用空间向量解决空间中“夹角”问题
用空间向量研究距离、夹角问题全文

MN ( 1 1 )2 (0 1 )2 ( 1 0)2 2 .
22
22
2
y
x
【巩固训练3】如图,正方体ABCD和ABEF的边长都是1,且它们所在平面互相垂 直,点M在AC上,点N在BF上,若CM = BN = 2,求MN的长.
2
解2:设 AB a, AD b, AF c . 则
2. 如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为线段DD1的中点,F为线段BB1
的中点.
z
(4) 求直线FC1到平面AB1E的距离.
D1
C1
解 : FC1 //平面AB1E,直线FC1到平面AB1E的距离 A1
B1
等于点C1到平面AB1 E的距离.
E
由(3)知平面AB1E的一个法向量为n (1, 2, 2). 易知C1(0,1,1), B1(1,1,1),C1B1 (1,0,0).
D1 A1
E
D
C1 B1
F
C
A
B
2. 如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为线段DD1的中点,F为线段BB1
的中点.
z
(1) 求点A1到直线B1E的距离;
D1
C1
解 : 如图示,以D为原点建立空间直角坐标系, 则有
A1
B1
1 A1(1, 0,1), B1(1,1,1), E(0, 0, 2).
z0 ,
0
取y
1, 则z
1,
x
1.
∴平面D1CB1的一个法向量为n (1,1,1).
D
A x
C y
B
点B到平面D1CB1
的距离为
|
BC n |n|
1.4.2 用空间向量研究距离、夹角问题(课件)

二面角的大小为
.
π4或34π 解析: cos〈m,n〉=|mm|·|nn|= 22,∴〈m,n〉=π4. ∴两平面所成二面角的大小为π4或34π.
经典例题
角度1:点线距
题型一 利用空间向量求距离
用向量法求点到直线的距离时需注意以下几点: (1)不必找点在直线上的垂足以及垂线段. (2)在直线上可以任意选点,但一般选较易求得坐标的特殊点. (3)直线的方向向量可以任取,但必须保证计算正确.
则 在法向量 n 上的投影向量的长度即为异面直线 a,b 的距离,所以距离为
.
自主学习
二.空间角的向量求法 空间角包括线线角、线面角、二面角,这三种角的定义确定了它
们相应的取值范围,结合它们的取值范围可以用向量法进行求解.
自主学习
角的分类
向量求法
范围
两异面直线 l1 与 l2 所成的角为 θ
设 l1 与 l2 的方向向量分别为 u,v,
经典例题
题型一 利用空间向量求距离
例 2 在三棱锥 S-ABC 中,△ABC 是边长为 4 的正三角形,平面 SAC⊥平面 ABC,
SA=SC=2 3,M,N 分别为 AB,SB 的中点,如图所示.求点 B 到平面 CMN 的 距离.
取 AC 的中点 O,连接 OS,OB. ∵SA=SC,AB=BC,∴AC⊥SO,AC⊥BO. ∵平面 SAC⊥平面 ABC,平面 SAC∩平面 ABC=AC, ∴SO⊥平面 ABC. 又 BO⊂平面 ABC,∴SO⊥BO. 又∵△ABC 为正三角形,O 为 AC 的中点,∴AO⊥BO. 如图所示,分别以 OA,OB,OS 所在直线为 x 轴,y 轴,z 轴, 建立空v>|
则 cosθ=
|u·v| = |u||v|
1.4.2用空间向量研究距离、夹角问题2

0 ≤ ≤ ,且 u, n ,或 u, n
2
2
2
un
sin | cos u n
un
讲
课
人
:
邢
启 强
4
学习新知 利用向量方法求二面角
平面α与平面β相交,形成四个二面角,我们把这四个二面角中
不大于90°的二面角称为平面α与面β的夹角.
设平面α与面β的夹角为θ,平面α与面β的法向量分别为 n1, n2
则0
<
≤
2
,
n1, n2
, 或
n1, n2
cos | cos n1 n2 n1 n2
n1 n2
讲
课
人
:
邢
启 强
5
典型例题 例2如图,在棱长为1的正四面体(四个面都 是正三角形)ABCD中,M,N分别为BC,AD的中点, 求直线AM和CN夹角的余弦值.
分析:求直线AM和CN夹角的余弦值,可以 转化为求向量MA与CN夹角的余弦值.为此需 要把向量MA,CN用适当的基底表示出来,进 而求得向量MA,CN夹角的余弦值。
2
两个向量夹角的范围是[0,π],事实上,两异面直线所成
讲
课 人 :
的角与其方向向量的夹角是相等或互补的关系.
邢
启 强
3
学习新知 利用向量方法求直线与平面所成的角
直线与平面所成的角,可以转化为直线的方向向量与平面的法 向量的夹角 。
直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,直 线AB的方向向量u,平面α的法向量为n,如图可得
讲
课
人
:
邢
启 强
6
典型例题 例2如图,在棱长为1的正四面体(四个面都 是正三角形)ABCD中,M,N分别为BC,AD的中点, 求直线AM和CN夹角的余弦值.
142 用空间向量研究距离、夹角问题(基础知识+基本题型)(含解析)--2022高二数学上

1.4.2用空间向量研究距离、夹角问题(基础知识+基本题型)知识点一、用向量方法求空间角(1)求异面直线所成的角已知a ,b 为两异面直线,A ,C 与B ,D 分别是a ,b 上的任意两点,a ,b 所成的角为θ,则||cos ||||AC BD AC BD θ⋅=⋅。
要点诠释:两异面直线所成的角的范围为(00,900]。
两异面直线所成的角可以通过这两直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角。
(2)求直线和平面所成的角设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的角为ϕ,则有||sin |cos |||||θϕ⋅==⋅a u a u 。
(3)求二面角如图,若PA α⊥于A ,PB β⊥于B ,平面PAB 交l 于E ,则∠AEB 为二面角l αβ--的平面角,∠AEB+∠APB=180°。
若12⋅n n 分别为面α,β的法向量,121212,arccos ||||n n n n n n ⋅〈〉=⋅则二面角的平面角12,AEB ∠=〈〉n n 或12,π-〈〉n n ,即二面角θ等于它的两个面的法向量的夹角或夹角的补角。
①当法向量1n 与2n 的方向分别指向二面角的内侧与外侧时,二面角θ的大小等于1n ,2n 的夹角12,〈〉n n 的大小。
②当法向量1n ,2n 的方向同时指向二面角的内侧或外侧时,二面角θ的大小等于1n ,2n的夹角的补角12,π-〈〉n n 的大小。
知识点二、用向量方法求空间距离1.求点面距的一般步骤:①求出该平面的一个法向量;②找出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即可求出点到平面的距离。
即:点A 到平面α的距离||AB n d n ⋅= ,其中B α∈,n是平面α的法向量。
2.线面距、面面距均可转化为点面距离,用求点面距的方法进行求解。
第3讲 空间向量求夹角问题教师

2
所以
2 3|a-4|
=
3,解得
a=-4(舍去)或
a=4.所以
n=
-8 3,4 3,-4 33 3
.
2 3a-42+3a2+a2 2
3
又P→C=(0,2,-2 3),所以 cos〈P→C,n〉= 3.所以 PC 与平面 PAM 所成角的正弦值为 3.
4
4
题型三 求二面角
例 3 (2020·济南模拟)如图 1,在高为 6 的等腰梯形 ABCD 中,AB∥CD,且 CD=6,AB=12,将它沿对称
C,D 的点.
(1)证明:平面 AMD⊥平面 BMC; (2)当三棱锥 M-ABC 体积最大时,求平面 MAB 与平面 MCD 所成二面角的正弦值. (1)证明 由题设知,平面 CMD⊥平面 ABCD,交线为 CD.因为 BC⊥CD,BC⊂平面 ABCD,所以 BC⊥平面
CMD,又 DM⊂平面 CMD,故 BC⊥DM.因为 M 为 CD 上异于 C,D 的点,且 DC 为直径,
(2)如图②③,n1,n2 分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ |=|cos〈n1,n2〉|,二面角的平面角大小是向量 n1 与 n2 的夹角(或其补角).
题型一 求异面直线所成的角 例 1 (2015·新课标全国卷Ⅰ)
[玩转典例]
如图,四边形 ABCD 为菱形,∠ABC=120°,E,F 是平面 ABCD 同一侧的两点,BE⊥平面 ABCD,DF⊥平 面 ABCD,BE=2DF,AE⊥EC. (1)证明:平面 AEC⊥平面 AFC; (2)求直线 AE 与直线 CF 所成角的余弦值. [听前试做] (1)证明:如图,连接 BD,设 BD∩AC=G,连接 EG,FG,EF.在菱形 ABCD 中,不妨设 GB =1.由∠ABC=120°,可得 AG=GC= 3.
用空间向量研究距离、夹角问题 (3)

2 所成的角(或夹角).
β
α
l
α
β
空间中,平面与平面相交,形成四个
二面角,我们把这四个二面角中不大于
90°的二面角称为平面与平面的夹角.
追问1:两个平面夹角的取值范围是什么?
0° ≤ ≤ 90°
β
α
l
α
β
= 0°
0° < ≤ 90°
追问2:二面角的大小是如何度量的?
思考:在例题条件下,如何求“平面1 1 与平面
1 1 1 夹角的余弦值”?
C
P
B
A
R
Q
C1
A1
B1
问:转化为哪种向量的夹角?
z
C
B
A
C1
B1 y
A1
x
思路 1.两平面内与交线垂直的
直线的方向向量的夹角
2.两个平面的
法向量的夹角
例题小结
用空间向量求平面与平面的夹角的步骤与方法:
都为2,求平面1 1 与平面1 夹角的余弦值.
A1
A
C
B
C1
B1
课后作业
A
2. 如图,△ 和△ 所
B
在平面垂直,且== ,
∠=∠=120°,求:
D
(1)直线与直线所成角的大小;
(2)直线与平面所成角的大小;
(3)平面和平面的夹角的余弦值.
化为向量问题
①转化为求平面,的法向量
, 的夹角
∙
∙
进行向量运算
②计算cos , =
回到图形问题
③平面与平面夹角的余弦值
cos = cos ,
的值
用空间向量研究距离、夹角问题

O
xB
y
C
n
AB
2x 3z
0
n BC 2x 3y 0
n (3,2,2)
z y
2
3 2
x x
3
cos OB, n 6 3 17 2 17 17
z
A
O
xB
y
C
直线OB与平面ABC所成角的正弦值为 3 17 17
n1 n2
cos cos n1, n2
n1 n2
n1
n2
例9 图为某种礼物降落伞的示意图,其中有8根绳子和伞面连 接,每根绳子和水平面的法向量的夹角均为30.已知礼物的质量 为1kg,每根绳子的拉力大小相同,求降落伞在匀速下落的过程 中每根绳子拉力的大小(重力加速度g取9.8m / s2精确到0.01N )
8
B
N
C
A
M
D
3.如图,在三棱锥 0 ABC中,OA,OB,OC两两垂直, OA
OC 3,OB 2,求直线 OB与平面ABC所成角的正弦值
解:如图建立空间直角坐标系
z
A
则A(0,0,3) , B(2,0,0) , C(0,3,0) OB (2,0,0) ,AB (2,0, 3)
BC (2,3,0) 设平面ABC的法向量为n (x, y, z)
2
2
1
(
1
a
b
1
b
c
2
a
a
c)
22
2
B
N
C
1 (1 3 2 1 1 23 1 32 33 7) 7
22
32
3
9
又| AN || CM | 2 2
A
用空间向量研究夹角问题

【答案】2 1530
2
,Q 为 PC 的中点,则直线 PC 与平面 BDQ 所成角的正
【解析】建立如图所示坐标系
设 DC=2 ,则 PD=AB=AD=1, = 5
0,0,1 , 0,2,0 , 1,1,0 , 0,1,
1
2
1
= 0,2, −1 , = 1,1,0 , = 0,1,
2
×
12 + −1
2
+ 22
2 30
=
15
3.在正方体 − ′ ′ ′ ′ 中,二面角 − ′ − ′ 的余弦值是(
1
A.
2
【答案】C
B.
1
2
1
C.
3
D.
1
3
)
【解析】如图,建立空间执教坐标系,设正方体的棱长为 1,
有 0,0,0 , 1,0,0 , 0,1,0 , ′ 1,1,1 , ′ (0,0,1)
设平面1 的法向量 = (, , ),
则
⋅ 1 = 3 − 2 = 0
,取 = 2,得 = ( 2, 1, 3),
⋅ 1 = 6 − 2 = 0
易知平面的法向量 = 0,0,1 ,
设平面1 与平面夹角为,
| ⋅ |
则cos = | |⋅| | =
所以 = 1,0,1 , = 1, −1,0 , ′′ = (1,1,0)
设平面′ 的一个法向量为 = , , ,
平面′′的一个法向量为 = , ,
则
⋅ ′ = + = 0
, ⋅ ′ = + = 0
⋅ = − = 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用空间向量解决空间中的“夹角”问题
学习目标 :
1.学会求异面直线所成的角、直线与平面所成的角、二面角的向量方法;
2.能够应用向量方法解决一些简单的立体几何问题;
3.提高分析与推理能力和空间想象能力。
重点 :
利用空间向量解决空间中的“夹角” 难点 :
向量夹角与空间中的“夹角”的关系 一、复习引入
1.用空间向量解决立体几何问题的“三步曲”
(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)
(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)
(3)把向量的运算结果“翻译”成相应的几何意义。
(回到图形) 2.向量的有关知识:
(1)两向量数量积的定义:><=⋅b a b a b a ,cos |||| (2)两向量夹角公式:|
|||,cos b a b a b a >=
<
(3)平面的法向量:与平面垂直的向量 二、知识讲解与典例分析
知识点1:异面直线所成的角(范围:]2
,
0(π
θ∈)
(1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a´与b´,那么直线a´与b´ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角 设两异面直线a 、b 的方向向量分别为a 和b ,
问题1: 当a 与b 的夹角不大于90
的角θ与a 和b 的夹角的关系?问题 2:a 与b 的夹角大于90°时,,异面直线a θ与a 和b 的夹角的关系?
结论:异面直线a 、b 所成的角的余弦值为|
||||,cos |cos n m n m n m =
><=θ
a
例1如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和1CB 所成的角. 解法步骤:1.写出异面直线的方向向量的坐标。
2.利用空间两个向量的夹角公式求出夹角。
解:如图建立空间直角坐标系xyz A -,则
)2,,0(),0,21,23(),2,21,23(),0,0,0(11a a B a a C a a a C A --
∴ )2,21,23(1a a a AC -=,)2,2
1,23(1a a a CB = 即21
323||||,cos 22
111111==>=
<a a
CB AC CB AC CB AC ∴1AC 和1CB 所成的角为
3
π
知识点2、直线与平面所成的角(范围:]2
,
0[π
θ∈)
思考:设平面α的法向量为n ,则><BA n ,与θ的关系?
例2、如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和B B AA 11面所成角的正弦值. 分析:直线与平面所成的角步骤:
1. 求出平面的法向量
2. 求出直线的方向向量
3. 求以上两个向量的夹角,(锐角)其余角为所求角
解:如图建立空间直角坐标系xyz A -,则),0,,0(),2,0,0(1a AB a AA ==)2,21
,23(1a a a AC -= 设平面B B AA 11的法向量为),,(z y x n =
x
y
n
由⎩⎨
⎧==⇒⎩⎨⎧==⇒⎪⎩⎪⎨⎧=⋅=⋅000020
01z y ay az AB n AA n 取1=x ,)0,0,1(=∴n
21323|
|||,cos 2
2
111-=-=
>=
<∴a
a
N AC n AC n AC ∴1AC 和B B AA 11面所成角的正弦值
2
1.
知识点3:二面角(范围:],0[πθ∈)
结论:
或
归纳:法向量的方向:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角. 例3、如图,ABCD 是一直角梯形,︒=
∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,2
1=AD ,求面SCD 与面SBA 所成二面角的余弦值. 解:如图建立空间直角坐标系xyz A -,则
)1,0,0(),0,2
1
,0(),0,1,1(),0,0,0(S D C A -
易知面SBA
的法向量为)0,2
1
,0(1==AD n
)1,2
1
,0(),0,21,1(-=-=SD CD
设面SCD 的法向量为),,(2z y x n =,则有
⎪⎪⎩⎪⎪⎨⎧
=-=-0
2
02z y y x ,取1=z ,得2,1==y x ,)1,21,1(2=∴n
3
6|
|||,cos 212121=
>=
<∴n n n n n n 又1n 方向朝面内,2n 方向朝面外,属于“一进一出”的情况,二面角等于法向量夹角 即所求二面角的余弦值为3
6.
三、课堂小结
1.异面直线所成的角:|,cos |cos ><=b a θ 2.直线和平面所成的角:|,cos |sin ><=n AB θ
3.二面角:><-=><=2121,cos cos ,cos cos n n n n θθ或.
四、小试牛刀
1:正方体1111D C B A ABCD -的棱长为1,点E 、F 分别为CD 、1DD 的中点.求直线11C B 与平面C AB 1所成的角的正弦值.
2:正方体1111D C B A ABCD -的棱长为1,点E 、F 分别为CD 、1DD 的中点.求二面角D AE F --的余弦值。