂氛围。
立体几何中的向量方法求空间角和距离

基础知识・自主学习I要点梳理知识冋顾理消救材1.空间向量与空间角的关系(1)已知异面直线11, 12的方向向量分别为S i, S2,当0<< Si, S2>< ,直线11与12的夹角等于〈S i, S2〉当n< < Si, S z>< n时,直线l1与l2的夹角等于n—< S1, S2 >.⑵已知平面n和n的法向量分别为n1和敗,当0<< n1, n2>< ,平面n与n的夹角等于〈n i, n2〉n当2< < n 1,敗〉^ n时,平面n与n的夹角等于兀―〈n i,n2>.⑶已知直线I的方向向量为S,平面n的法向量为n, 则直线l与平面n的夹角sin 0= |cos〈 s, n > |.2.距离公式点到直线的距离公式:d= . |PA|2—|P A S of.点到平面的距离公式:d= |PA n o|.I夯基释疑夯实基础突破疑砒1.判断下面结论是否正确(请在括号中打“V”或“X”(1)两直线的方向向量所成的角就是两条直线所成的角.(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(3)两个平面的法向量所成的角是这两个平面的夹角.n(4)两异面直线夹角的范围是(0,刁,直线与平面所成角的范围是⑸直线I的方向向量与平面a的法向量夹角为120 °则I和a所成角为30°2.已知二面角a—I —B的大小是n, m, n是异面直线,且m丄a, n丄伏则m,3n所成的角n B.nnC.2nD.6|OP n| |n ||— 2— 6 + 2| =2,故选 B.• cos 〈 n , a >又I 与a 所成角记为 0,即 sin = |cos 〈 n , a >4 5133答案 B解析 ■/ m 丄a, n 丄B,•••异面直线m , n 所成的角的补角与二面角 a-1- B 互补.又•••异面直线所成角的范围为(0,彳, • m , n 所成的角为33.在空间直角坐标系 Oxyz 中,平面OAB 的一个法向量为n = (2, — 2,1),已知点P( — 1,3,2), 则点P 到平面OAB 的距离d 等于 ()A . 4B . 2C . 3D . 1答案 B解析 P 点到平面OAB 的距离为4.若平面a 的一个法向量为n = (4,1,1),直线l 的一个方向向量为 a = (— 2, — 3,3),则I 与 a 所成角的正弦值为 _______________________ . 答案解析 •/ na =— 8— 3 + 3 = — 8, |n |=“ 16+ 1 + 1 = 3 2, |a |= ” ‘4+ 9 + 9 = .22,n a ―84^/11|n| |a |= 3 2X 22=—335 . P 是二面角a — AB — B 棱上的一点,分别在平面a B 上引射线PM 、PN ,如果/ BPM =/ BPN = 45° / MPN = 60° 那么平面 a 与B 的夹角为 _________ . 答案 90° 解析不妨设PM = a , PN = b ,如图,A作ME 丄AB 于E , NF 丄AB 于F ,•••/ EPM = / FPN = 45° •PE =, PF = -22b ,E为CC i的中点,则异面直线B.嚅C並C. 103 10D.^思维启迪本题可以通过建立空间直角坐标系,利用向量BC I、AE所成的角来求. 答案B解析建立坐标系如图,则A(1,0,0),E(0,2,1),B(1,2,0),C i(0,2,2). BC i= (—1,0,2),Al= (—i,2,i),cos〈BC i, AE >BC i A E 30D,G/Hi/I11111/E C y|BC I||AE|10 -求解,而两异面直线所成角的范围是,两向量的夹角a的范围是[0, n,所以要注意二者的区别与联系,应有cos 0= |cos a|.已知直四棱柱ABCD —A1B1C1D1中,底面ABCD 为正方形,AA1= 2AB, E 为AA i的中点,则异面直线BE与CD i所成角的余弦值为10 D.;—> —> —> —> —> —>EM FN = (PM —PE) (PN—PF)=PM PN —PM PF —PE PN+PE PF=abcos 60 —ax^bcos 45 —乎abcos 45 +^axab ab—辿 + ab= 0O 1 O 5••• EM丄FN , •••平面a与B的夹角为90°题型分类・深度剖析题型一求异面直线所成的角【例 1 长方体ABCD —A I B I C I D I中,AB= AA i= 2, AD = 1,BC i与AE所成角的余弦值为所以异面直线BC i与AE所成角的余弦值为誉.思维升华用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来1B.5答案C解析如图,以D为坐标原点建立如图所示空间直角坐标系.设AA i = 2AB = 2,则B(1,1,0), E(1,0,1), C(0,1,0), D i(0,0,2),•-BE = (0,- 1,1),••• cos 〈 BE , C D 1 >1 +2 = 3后2 • 5= 10题型二求直线与平面所成的角[例 2】如图,已知四棱锥 P — ABCD 的底面为等腰梯形, AB // CD ,AC 丄BD ,垂足为H , PH 是四棱锥的高,E 为AD 的中点. (1) 证明:PE 丄BC ;(2) 若/ APB = /ADB = 60 °求直线PA 与平面PEH 所成角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立 坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA , HB , HP 所在直线分别为x , y , z 轴, 线段HA 的长为单位长度,建立空间直角坐标系(如图),则 A(1,0,0) , B(0,1,0).设 C(m,0,0), P(0,0, n) (m<0, n>0),则 D(0, m,0), E ;,罗,0 . 可得 PE = 2,罗,-n , BC = (m ,- 1,0).因为 PE BC = m — m + 0 = 0,所以 PE 丄 BC.⑵解由已知条件可得 m = —_3故 C -于,0 0 , D 0,—于,0 , E J ,*, 0,P(0,0,1). 设n = (x , y , n H E = 0, 则Sgx -吕=0,』HP = 0, Z= 0.C D i = (0,- 1,2),yAC 丄BD,BC= 1 ,AD = AA1= 3.因此可以取n = (1, - 3, 0).又PA= (1,0, - 1), 所以|cos < F A, n〉1=乎.一迈所以直线PA与平面PEH所成角的正弦值为丁.思维升华利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.虽21,1 汙― (2013 湖南)如图,在直棱柱ABCD —A1B1C1D1中,AD // BC,/ BAD = 90°(1) 证明:AC 丄B1D;(2) 求直线B1C1与平面ACD1所成角的正弦值.方法一(1)证明如图,因为BB1丄平面ABCD , AC 平面ABCD,所以AC丄BB1.又AC丄BD,所以AC丄平面BB1D, 而B1D 平面BB1D,所以AC丄B1D.⑵解因为B1C1 // AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为9).如图,连接A1D,因为棱柱ABCD —A1B1C1D1是直棱柱,且 / B1A1D1= / BAD = 90°从而Rt △ ABC s Rt △ DAB,故AB = DA =BCAB,所以A i B i丄平面ADD I A I,从而A i B i丄AD i.又AD = AA i= 3,所以四边形ADD i A i是正方形.于是A i D丄AD i,故AD i丄平面A i B i D,于是AD i丄B i D. 由⑴知,AC丄B i D,所以B i D丄平面ACD i. 故/ ADB i= 90°—0,在直角梯形ABCD中,因为AC丄BD,所以/ BAC = Z ADB.即AB= , DA BC = 3.连接AB i,易知△ AB i D 是直角三角形,且B I D2= BB2+ BD2= BB?+ AB2+ AD2= 2i,即B i D = 2i.AD 3 vf2i在Rt△ AB i D 中,cos Z ADB i= =21 = ^^,即cos(90 ° 0= 从而sin 0=一即直线B i C i与平面ACD i所成角的正弦值为一尹.方法二⑴证明易知,AB,AD,AA i两两垂直.如图,以 A 为坐标原点,AB,AD,AA i所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB= t,则相关各点的坐标为A(0,0,0),B(t,0,0),B i(t,0,3),C(t,i,0),C i(t,i,3),D(0,3,0),D i(0,3,3).从而E h D = (—1,3,—3),AC= (t,i,0),BD = (—t,3,0).因为AC丄BD,所以A C E B D = —t2+ 3 + 0= 0,解得t= .3或t =—,3(舍去).于是B T D = (—.3,3,—3),AC= ( . 3,i,0),因为AC B i D = —3+ 3 + 0= 0,(2)解 由 AC = CB =-^AB 得, 以C 为坐标原点,CA 的方向为 方向,CC 1的方向为z 轴正方向,AC 丄 BC.x 轴正方向,CB 的方向为y 轴正建立如图所示的空间直角坐标系sin 0= |cos 〈 n , B 1C 1 > |=n B 1C 1|n | |E h C 1| _ .3_ .21=7= 7即直线B 1C 1与平面ACD 1所成角的正弦值为21 7题型三求两个平面的夹角【例3】(2013课标全国II )如图,直三棱柱 ABC - A 1B 1C 1 中,J 2AB , BB 1 的中点,AA 1 = AC = CB =-^AB. (1) 证明:BC 1 〃 平面 A 1CD ;(2) 求平面A 1CD 与平面A 1CE 夹角的正弦值.思维启迪 根据题意知/ ACB = 90°故CA 、CB 、C®两两垂直,可以 C 为原点建立空 间直角坐标系,利用向量求两个平面的夹角.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接DF ,则BC 1 // DF . 因为DF 平面A 1CD , BC 「平面A 1CD , 所以BC 1 //平面A 1CD.所以AC 丄B i D ,即AC 丄B i D.⑵解 由⑴知,AD i = (0,3,3), AC= ( 3, 1,0), B i C i = (0,1,0).设n = (x , y , z)是平面ACD i 的一个法向量, n A C = 0, 3x + y = 0,则$,即丫n AD i = 03y+3z= 0,令 x = 1,则 n = (1, -3, 3).设直线B 1C 1与平面ACD 1所成角为0,则D ,C|C可取m = (2,i,—2).从而cos〈n, m> ~~,故sin〈 n, m>6 3 .Cxyz.设CA= 2,贝U D(1,1,0), E(0,2,1), A i(2,0,2),CD = (1,1,0), CE = (0,2,1), CA i= (2,0,2).设n= (x i, y i, z i)是平面A i CD的法向量,n CD = 0, x i + y i = 0,则即可取n= (i, - i,—i).n CA i= 0, 2xi+ 2zi =0.同理,设m是平面A i CE的法向量,m CE = 0, 则Tm CA i= 0.所以平面A i CD与平面A i CE夹角的正弦值为思维升华求平面间的夹角最常用的方法就是分别求出两个平面的法向量,然后通过两n 个平面的法向量的夹角得到所求角的大小,但要注意平面间的夹角的范围为[0,刁.吕I」H如图,在圆锥PO中,已知PO= 2, O O的直径AB= 2,C是;的中点,D为AC的中点.(1)证明:平面POD丄平面FAC;(2)求平面ABF与平面ACF夹角的余弦值.(1)证明如图,以O为坐标原点,OB, OC, OF所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则O(0,0,0), A( —1,0,0),B(1,0,0), C(0,1,0), P(0,0, 2), D(—2, 2 0).设n i = (x i, y i, z i)是平面POD的一个法向量,则由n i OD = 0, n i OP = 0,lie —2xi + 2y i=,得2 2 (■:;'2 z i= 0.所以平面ABP与平面ACP夹角的余弦值为10 5所以z i = 0, x i = y i,取y i = 1,得n i = (1,1,0).设n2=(X2, y2, Z2)是平面PAC的一个法向量,则由n2 PA= 0, n2 PC= 0,| —X2—■.”'2Z2= 0,得y2 —:;.;2z2= 0.所以X2=—2z2, y2= ,2z2.取z> = 1,得n2= (—2, 2, 1).因为n 1 n2= (1,1,0) (—2, 2, 1)= 0,所以m丄n2•从而平面POD丄平面PAC.⑵解因为y轴丄平面FAB,所以平面PAB的一个法向量为n3= (0,1,0).由(1)知,平面PAC的一个法向量为n2= ( —2, 2, 1). 设向量n2和n3的夹角为0,则C0S 9=|器3|=€=甲.题型四求空间距离【例4 已知正方形ABCD的边长为4, CG丄平面ABCD , CG = 2, E, F分别是AB, AD的中点,则点C到平面GEF的距离为___________ .思维启迪所求距离可以看作CG在平面GEF的法向量的投影.答案*解析建立如图所示的空间直角坐标系Cxyz,n=(1,1,3)所以点C到平面GEF的距离为d=嘗6 11 11则CG = (0,0,2),由题意易得平面GEF的一个法向量为思维升华求点面距一般有以下三种方法:②等体积法;③向量法.其1.①作点到面的垂线,点到垂足的距离即为点到平面的距离; 中向量法在易建立空间直角坐标系的规则图形中较简便.亍心讥IY4 (2012大纲全国改编)已知直四棱柱 ABCD — A I B I C I D I 中,底面 ABCD 为正 方形,AB = 2, CC 1 = 2 2, E 为C®的中点,则点 A 到平面BED 的距离为 ()A . 2 B. 3C. ,2D . 1答案 D解析 以D 为原点,DA 、DC 、DD i 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系 (如图),贝U D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), C i (0,2,2 .2), E(0,2 ,,2).设n = (x , y , z)是平面BED 的法向量.n BD = 2x + 2y = 0 则S T.DE = 2y+V2z = 0取y = 1,贝U n = (— 1,1, — .2)为平面BED 的一个法向量. 又 D A = (2,0,0),•••点A 到平面BED 的距离是|n D A|l— 1x 2+ 0+ 0||n |'.;—12+ 12+ — ,22=答题按板系列8利用空间向量求角典例:(12分)(2013江西)如图,四棱锥 P — ABCD 中,PA 丄平面 ABCD , E 为BD 的中点,G 为PD 的中点,△ DABDCB , EA = EB = AB = 1 , PA = 3,连接 CE 并延长交 AD 于F.6G⑴求证:AD丄平面CFG ;(2)求平面BCP与平面DCP夹角的余弦值.思维启迪(1)可利用判定定理证明线面垂直;(2)利用AD、AP、AB两两垂直建立空间直角坐标系,求两个平面的法向量,利用向量夹角求两个平面BCP、DCP夹角的余弦值.规范解答(1)证明在厶ABD中,因为E为BD的中点,所以EA= EB = ED = AB= 1 ,n故/ BAD = 2,n3'/ ABE = / AEB =-因为△ DAB也厶DCB,所以△ EABECB ,n从而有 / FED = Z BEC = Z AEB =-,3所以Z FED = Z FEA. [2分] 故EF 丄AD , AF = FD ,又因为PG = GD,所以FG // FA.又FA丄平面ABCD ,[4分] 所以GF丄AD,故AD丄平面CFG. [6分]⑵解以A为坐标原点建立如图所示的坐标系,[9分] [10 分][12 分]则 A(0,0,0) , B(1,0,0), C 号,于,0 ,D(0, ,3, 0), P 0, 0, 2 , 故BC =扌冷,0, Cp = -2,设平面BCP 的法向量为 n i = (X i , y i , Z i ),n i CP = 0 则 -n i BC = 0令 y i = — ,3,贝V X i = 3, Z i = 2, n i = (3,— 3, 2). 同理求得面DCP 的法向量为n 2= (i ,,3, 2),从而平面BCP 与平面DCP 夹角0的余弦值为 ,I n i n 2|4 卫cos Fsg n 2〉= |n i ||n 2= 4X 2=〒利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾•查看关键点、易错点和答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性作用.GD—3电I 2, 2,0. [8分](2) 本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范.(3) 将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.思想方法・感悟提高方法与技巧1 .用向量来求空间角,各类角都可以转化为向量的夹角来计算.2 .求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段.失误与防范1 .利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2 .求点到平面的距离,有时利用等体积法求解可能更方便.B i D 和CD i 所成的角( )、选择题1.已知正方体ABCD — A i B i C i D i 如图所示,则直线为 A . 60 ° B . 45 ° C . 30 ° D . 90 °答案 D解析 以A 为原点,AB 、AD 、AA i 所在直线分别为x , y , z 轴建立空间直角坐标系,设正方体边长为i ,则射线CD i 、B i D 的方向向量分别是 CD i = (-i,O,i),•••直线B i D 和CD i 所成的角为90°2 .如图,四棱锥 S — ABCD 的底面为正方形,SD 丄底面ABCD ,则下列 结论中不正确的是 ()A . AC 丄 SB B . AB //平面 SCDC . SA 与平面SBD 所成的角等于 SC 与平面SBD 所成的角 D . AB 与SC 所成的角等于DC 与SA 所成的角 答案 D解析 •••四边形ABCD 是正方形,• AC 丄BD. 又••• SD 丄底面 ABCD , • SD 丄AC.其中SD A BD = D , • AC 丄平面SDB ,从而 AC 丄SB. 故A 正确;易知 B 正确;设 AC 与DB 交于O 点,连接SO.则SA 与平面SBD 所成的角为/ ASO , SC 与平面SBD 所成的角为/ CSO ,练出高分A 组专项基础训练 (时间:40分钟)B i D = (— i,i ,i),COS 〈 CD i , B i D >i + 0— i 2X- 3= 0,SA. i2nB.nnC.4nD.6答案B解析如图所示:iS ABC = 2 X ■. 3 X•.::.;: 3 X. nsin 3=3“ 34A: 2B.3 C逅C. 3答案解析以A为原点建立如图所示的空间直角坐标系Axyz,设棱长为i,1则A i(0,0,i), E i , 0, 2 , D(0,i,0),Eft •-心=(0,i, —i) , A T E= i, 0, —2 ,设平面A i ED的一个法向量为n i= (i, y, z), y—z= 0 ,则i|i —2z= 0 ,y= 2,z= 2..n i= (1,2,2).•••平ABCD 的一个法向量为2n2= (0,0,i) , . cos〈n i ,血〉=23.所以平面A i ED与平面ABCD夹角的余弦值为2 3.在四面体P —ABC中,PA, PB, PC两两垂直,设PA = PB= PC = a,则点P到平面ABC又0A= OC, SA= SC,.•./ ASO= / CSO.故C正确;由排除法可知选 D.93. (2013山东)已知三棱柱ABC —A i B i C i的侧棱与底面垂直,体积为4底面是边长为.3的正三角形•若P为底面A i B i C i的中心,则PA与平面ABC所成角的大小为()VABC—A i B i C i = S\BC X OP = 3-43 X OP = 4, /. OP = _ 3. 又OA= ~2^X ,3X1= i, tan/ OAP = OA = .3,—/ 兀/ n又0< / OAP<2, OAP = 3.2 3余弦值为在正方体ABCD —A i B i C i D i中,点E为BB i的中点,则平面A i ED与平面ABCD夹角的的距离为A•身 B.fa C.3 D. 6a答案B解析根据题意,可建立如图所示的空间直角坐标系Pxy z,则P(0,0,0),A(a,O,O),B(0,a,0),C(0,0,a).过点P作PH丄平面ABC,交平面ABC于点H,则PH的长即为点P到平面ABC的距离.PA = PB= PC, ••• H ABC 的外心.又•••△ ABC为正三角形,• H ABC的重心,可得H点的坐标为(3,3,3)• PH - ... 3- 02+ a - 0 2+ 3 - 0 2詔a.•••点P到平面ABC的距离为-^a.二、填空题6. 已知两平面的法向量分别为_______________________________ m = (0,1,0), n= (0,1,1),则两平面夹角的大小为 ____________________________________________ 答案n4m n 2 n解析cos〈m, n>=丽厂T,•〈m,n>=;.•两平面夹角的大小为n7. 如图所示,在三棱柱ABC—A i B i C i中,AA i丄底面ABC, AB = BC= AA i,/ ABC = 90°点E、F分别是棱AB、BB i的中点,则直线EF和BC i所成的角是_________ .答案60°解析以BC为x轴,BA为y轴,BB i为z轴,建立空间直角坐标系. 设AB = BC = AA i = 2,则C i(2,0,2), E(0,i,0), F(0,0,i),则E F = (0,- i,i), B C i= (2,0,2),•- EF BC i= 2,RBcos〈E F, B C1> 2 _ 1 -,2X2*2—2,答案3,5 i0解析以A为坐标原点,AB、AD、AA i所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,小i i则A i(0,0,i),E(i,0,2),F(2, i,0), D i(0,i,i).• A?E_ (1,0,—2), A?D i_ (0,1,0).设平面A i D i E的一个法向量为n_ (x, y, z),n A T E _ 0, 则n A i D i_ 0,1x —2z_ 0, 即2y_ 0.••• EF和BC i所成的角为60°8. 正方体ABCD —A i B i C i D i的棱长为1 , E、F分别为BB「CD的中点,则点F到平面AQ i E的距离为________令z_ 2,贝y x_ 1..・.n_ (1,0,2).又心_ (2, 1, —1),•••点F到平面A i D i E的距离为T1_ 心n I_〔2 —2|_ d_|n| _ 5 _10 .三、解答题9. 如图,四棱锥P—ABCD中,PD丄平面ABCD , PA与平面ABD所成的角为60°,在四边形ABCD 中,/ ADC _/ DAB _ 90° AB _ 4,CD _ 1 , AD _ 2.(1) 建立适当的坐标系,并写出点B, P的坐标;(2) 求异面直线PA与BC所成的角的余弦值.解(1)建立如图空间直角坐标系,•••/ ADC _ Z DAB _ 90°AB_ 4, CD_ 1, AD _ 2,a • A(2,0,0), C(0,1,0), B(2,4,0)..13 13,•异面直线PA与BC所成的角的余弦值为.13 13 .由PD丄平面ABCD,得/ FAD为PA与平面ABCD所成的角,•••/ FAD = 60°在Rt△ FAD 中,由AD = 2,得PD = 2.3, • P(0,0,2 . 3).—> ——>(2) •/ FA = (2,0,- 2 3), BC= (- 2,- 3,0),• cos〈PA, BC〉2 X - 2 + 0X -3 + - 2^3 X 04 .1310. (2013天津)如图,四棱柱ABCD - A1B1C1D1中,侧棱A1A丄底面ABCD , AB // DC , AB 丄AD , AD = CD = 1 , AA1 = AB= 2, E 为棱AA1的中点.(1) 证明:B1C1 丄CE;(2) 求二面角B1 - CE - C1的正弦值;(3) 设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为¥,求线段AM的长.方法一如图,以点A为原点,以AD, AA1, AB所在直线为x轴, y轴,z轴建立空间直角坐标系,依题意得A(0,0,0), B(0,0,2) ,C(1,0,1),B1(0,2,2), C1(1,2,1), E(0,1,0).(1)证明易得B?C1 = (1,0, - 1), CE= ( - 1,1, - 1),于是B1C1C E =0,所以B1C1丄CE.(2)解B1C = (1 , - 2, - 1).设平面BQE的法向量m= (x, y, z),m B1C= 0, ]x-2y-z= 0,则即消去x,得y+ 2z= 0,不妨令z= 1,可得一个法m CE = 0, -x+ y-z=°.向量为m= (- 3,- 2,1).由(1)知,B1C1 丄CE,又CC1 丄B1C1,可得B1C1 丄平面CEC1, 故BQ1= (1,0,—1)为平面于是cos 〈 m, B i C i 〉 m B i C i|m | |B i C i |从而 sin 〈m , B ?C i 〉=亠尹sin 0= |cos 〈 AM , AB 〉|= AM AB||AM| |A B|于是-6,解得匸*(负值舍去), CEC i 的一个法向量.所以二面角B i - CE - C i 的正弦值为亡尹 ⑶解 AE =(o,i,o ), E C i =(i,i,i ),设E M = ?E C i =(入入为,o w 庄i ,有AM = AE + EM 可取AB = (0,0,2)为平面ADD i A i 的一个法向量.设B 为直线AM 与平面ADD i A i 所成的角,则所以AM = 2.方法二(1)证明因为侧棱CC i丄底面A i B i C i D i, B i C i平面A i B i C i D i,所以CC i丄B i C i.经计算可得B i E = .5, B i C i= .2, EC i=v3,从而B i E2= B i C i+ EC i,所以在△ B i EC i中,B i C i丄C i E,又CC i, C i E 平面CC i E, CC i Q C i E = C i,所以B i C i丄平面CC i E,又CE平面CC i E,故B i C i丄CE.⑵解过B i作B i G丄CE于点G,连接C i G.由⑴知,B i C i丄CE,故CE丄平面B i C i G,得CE丄C i G , 所以/ B i GC i为二面角B i-CE —C i的平面角.在Rt △ B1C1G 中, B i G ='42 3即二面角B i—CE —C i的正弦值为亠号.⑶解连接D i E,过点M作MH丄ED i于点H ,可得MH丄平面ADD i A i,连接AH , AM , 则/ MAH为直线AM与平面ADD i A i所成的角.设AM = x,从而在Rt△ AHM中,有在Rt△ C i D i E 中,C i D i = i, ED i = , 2,得EH = ,2MH = 3X.在厶AEH 中,/ AEH = i35° AE = i,由AH2= AE2+ EH2—2AE EHcos i35 °得珞(=i+9/+承整理得5x2— 2 2x— 6 = 0,解得x = ■, 2(负值舍去).所以线段AM的长为.2.所以sin / B i GC i =• cos〈F D i, OE >〔+ 2=VT55 • 3= 5B组专项能力提升(时间:30分钟)1.过正方形ABCD的顶点A作线段PA丄平面ABCD ,若AB= PA,则平面ABP与平面CDP的夹角大小为A. 30°B. 45°C. 60°D. 90°答案B解析建立如图所示的空间直角坐标系,设AB= PA= 1,知A(0,0,0) , B(1,0,0), D(0,1,0), C(1,1,0), P(0,0,1)由题意得,AD丄平面ABP,设E为PD的中点,连接AE,贝U AE丄PD ,又••• CD丄平面PAD, ••• AE丄CD,又PD A CD = D, • AE 丄平面CDP.• AD = (0,1,0), AE = (0, 2 , 2)分别是平面ABP、平面CDP的法向量,而〈AD, AE〉= 45°•平面ABP与平面CDP的夹角大小为45° 2 .在棱长为2的正方体ABCD —A i B i C i D i中,0是底面ABCD的中点,E, F分别是CC i,AD的中点,那么异面直线0E和FD i所成的角的余弦值等于 _____________ .答案严5解析以D为原点,分别以DA、DC、DD i为x轴、y轴、z轴建立空间直角坐标系,•F(1,0,O), D i(0,0,2), O(1,1,0), E(0,2,1),•F D i= (—1,0,2),OE = (—1,1,1),3. ________________________________________________________________________ 设正方体ABCD —A i B i C i D i的棱长为2,则点D i到平面A i BD的距离是_________________________DA I =(2,0,2), DB =(2,2,0),设平面A I BD的一个法向量n = (x, y, z),n DA I=2X+ 2z= 0 则S T .n DB = 2x+ 2y= 0令x= 1,贝U n= (1, - 1,- 1),•••点D1到平面A1BD的距离为.ID^A1 n| 2 23d |n| .3 3 .4. 如图,在底面为直角梯形的四棱锥P—ABCD中,AD // BC,Z ABC=90° PA丄平面ABCD , PA = 3, AD = 2, AB = 2羽,BC= 6.(1)求证:BD丄平面PAC;(2)求平面BPD与平面ABD的夹角.(1)证明如图,建立空间直角坐标系,则A(0,0,0) , B(2 3, 0,0),C(2 .3, 6,0), D(0,2,0), P(0,0,3),• A P =(0,0,3), A C = (2西,6,0), BD = (- 2亞,2,0).•- BD AP = 0, BD AC= 0.• BD 丄AP, BD 丄AC.又••• FA Q AC= A, • BD丄平面FAC.⑵解设平面ABD的法向量为m= (0,0,1), 平面PBD的法向量为n = (x, y, z),则n BD = 0, n BP = 0.答案2333解析如图建立空间直角坐标系,则D I(0,0,2) , A i(2,0,2), D(0,0,0), B(2,2,0), D1A1 = (2,0,0),••• BP = (- 2 3, 0,3), •••-2 3x+ 2y= 0,-2 3x+ 3z= 0, 丫=晶,解得\ =塑Z= 丁x.令x= .3,则n= ( .3, 3,2),m-n 1• cos〈 m, n > = ----- =一|m||n| 2•••平面BPD与平面ABD的夹角为60°(3)证明:在线段 5. (2013北京)如图,在三棱柱 ABC — A i B i C i 中,AAQ I C 是边长为4的正方形.平面 ABC 丄平面AA 1C 1C , AB = 3, BC = 5.(1)求证:AA i 丄平面ABC ;⑵求平面A 1BC 1与平面BB 1C 1夹角的余弦值;BD BC 1上存在点D ,使得AD 丄A 1B ,并求 的值. BC 1(1)证明 在正方形 AA 1C 1C 中,A 1A 丄AC.又平面ABC 丄平面AA 1C 1C ,且平面ABC 门平面AA 1C 1C = AC , ••• 丄平面 ABC.(2)解 在厶ABC 中,AC = 4, AB = 3, BC = 5,••• BC 2 = AC 2+ AB 2, AB 丄AC•以A 为坐标原点,建立如图所示空间直角坐标系 Axyz. A 1(0,0,4), B(0,3,0), C 1(4,0,4), B 1(0,3,4), A 1C 1= (4,0,0), A 1B = (0,3 , — 4), B 1C 1 = (4 , — 3,0) , BB 1 = (0,0,4). 设平面 A 1BC 1的法向量 n 1= (X 1 , y 1 , Z 1),平面 B 1BC 1的法向量n 2= (X 2 , y ,Z 2).A 1C 1 n 1 = 0 , 4x 1 = 0• \AB m= 0 脚-4乙=0•取向量 n 1= (0,4,3)f _B 1C 1 n 2= 0, 4x 2 — 3y 2 = 0,由S _ ? $^B _1 n 2= 0 -4z2= °.取向量 n 2= (3,4,0), m n 2 16 16…cos 〈 n 1, n 2〉= 1 1 1 . = = cl2 |n 1| |n 2| 5X 5 25'由题意知二面角 A 1 — BC 1 — B 1为锐角,•平面A 1BC 1与平面BB 1C 1夹角的余弦值为 黒 25 ⑶证明 设D(x , y , z)是直线BC 1上一点,且BD =疋_1.• (x , y — 3, z) = X 4,— 3,4),3— 3 X, 4 A 解得 x = 4 入 y = 3 — 3 入 z = 4 X — AD = (4 人又 AD 丄A i B , ••• 0+ 3(3 — 3R — 16X= 09 BD 9则X=旦,因此BD =— 则 A 25 '因此 BC i 25.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
布置作业:
• 习题2-5 • 第三题 • 补充题如下:
练习:
1、已知 AB =(2,2,1),AC =(4,5,3),则平面
ABC的一个法向量是______ .
2、如果平面的一条斜线与它在这个平面上的射
影的方向向量分别是a =(1,0,1),b =(0,1,
1),那么这条斜线与平面所成的角是______ .
3 实践操作
四、教学过程的设计与实施
3 实践操作
总结出利用法向量求二面角大小的一般步骤: 1)建立坐标系,写出点与向量的坐标; 2)求出平面的法向量,进行向量运算求出法向量的
夹角; 3)通过图形特征或已知要求,确定二面角是锐角或
钝角,得出问题的结果.
四、教学过程的设计与实施
3 实践操作
巩固练习:
P l
αA B
回顾
一、线线角:
直线与直线所成角的范围:
[0, ]
2
线线夹角与两线方向向量间的关系:
设直线CD的方向向量为a,AB的方向向量为b
a
b
| a,b
a
a,b b
|
结论:
| cos a,b |
思考:
直线和平面所成的角能否也转化 为两个向量所成的角去求解呢? 答案是肯定的。 为此先弄清直线和平面所成角的 定义。看下图
D1
C1
y
D
则n AB1 0,n AC 0
B
C
所以 xx
z y
0 ,取x 0
=
1,
x
得y = z = -1,故n = (1,-1,-1),cos n,B1C1
所以B1C1与面AB1C所成的角的正弦值为
01 0
3
1 。
3
3
3 3
小结:
直线与平面所成角:
sin | cos n, AB |
l
四、教学过程的设计与实施
2 探究方法
n1, n2
cos
cos
n1, n2
n1 • n2 n1 n2
根据教师引导,由学生发现该二面角的求解可由向量的夹角来确定,调动学生探究这一问题的主动性和积极性.
四、教学过程的设计与实施
2 探究方法
n1, n2
cos
cos
n1, n2
n1 • n2 n1 n2
2
2
设平面 SCD 的法向量为 n(x, y,z),则 n•SD0, n•SC0,
转化为坐标运算,得
取 z=1,则 n (2,1,1) ,
1 x z 0, 2 x y z 0.
cos n, AD
n AD
1 2 0 (1) 0 1
2
n AD
1 6
6
3.
2
四、教学过程的设计与实施
2 求平面SAB与SCD 所成二面角的余弦值.
四、教学过程的设计与实施
3 实践操作
解:由 SA⊥平面 ABCD,AB⊥AD,SA,AB,AD 两两互相垂直. 以 A 为坐标原点,AD 所在的直线为 x 轴,AB 所在的直线为 y 轴 建立空间直角坐标系 A-xyz,则
S(0,0,1) , S(1 , 0, 0) , C(1,1,0) , SD (1 ,0, 1) , SC (1,1, 1) ,
四、教学过程的设计与实施
2 探究方法
问题3: 法向量的夹角与二面角的大小什么时候相等,什么时候互补? 再次演示课件
四、教学过程的设计与实施
2 探究方法
当法向量 n1 , n2 一个指向二面角内,另一个指向二面角外时,
二面角的大小 n1, n2 ;
当法向量 n1 , n2 同时指向二面角内或二面角外时,
和该直线的方向向量
s
与该平面的法向量
n
的夹角 〈 s,n〉是什么α
关系?
n, s
结论: sin
2
cos
n, s
P l
A B
例一:在单位正方体 ABCD A1B1C1D1
中,求对角线 A1C 与平面ABCD的夹
角 的正弦值。
z
A1
B1
A
xB
B1C1D1 的棱长为1.
直线和平面所成角的定义 A
B
O
D
α
C
定义: 平面外一直线与它在该平面内的投影的
夹角叫作该直线与此平面的夹角。
由定义知本图中AB与平面a的夹角是: ABO
思考:
直线与平面的夹角
和该直线的方向向量
s
与该平面的法向量
n
的夹角 〈 s,n〉是什么
关系?
n, s
2
α
P l
AB
思考:
直线与平面的夹角
求B1C1与面AB1C所成的角. z
设正方体棱长为1,以AB,AD,AA1为单 位正交基底,可得 A(0,0,0),B1(1,0,1),
A1
C(1,1,0),C1(1,1,1),则B1C1 (0,1,0), B1
AB1 (1,0,1),AC (1,1,0)
设平面AB1C的法向量为n (x,y,z) A
AOB
B
O l
A
AOB OA,OB
二面角 OA,OB
四、教学过程的设计与实施
2 探究方法
二面角 n1, n2
四、教学过程的设计与实施
2 探究方法
问题2: 求直线和平面所成的角可转化成直线的方向向量与平面的法向量的夹角,那么二 面角的大小与两个半平面的法向量有没有关系?
n
a
n1 n2
二面角的大小 n1, n2 .
四、教学过程的设计与实施
3 实践操作
已知ABCD 是直角梯形,∠DAB=∠ABC=90°, SA⊥平面ABCD,SA=AB=BC=1,AD 1 ,
2 求平面SAB与SCD 所成二面角的余弦值.
四、教学过程的设计与实施
3 实践操作
已知ABCD 是直角梯形,∠DAB=∠ABC=90°, SA⊥平面ABCD,SA=AB=BC=1,AD 1 ,
3、已知两平面的法向量分别m=(0,1,0),n=(0,1,1), 则两平面所成的钝二面角为______ .
• 谢谢大家!!
向量法求二面角的大小
四、教学过程的设计与实施
1 温故知新
如何度量二面角α—l—β的大小
B O
A
l
四、教学过程的设计与实施
2 探究方法
问题1: 二面角的平面角
能否转化成向量的夹角?
A
n
B
O n
目标测试:
1、已知 AB =(2,2,1),AC =(4,5,3),则平面
ABC的一个法向量是______ .
2、如果平面的一条斜线与它在这个平面上的射 影的方向向量分别是 n1=(1,0,1), n2 =(0, 1,1),那么这条斜线与平面所成的角是 ______ .
3. 直三棱柱ABC-A1B1C1中, A1A=2,BAC 900 AB=AC=1, 则AC1与截面BB1CC1所成角的余弦 值为_________ .
正方体ABCD—A1B1C1D1的棱长为2,点Q是BC的中点,求二面角A—DQ— A1的余弦值.