空间向量解决空间角的问题

合集下载

空间向量的应用求空间角与距离

空间向量的应用求空间角与距离

空间向量的应用----求空间角与距离一、考点梳理1.自新教材实施以来,近几年高考的立体几何大题,在考察常规解题方法的同时,更多地关注向量法〔基向量法、坐标法〕在解题中的应用。

坐标法〔法向量的应用〕,以其问题〔数量关系:空间角、空间距离〕处理的简单化,而成为高考热点问题。

可以预测到,今后的高考中,还会继续表达法向量的应用价值。

2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下:1)求直线和直线所成的角假设直线AB 、CD 所成的角是α,cos α=|,cos |><CD AB ||||||CD AB CD AB •=2).利用法向量求线面角设θ为直线l 与平面α所成的角,ϕ为直线l 的方向向量v 与平面α的法向量n 之间的夹角,那么有2πϕθ=-或2πϕθ=+。

特别地0ϕ=时, 2πθ=,l α⊥;2πϕ=时,0θ=,l α⊂或l α。

计算公式为:||sin cos ||||v n v n θϕ==或||sin sin()cos (0)2||||||||v n v n v n v n v n πθϕϕ=-=-=-=<3).利用法向量求二面角设1n 、2n 分别为平面α、β的法向量,二面角l αβ--的大小为θ,向量1n 、2n 的夹角为ϕ,那么有θϕπ+=或θϕ=。

计算公式为:1212cos cos ||||n n n n θϕ=-=1212cos cos ||||n n n n θϕ==4).利用法向量求点面距离如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,那么点P 到平面的距离θcos ||||PA PO d ==||||||||||||n PA PA n PA n PA n •=⊗•=5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等。

其一,这三类距离都可以转化为点面间的距离;其二,异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即为所求。

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |❶, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |❷.3.二面角(1)若AB ,CD 分别是二面角α­l ­β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α ­l ­β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|❸,如图(2)(3).两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值.直线与平面所成角的范围为⎣⎡⎦⎤0,π2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值.利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互补,需要结合图形进行判断.二、常用结论解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2.如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角[典例精析]如图,在三棱锥P ­ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE ―→=(0,2,0),DB ―→=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨取z =1,可得n =(1,0,1).又MN ―→=(1,2,-1),可得MN ―→·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE . (2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH ―→=(-1,-2,h ), BE ―→=(-2,2,2). 由已知,得|cos 〈NH ―→,BE ―→〉|=|NH ―→·BE ―→||NH ―→||BE ―→|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12.所以线段AH 的长为85或12.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[提醒] 注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,此夹角就是异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.[题组训练]1.如图所示,在三棱柱ABC ­A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .30°B .45°C .60°D .90°解析:选C 以B 为坐标原点,以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系如图所示.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),∴EF ―→=(0,-1,1),BC 1―→=(2,0,2),∴EF ―→·BC 1―→=2,∴cos 〈EF ―→,BC 1―→〉=22×22=12,则EF 和BC 1所成的角是60°,故选C.2.如图,在四棱锥P ­ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 解:(1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD .又因为AC ∩P A =A ,所以BD ⊥平面P AC . (2)设AC ∩BD =O .因为∠BAD =60°,P A =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,射线OB ,OC 分别为x 轴,y 轴的正半轴建立空间直角坐标系O ­xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0), 所以PB ―→=(1,3,-2),AC ―→=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=|PB ―→·AC ―→||PB ―→||AC ―→|=622×23=64.即PB 与AC 所成角的余弦值为64. 考点二 直线与平面所成的角[典例精析](2019·合肥一检)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. [解] (1)证明:连接AC 交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,∴MN ∥EC . ∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴MN ∥平面EFC .∵BF ,DE 都与平面ABCD 垂直,∴BF ∥DE . ∵BF =DE ,∴四边形BDEF 为平行四边形,∴BD ∥EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴BD ∥平面EFC .又MN ∩BD =N ,∴平面BDM ∥平面EFC . (2)∵DE ⊥平面ABCD ,四边形ABCD 是正方形,∴DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz . 设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),∴DB ―→=(2,2,0),DM ―→=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DM ―→=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量.∵AE ―→=(-2,0,4),设直线AE 与平面BDM 所成的角为θ, 则sin θ=|cosn ,AE ―→|=|n ·AE ―→||n |·|AE ―→|=4515,∴直线AE 与平面BDM 所成角的正弦值为4515.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.[题组训练]1.在长方体ABCD ­A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.解析:建立如图所示的空间直角坐标系D ­xyz ,由于AB =2,BC =AA 1=1,所以A 1(1,0,1),B (1,2,0),C 1(0,2,1),D 1(0,0,1),所以A 1C 1―→=(-1,2,0),BC 1―→=(-1,0,1),D 1C 1―→=(0,2,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧A 1C 1―→·n =0, BC 1―→·n =0,即⎩⎪⎨⎪⎧-x +2y =0,-x +z =0,令x =2,得y =1,z =2,则n =(2,1,2).设D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1―→,n 〉|=|D 1C 1―→·n ||D 1C 1―→||n |=22×3=13,即D 1C 1与平面A 1BC 1所成角的正弦值为13.答案:132.如图,在直三棱柱ABC ­A 1B 1C 1中,BA =BC =5,AC =8,D 为线段AC 的中点.(1)求证:BD ⊥A 1D ;(2)若直线A 1D 与平面BC 1D 所成角的正弦值为45,求AA 1的长.解:(1)证明:∵三棱柱ABC ­A 1B 1C 1是直三棱柱,∴AA 1⊥平面ABC ,又BD ⊂平面ABC ,∴BD ⊥AA 1, ∵BA =BC ,D 为AC 的中点,∴BD ⊥AC ,又AC ∩AA 1=A ,AC ⊂平面ACC 1A 1,AA 1⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,∴BD ⊥A 1D . (2)由(1)知BD ⊥AC ,AA 1⊥平面ABC ,以D 为坐标原点,DB ,DC 所在直线分别为x 轴,y 轴,过点D 且平行于AA 1的直线为z 轴建立如图所示的空间直角坐标系D ­xyz .设AA 1=λ(λ>0),则A 1(0,-4,λ),B (3,0,0),C 1(0,4,λ),D (0,0,0), ∴DA 1―→=(0,-4,λ),DC 1―→=(0,4,λ),DB ―→=(3,0,0), 设平面BC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DC 1―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧4y +λz =0,3x =0,则x =0,令z =4,可得y =-λ,故n =(0,-λ,4)为平面BC 1D 的一个法向量. 设直线A 1D 与平面BC 1D 所成角为θ,则sin θ=|cosn ,DA 1―→|=|n ·DA 1―→||n |·|DA 1―→|=|4λ+4λ|λ2+16·λ2+16=45,解得λ=2或λ=8, 即AA 1=2或AA 1=8.考点三 二面角[典例精析]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B ­D ′A ­C 的余弦值.[解] (1)证明:由四边形ABCD 为菱形,得AC ⊥BD . 由AE =CF =54,得AE AD =CFCD ,所以EF ∥AC .因此EF ⊥DH ,从而EF ⊥D ′H . 由AB =5,AC =6,得DO =BO =AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14,所以OH =1,D ′H =DH =3,则OD ′2=OH 2+D ′H 2,所以D ′H ⊥OH . 又OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)以H 为坐标原点,HB ,HF ,HD ′分别为x 轴,y 轴,z 轴建立空间直角坐标系H ­xyz ,如图所示.则B (5,0,0),C (1,3,0),D ′(0,0,3),A (1,-3,0), (由口诀“起点同”,我们先求出起点相同的3个向量.) 所以AB ―→=(4,3,0), AD ′―→=(-1,3,3),AC ―→=(0,6,0). (由口诀“棱排前”,我们用行列式求出两个平面的法向量.) 由⎩⎪⎨⎪⎧ AD ′―→=(-1,3,3), AB ―→=(4,3,0),可得平面ABD ′的法向量n 1=(-3,4,-5),由⎩⎪⎨⎪⎧AD ′―→=(-1,3,3), AC ―→=(0,6,0),可得平面AD ′C 的法向量n 2=(-3,0,-1). 于是cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=7525.所以二面角B ­D ′A ­C 的余弦值为7525.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.[题组训练]如图所示,四棱锥P ­ABCD 中,P A ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F .(1)若G 为PD 的中点,求证:平面P AD ⊥平面CGF ; (2)若BC =2,P A =3,求二面角B ­CP ­D 的余弦值. 解:(1)证明:在△BCD 中,EB =ED =EC =BC , 故∠BCD =90°,∠CBE =∠BEC =60°.∵△DAB ≌△DCB ,∴∠BAD =∠BCD =90°,∠ABE =∠CBE =60°,∴∠FED =∠BEC =∠ABE =60°.∴AB ∥EF ,∴∠EFD =∠BAD =90°, ∴EF ⊥AD ,AF =FD . 又PG =GD ,∴GF ∥P A .又P A ⊥平面ABCD ,∴GF ⊥平面ABCD , ∵AD ⊂平面ABCD ,∴GF ⊥AD . 又GF ∩EF =F ,∴AD ⊥平面CGF .又AD ⊂平面P AD ,∴平面P AD ⊥平面CGF .(2)以A 为坐标原点,射线AB ,AD ,AP 分别为x 轴,y 轴,z 轴的正半轴建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (3,3,0),D (0,23,0),P (0,0,3),故CB ―→=(-1,-3,0), CP ―→=(-3,-3,3),CD ―→=(-3,3,0). 设平面BCP 的一个法向量为n 1=(1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·CB ―→=0,n 1·CP ―→=0,即⎩⎪⎨⎪⎧ -1-3y 1=0,-3-3y 1+3z 1=0,解得⎩⎨⎧y 1=-33,z 1=23,即n 1=⎝⎛⎭⎫1,-33,23. 设平面DCP 的一个法向量为n 2=(1,y 2,z 2),则⎩⎪⎨⎪⎧n 2·CD ―→=0,n 2·CP ―→=0,即⎩⎪⎨⎪⎧-3+3y 2=0,-3-3y 2+3z 2=0,解得⎩⎪⎨⎪⎧y 2=3,z 2=2,即n 2=(1,3,2). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=43169×8=24, 由图知二面角B ­CP ­D 为钝角, 所以二面角B ­CP ­D 的余弦值为-24. [课时跟踪检测]A 级1.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( )A.3030 B.3015 C.3010D.1515解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2), D 1N ―→=(1,0,-2),∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→||B 1M ―→|·|D 1N ―→|=|-1+4|1+1+4×1+4=3010. 2.如图,已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535B.277C.33D.24解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),∴DC 1―→=(0,3,1), D 1E ―→=(1,1,-1), D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·D 1C ―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∴cosDC 1―→,n=DC 1―→·n |DC 1―→|·|n|=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为33535.3.在直三棱柱ABC ­A 1B 1C 1中,AA 1=2,二面角B ­AA 1­C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B.6C.5D .2解析:选A 由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4, |AB 1―→|=22,|BC 1―→|=4, cosAB 1―→,BC 1―→=AB 1―→·BC ―→|AB 1―→|·|BC ―→|=24,故tanAB 1―→,BC 1―→=7.4.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35 B.56 C.3310D.3610解析:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝⎛⎭⎫12,-32,1, GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.5.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22解析:选B 以A 为坐标原点建立如图所示的空间直角坐标系A ­xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D ―→=(0,1,-1), A 1E ―→=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧ n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2). 又平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.6.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.解析:如图,以O 为坐标原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),∴OF ―→=(-1,0,3),DB ―→=(0,23,0), EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎪⎨⎪⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a , ∴n =(-a,0,1),∴cos 〈n ,OF ―→〉=n ·OF ―→|n ||OF ―→|=a +3a 2+1×10.∵直线OF 与平面BED 所成角的大小为45°, ∴|a +3|a 2+1×10=22, 解得a =2或a =-12(舍去),∴AE =2.答案:27.如图,已知四棱锥P ­ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F ­OE ­A 的余弦值为________.解析:以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O ­xyz , 由题知,OA =OB =2,则A (0,-2,0),B (2,0,0),P (0,0,2),E (1,-1,0),F (0,-1,1), OE ―→=(1,-1,0),OF ―→=(0,-1,1),设平面OEF 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·OE ―→=0,m ·OF ―→=0,即⎩⎪⎨⎪⎧x -y =0-y +z =0.令x =1,可得m =(1,1,1).易知平面OAE 的一个法向量为n =(0,0,1),则cos 〈m ,n 〉=m ·n|m ||n |=33.由图知二面角F ­OE ­A 为锐角, 所以二面角F ­OE ­A 的余弦值为33. 答案:338.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 解:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C , 所以DM ⊥平面BMC . 因为DM ⊂平面AMD , 所以平面AMD ⊥平面BMC .(2)以D 为坐标原点, DA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz .当三棱锥M ­ABC 的体积最大时,M 为CD 的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ―→=(-2,1,1),AB ―→=(0,2,0),DA ―→=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,又DA ―→是平面MCD 的一个法向量,所以cos 〈n ,DA ―→〉=n ·DA ―→|n ||DA ―→|=55,sin 〈n ,DA ―→〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.9.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­P A ­C 为30°,求PC 与平面P AM 所成角的正弦值.解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3.连接OB ,因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为OB ∩AC =O , 所以PO ⊥平面ABC .(2)以O 为坐标原点,OB ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系O ­xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP ―→=(0,2,23).取平面P AC 的一个法向量OB ―→=(2,0,0). 设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0). 设平面P AM 的法向量为n =(x ,y ,z ),令y =3a ,得z =-a ,x =3(a -4),所以平面P AM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB ―→,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB ―→,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =43或a =-4(舍去).所以n =⎝⎛⎭⎫-833,433,-43.又PC ―→=(0,2,-23),所以cos 〈PC ―→,n 〉=833+8334+12·643+163+169=34.所以PC 与平面P AM 所成角的正弦值为34. B 级1.如图,四棱柱ABCD ­A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B ­OB 1­C 的余弦值. 解:(1)证明:∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD , ∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD . ∵A 1O ∩CO =O ,∴BD ⊥平面A 1CO . ∵BD ⊂平面BB 1D 1D ,∴平面A 1CO ⊥平面BB 1D 1D .(2)∵A 1O ⊥平面ABCD ,CO ⊥BD ,∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB ―→,OC ―→, OA 1―→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°, ∴OB =OD =1,OA =OC =3, OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6),∴OB ―→=(1,0,0),BB 1―→=AA 1―→=(0,3,6), OB 1―→=OB ―→+BB 1―→=(1,3,6). 设平面OBB 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧OB ―→·n =0,OB 1―→·n =0,即⎩⎪⎨⎪⎧x =0,x +3y +6z =0.令y =2,得z =-1,∴n =(0,2,-1)是平面OBB 1的一个法向量. 同理可求得平面OCB 1的一个法向量m =(6,0,-1), ∴cosn ,m=n ·m|n |·|m |=13×7=2121,由图可知二面角B ­OB 1­C 是锐二面角, ∴二面角B ­OB 1­C 的余弦值为2121. 2.如图,在四棱锥P ­ABCD 中,底面ABCD 是直角梯形,∠ADC =90°,AB ∥CD ,AB =2CD .平面P AD ⊥平面ABCD ,P A =PD ,点E 在PC 上,DE ⊥平面P AC .(1)求证:P A ⊥平面PCD ;(2)设AD =2,若平面PBC 与平面P AD 所成的二面角为45°,求DE 的长.解:(1)证明:由DE ⊥平面P AC ,得DE ⊥P A ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,CD ⊥AD ,所以CD ⊥平面P AD ,所以CD ⊥P A , 又CD ∩DE =D ,所以P A ⊥平面PCD . (2)取AD 的中点O ,连接PO , 因为P A =PD ,所以PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD ,以O 为坐标原点建立如图所示的空间直角坐标系O ­xyz ,由(1)得P A ⊥PD ,由AD =2得P A =PD =2,PO =1,设CD =a ,则P (0,0,1),D (0,1,0),C (a,1,0),B (2a ,-1,0), 则BC ―→=(-a,2,0),PC ―→=(a,1,-1). 设m =(x ,y ,z )为平面PBC 的法向量,由⎩⎪⎨⎪⎧m ·BC ―→=0,m ·PC ―→=0,得⎩⎪⎨⎪⎧-ax +2y =0,ax +y -z =0,令x =2,则y =a ,z =3a ,故m =(2,a,3a )为平面PBC 的一个法向量,由(1)知n =DC ―→=(a,0,0)为平面P AD 的一个法向量. 由|cosm ,n|=|m ·n ||m ||n |=|2a |a 10a 2+4=22,解得a =105,即CD =105,所以在Rt △PCD 中,PC =2155,由等面积法可得DE =CD ·PD PC =33.3.如图,在三棱锥P ­ABC 中,平面P AB ⊥平面ABC ,AB =6, BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线P A 与平面ABC 所成的角为45°,求平面P AC 与平面PDE 所成的锐二面角大小.解:(1)证明:∵AC =26,BC =23,AB =6,∴AC 2+BC 2=AB 2,∴∠ACB =90°, ∴cos ∠ABC =236=33.又易知BD =2,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8, ∴CD =22,又AD =4, ∴CD 2+AD 2=AC 2,∴CD ⊥AB .∵平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,CD ⊂平面ABC , ∴CD ⊥平面P AB ,又PD ⊂平面P AB ,∴CD ⊥PD , ∵PD ⊥AC ,AC ∩CD =C , ∴PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直,∴可建立如图所示的空间直角坐标系D ­xyz ,∵直线P A 与平面ABC 所成的角为45°,即∠P AD =45°,∴PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4),∴CB ―→=(-22,2,0),AC ―→=(22,4,0),P A ―→=(0,-4,-4). ∵AD =2DB ,CE =2EB ,∴DE ∥AC , 由(1)知AC ⊥BC ,∴DE ⊥BC ,又PD ⊥平面ABC ,BC ⊂平面ABC ,∴PD ⊥BC , ∵PD ∩DE =D ,∴CB ⊥平面PDE ,∴CB ―→=(-22,2,0)为平面PDE 的一个法向量. 设平面P AC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·P A ―→=0,即⎩⎪⎨⎪⎧22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1, ∴n =(2,-1,1)为平面P AC 的一个法向量. ∴cos n ,CB ―→=-4-24×12=-32, ∴平面P AC 与平面PDE 所成的锐二面角的余弦值为32, 故平面P AC 与平面PDE 所成的锐二面角为30°.。

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。

更易于学生们所接受,故而执教者应高度重视空间向量的工具性。

首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。

向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。

范围:直线和平面所夹角的取值范围是 。

向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。

二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。

用空间向量解决空间角与距离问题

用空间向量解决空间角与距离问题

第3课时用空间向量解决空间角与距离问题学习目标 1.理解直线与平面所成角、二面角的概念.2.掌握向量法解决空间角和距离问题.3.体会空间向量解决立体几何问题的三步曲.知识点一空间三种角的向量求法空间角包括线线角、线面角、二面角,这三种角的定义确定了它们相应的取值范围,结合它们的取值范围可以用向量法进行求解.角的分类向量求法范围异面直线所成的角设两异面直线所成的角为θ,它们的方向向量分别为a,b,则cos θ=|cos〈a,b〉|=|a·b||a||b|0,π2直线与平面所成的角设直线l与平面α所成的角为θ,l的方向向量为a,平面α的法向量为n,则sin θ=|cos〈a,n〉|=|a·n||a||n|0,π2二面角设二面角α-l-β为θ,平面α,β的法向量分别为n1,n2,则|cos θ|=|cos〈n1,n2〉|=|n1·n2||n1||n2|[0,π]知识点二利用空间向量求距离(※)点到平面的距离:用空间向量法求点到平面的距离具体步骤如下:先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面的法向量上的射影长.如图,设n=(a,b,c)是平面α的一个法向量,P0(x0,y0,z0)为α外一点,P(x,y,z)是平面α内的任意一点,则点P0到平面α的距离d=|PP0→·n||n|=|a x0-x+b y0-y+c z0-z|a2+b2+c2.线面距离、面面距离都可以转化为点到平面的距离,因此,只要掌握点到平面距离的求法,就可解决其他的距离问题.(1)直线与平面所成的角α与该直线的方向向量与平面的法向量的夹角β互余.(×)(2)二面角的大小范围是0,π2.(×)(3)二面角的大小等于其两个半平面的法向量的夹角的大小.(×)(4)直线与平面所成角的范围是0,π2.(√)类型一求线线角、线面角例1(1)在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA =CC 1,则BM 与AN 所成的角的余弦值为________.考点向量法求直线与直线所成的角题点向量法求线线角答案3010解析如图所示,以C 为坐标原点,直线CA 为x 轴,直线CB 为y 轴,直线CC 1为z 轴建立空间直角坐标系Cxyz.设CA =CB =CC 1=1,则B(0,1,0),M 12,12,1,A(1,0,0),N 12,0,1,故BM →=12,-12,1,AN →=-12,0,1,所以cos 〈BM →,AN →〉=BM →·AN →|BM →||AN →|=3462×52=3010. (2)如图,在四棱锥P -ABCD 中,底面为直角梯形,AD ∥BC ,∠BAD =90°,PA ⊥底面ABCD ,且P A =AD =AB =2BC ,M ,N 分别为PC ,PB 的中点.①求证:PB ⊥DM ;②求BD 与平面ADMN 所成的角.考点向量法求直线与直线所成的角题点向量法求线线角①证明如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y轴,z 轴,建立空间直角坐标系Axyz ,设BC =1,则A(0,0,0),P(0,0,2),B(2,0,0),D(0,2,0),C(2,1,0),M 1,12,1.∵PB →·DM →=(2,0,-2)·1,-32,1=0,∴PB ⊥DM. ②解∵PB →·AD →=(2,0,-2)·(0,2,0)=0,∴PB ⊥AD.又∵PB ⊥DM ,AD ∩DM =D ,∴PB ⊥平面ADMN .即PB →为平面ADMN 的一个法向量.因此〈PB →,DB →〉的余角即是BD 与平面ADMN 所成的角.∵cos 〈PB →,DB →〉=PB →·DB →|PB →||DB →|=422×22=12,且〈PB →,DB →〉∈[0,π],∴〈PB →,DB →〉=π3,∴BD 与平面ADMN 所成的角为π6.反思与感悟用向量法解决线线角、线面角问题时,首先需建立适当的坐标系,然后求解相应的向量表达式,再借助于空间向量的运算进行求解.跟踪训练1(1)已知在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是DC 的中点,建立如图所示的空间直角坐标系,则AB 1与D 1E 所成角的余弦值为()A.1010B.105C .-1010D .-105考点向量法求线线角题点向量法求线线角答案 A解析∵A(2,2,0),B 1(2,0,2),E(0,1,0),D 1(0,2,2),∴AB 1→=(0,-2,2),ED 1→=(0,1,2),∴|AB 1→|=22,|ED 1→|=5,AB 1→·ED 1→=0-2+4=2,∴cos 〈AB 1→,ED 1→〉=AB 1→·ED 1→|AB 1→||ED 1→|=222×5=1010,又异面直线所成角的范围是0,π2,∴AB 1与ED 1所成角的余弦值为1010. (2)如图所示,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.①证明:AB ⊥A 1C ;②若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.考点向量法求线面角题点向量法求线面角①证明取AB 的中点O ,连接OC ,OA 1,A 1B.∵CA =CB ,∴OC ⊥AB. 由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,∴OA 1⊥AB. ∵OC ∩OA 1=O ,∴AB ⊥平面OA 1C.又A 1C?平面OA 1C ,故AB ⊥A 1C. ②解由①知OC ⊥AB ,OA 1⊥AB.又平面ABC ⊥平面AA 1B 1B ,交线为AB ,OC?平面ABC ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两垂直.以O 为坐标原点,OA ,OA 1,OC 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Oxyz.设AB =2,则A(1,0,0),A 1(0,3,0),C(0,0,3),B(-1,0,0),则BC →=(1,0,3),BB 1→=AA 1→=(-1,3,0),A 1C -→=(0,-3,3).设n =(x ,y ,z)是平面BB 1C 1C 的法向量,则n ·BC →=0,n ·BB 1→=0,即x +3z =0,-x +3y =0,可取n =(3,1,-1).故cos 〈n ,A 1C -→〉=n ·A 1C -→|n ||A 1C -→|=-105,∴A 1C 与平面BB 1C 1C 所成角的正弦值为105. 类型二求二面角问题例2如图所示,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点,求二面角A -A 1D -B 的余弦值.考点向量法求二面角题点向量法求二面角解取BC 的中点O ,连接AO ,因为△ABC 是正三角形,所以AO ⊥BC ,因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,平面ABC ∩平面BCC 1B 1=BC ,AO?平面ABC ,所以AO ⊥平面BCC 1B 1. 取B 1C 1的中点O 1,以O 为坐标原点,分别以OB ,OO 1,OA 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B(1,0,0),D(-1,1,0),A 1(0,2,3),A(0,0,3),B 1(1,2,0).设平面A 1AD 的法向量为n =(x ,y ,z),AD →=(-1,1,-3),AA 1→=(0,2,0).因为n ⊥AD →,n ⊥AA 1→,所以n ·AD →=0,n ·AA 1→=0,得-x +y -3z =0,2y =0,所以y =0,x =-3z.令z =1,得n =(-3,0,1)为平面A 1AD 的一个法向量.又因为AB 1→=(1,2,-3),BD →=(-2,1,0),BA 1→=(-1,2,3),所以AB 1→·BD →=-2+2+0=0,AB 1→·BA 1→=-1+4-3=0,所以AB 1→⊥BD →,AB 1→⊥BA 1→,即AB 1⊥BD ,AB 1⊥BA 1,且BD ∩BA 1=B ,所以AB 1⊥平面A 1BD ,所以AB 1→是平面A 1BD 的一个法向量,所以cos 〈n ,AB 1→〉=n ·AB 1→|n ||AB 1→|=-3-32×22=-64,又二面角A -A 1D -B 为锐二面角,所以二面角A -A 1D -B 的余弦值为64. 反思与感悟求角二面角时,可以用方向向量法,也可以采用法向量法求解.跟踪训练2如图,P A ⊥平面ABC ,AC ⊥BC ,BC =2,PA =AC =1,求二面角A -PB -C的余弦值.考点向量法求二面角题点向量法求二面角解以C 为坐标原点,CA ,CB 所在直线分别为x 轴,y 轴,建立如图所示的空间直角坐标系Cxyz ,取PB 的中点D ,连接DC ,可知DC ⊥PB ,作AE ⊥PB 于点E ,则向量DC →与EA →的夹角的大小为二面角A -PB -C 的大小.∵A(1,0,0),B(0,2,0),C(0,0,0),P(1,0,1),D 为PB 的中点,∴D12,22,12. 在Rt △P AB 中,由△P AB ∽△AEB ∽△PEA ,得PE EB =AP 2AB 2=13,∴E34,24,34. ∴EA →=14,-24,-34,DC →=-12,-22,-12,∴EA →·DC →=12.又|EA →|=32,|DC →|=1,∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=1232×1=33,∴二面角A -PB -C 的余弦值为33. 类型三解决距离问题(※)例3已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.考点向量法求空间距离题点向量法求点与平面间的距离解以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z轴,建立如图所示的空间直角坐标系Dxyz ,则A(2,0,0),E(0,2,1),F (1,0,2),G(2,1,0).所以AG →=(0,1,0),GE →=(-2,1,1),GF →=(-1,-1,2).设n =(x ,y ,z)是平面EFG 的法向量,点A 到平面EFG 的距离为d ,则n ·GE →=0,n ·GF →=0,所以-2x +y +z =0,-x -y +2z =0,所以x =z ,y =z.令z =1,此时n =(1,1,1),所以d =|AG →·n ||n |=13=33,即点A 到平面EFG 的距离为33.反思与感悟用向量法计算距离问题时,借助于空间向量的运算,并结合化归思想进行求解.跟踪训练3如图所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F分别为BB 1,CC 1的中点,DG =13DD 1,过E ,F ,G 的平面交AA 1于点H ,求D 1A 1到平面EFGH 的距离.考点向量法求空间距离题点向量法求点与平面间的距离解因为点E ,F 分别为BB 1,CC 1的中点,所以EF ∥B 1C 1∥A 1D 1.又因为A 1D 1?平面EFGH ,EF ?平面EFGH ,所以A 1D 1∥平面EFGH ,所以D 1A 1到平面EFGH 的距离即为点D 1到平面EFGH 的距离.以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz ,则E 1,1,12,F 0,1,12,G 0,0,13,D 1(0,0,1),所以EF →=(-1,0,0),FG →=0,-1,-16.设平面EFGH 的法向量为n =(x ,y ,z),则n ·EF →=0,n ·FG →=0,即-x =0,-y -16z =0,令z =6,可得n =(0,-1,6).设D 1A 1到平面EFGH 的距离为d ,连接D 1F ,又D 1F -→=0,1,-12,所以d =|D 1F -→·n ||n |=43737,即D 1A 1到平面EFGH 的距离为43737.1.已知向量m ,n 分别是直线l 的方向向量和平面α的法向量,若cos 〈m ,n 〉=-12,则l与α所成的角为()A .30°B .60°C .120°D .150°考点向量法求线面角题点向量法求线面角答案 A解析设l 与α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=12.∴θ=30°.2.已知二面角α-l -β的两个半平面α与β的法向量分别为a ,b ,若〈a ,b 〉=π3,则二面角α-l -β的大小为()A.π3B.2π3C.π3或2π3 D.π6或π3考点向量法求二面角题点向量法求二面角答案C解析由于二面角的范围是[0,π],而二面角的两个半平面α与β的法向量都有两个方向,因此二面角α-l -β的大小为π3或2π3,故选 C.3.在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成角的正弦值为()A.64B .-64C.104D .-104考点向量法求解直线与平面所成的角题点向量法解决直线与平面所成的角答案 A解析取AC 的中点E ,连接BE ,则BE ⊥AC ,以B 为坐标原点,BE ,BB 1所在直线分别为x 轴,z 轴,建立如图所示的空间直角坐标系Bxyz ,则A32,12,0,D (0,0,1),B(0,0,0),E 32,0,0,则AD →=-32,-12,1,BE →=32,0,0. ∵平面ABC ⊥平面AA 1C 1C ,平面ABC ∩平面AA 1C 1C =AC ,BE ⊥AC ,BE?平面ABC ,∴BE ⊥平面AA 1C 1C ,∴BE →=32,0,0为平面AA 1C 1C 的一个法向量.设AD 与平面AA 1C 1C 所成角为α,∵cos 〈AD →,BE →〉=-64,∴sin α=|cos 〈AD →,BE →〉|=64.4.设a ,b 是直线,α,β是平面,a ⊥α,b ⊥β,向量a 在a 上,向量b 在b 上,a =(1,1,1),b =(-3,4,0),则α,β所成二面角中较小的一个角的余弦值为________.考点向量法求二面角题点向量法求二面角答案315解析设α,β所成二面角中较小的一个角为θ,由题意得,cos θ=|cos 〈a ,b 〉|=|a ·b ||a ||b |=1,1,1·-3,4,03·5=315.5.已知等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C -AB -D 的余弦值为33,M ,N 分别是AC ,BC 的中点,则EM ,AN 所成角的余弦值为________.考点向量法求线线角题点向量法求线线角答案16解析过C 点作CO ⊥平面ABDE ,垂足为点O ,取AB 的中点F ,连接CF ,OF ,则∠CFO 为二面角C -AB -D 的平面角.设AB =1,则CF =32,∴OF =CF ·cos ∠CFO =32×33=12,∴OC =22,且O 为正方形ABDE 的中心.以O 为坐标原点,OA ,OB ,OC 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Oxyz ,则E 0,-22,0,M24,0,24,A 22,0,0,N 0,24,24,∴EM →=24,22,24,AN →=-22,24,24,∴cos 〈EM →,AN →〉=EM →·AN →|EM →||AN →|=16,又异面直线所成角的范围是0,π2,∴EM ,AN 所成角的余弦值为16. 1.向量法求角(1)两条异面直线所成的角θ可以借助这两条直线的方向向量的夹角φ求得,即cos θ=|cos φ|.(2)直线与平面所成的角θ可以通过直线的方向向量与平面的法向量的夹角φ求得,即sin θ=|cos φ|或cos θ=sin φ.(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.2.向量法求距离(※)(1)求P ,Q 两点间的距离,可转化为求PQ →的模.(2)点到平面距离的求法:设n 是平面α的法向量,B 是平面α外一点,A 是平面α内一点,AB 是平面α的一条斜线,则点B 到平面α的距离为d =|AB →·n ||n |.(3)线面距离、面面距离均可转化为点面距离,利用(2)中的方法求解.一、选择题1.在一个二面角的两个半平面内,与二面角的棱垂直的两个向量分别为(0,-1,3),(2,2,4),则这个二面角的余弦值为()A.156 B.-153C.153 D.156或-156考点向量法求二面角题点向量法求二面角答案 D 解析由0,-1,3·2,2,41+9×4+4+16=-2+1210×24=156,知这个二面角的余弦值为156或-156,故选D.2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为()A .45°B .135°C .45°或135°D .90°考点向量法求面面角题点向量法求面面角答案 C解析cos 〈m ,n 〉=m ·n |m ||n |=11·2=22,即〈m ,n 〉=45°.所以两平面所成二面角为45°或180°-45°=135°.3.设直线l 与平面α相交,且l 的方向向量为a ,α的法向量为n ,若〈a ,n 〉=2π3,则l 与α所成的角为()A.2π3B.π3C.π6D.5π6考点向量法求线面角题点向量法求线面角答案 C解析线面角的范围是0,π2.∵〈a ,n 〉=2π3,∴l 与法向量所在直线所成角为π3,∴l 与α所成的角为π6. 4.若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量a =(-2,-3,3),则l 与α所成角的余弦值为()A .-1111 B.1111C .-11011 D.91333考点向量法求线面角题点向量法求线面角答案 D解析设α与l 所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|-2,-3,3·4,1,1|4+9+9×16+1+1=-4311=41133,故直线l 与α所成角的余弦值为1-411332=91333.5.在正方体ABCD -A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成的角的正弦值为()A.24 B.23C.63D.32考点向量法求线面角题点向量法求线面角答案 C解析以D 为坐标原点,DA →,DC →,DD 1→所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz.设正方体的棱长为1,则D(0,0,0),A 1(1,0,1),B(1,1,0),C 1(0,1,1),A(1,0,0),∴BC 1→=(-1,0,1),AC 1→=(-1,1,1),A 1B -→=(0,1,-1),A 1D -→=(-1,0,-1).∴AC 1→·A 1B -→=1-1=0,AC 1→·A 1D -→=1-1=0. ∴AC 1⊥A 1B ,AC 1⊥A 1D.又A 1B ∩A 1D =A 1,且A 1B ,A 1D?平面A 1BD ,∴AC 1⊥平面A 1BD. ∴AC 1→是平面A 1BD 的一个法向量.∴cos 〈BC 1→,AC 1→〉=BC 1→·AC 1→|BC 1→||AC 1→|=1+12×3=63.∴直线BC 1与平面A 1BD 所成的角的正弦值为63. 6.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是棱CC 1,BC ,A 1B 1上的点,若∠B 1MN =90°,则∠PMN 的大小()A .等于90°B .小于90°C .大于90°D .不确定考点向量法求线线角题点向量法求线线角答案 A解析A 1B 1⊥平面BCC 1B 1,故A 1B 1⊥MN ,MP →·MN →=(MB 1→+B 1P -→)·MN→=MB 1→·MN →+B 1P →·MN →=0,∴MP ⊥MN ,即∠PMN =90°.7.如图,S 是正三角形ABC 所在平面外一点,M ,N 分别是AB 和SC 的中点,SA =SB =SC ,且∠ASB =∠BSC =∠CSA =90°,则异面直线SM 与BN 所成角的余弦值为()A .-105 B.105C .-1010 D.1010考点向量法求线线角题点向量法求线线角答案 B解析不妨设SA =SB =SC =1,以S 为坐标原点,SA →,SB →,SC →所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Sxyz ,则相关各点坐标为A(1,0,0),B(0,1,0),C(0,0,1),S(0,0,0),M 12,12,0,N 0,0,12. 因为SM →=12,12,0,BN →=0,-1,12,所以|SM →|=12,|BN →|=54,SM →·BN →=-12,cos 〈SM →,BN →〉=SM →·BN →|SM →||BN →|=-105,因为异面直线所成的角为锐角或直角,所以异面直线SM 与BN 所成角的余弦值为105. 二、填空题8.若两个平面α,β的法向量分别是n =(1,0,1),v =(-1,1,0),则这两个平面所成的锐二面角为________.考点向量法求面面角题点向量法求面面角答案60°解析cos 〈n ,v 〉=-12·2=-12,且〈n ,v 〉∈[0°,180°],∴〈n ,ν〉=120°.故两平面所成的锐二面角为60°.9.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为________.考点向量法求二面角题点向量法求二面角答案23解析如图所示,以A 为坐标原点,AB →,AD →,AA 1→所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Axyz ,设正方体的棱长为1,则A 1(0,0,1),E 1,0,12,D (0,1,0),所以A 1D -→=(0,1,-1),A 1E -→=1,0,-12.设平面A 1ED 的法向量为n 1=(1,y ,z),则n 1·A 1D -→=0,n 1·A 1E -→=0,即y -z =0,1-12z =0,所以y =2,z =2.所以n 1=(1,2,2).平面ABCD 的一个法向量为n 2=(0,0,1),所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=23×1=23,即所求的锐二面角的余弦值为23. 10.如图,平面P AD ⊥平面ABCD ,ABCD 为正方形,∠P AD =90°,且PA=AD =2,E ,F 分别是线段P A ,CD 的中点,则异面直线EF 与BD 所成角的余弦值为________.考点向量法求线线角题点向量法求线线角答案36解析以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z轴,建立如图所示空间直角坐标系Axyz ,则E(0,0,1),F (1,2,0),B(2,0,0),D(0,2,0).EF →=(1,2,-1),BD →=(-2,2,0),故cos 〈EF →,BD →〉=243=36.11.如图,已知矩形ABCD 与ABEF 全等,D-AB-E 为直二面角,M 为AB 的中点,FM 与BD 所成的角为θ,且cos θ=39.则AB 与BC 的边长之比为________.答案2∶2解析设AB =a ,BC =b ,以A 为坐标原点,AF →,AB →,AD →所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,则相关各点坐标为F (b,0,0),M 0,a2,0,B(0,a,0),D (0,0,b).FM →=-b ,a 2,0,BD →=(0,-a ,b),所以|FM →|=b 2+a 24,|BD →|=a 2+b 2,FM →·BD →=-a 22,|cos 〈FM →,BD →〉|=-a 22b 2+a 24·a 2+b 2=39,整理得,4b 4a 4+5b2a2-26=0,解得b 2a 2=2或b 2a 2=-134(舍).所以AB BC =ab =22. 三、解答题12.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD.(1)求异面直线BF 与DE 所成的角的大小;(2)证明:平面AMD ⊥平面CDE ;(3)求二面角A -CD -E 的余弦值.考点向量法解决二面角问题题点求二面角(1)解如图所示,以A 为坐标原点,AB →,AD →,AF →所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Axyz.设AB =1,依题意得B(1,0,0),C(1,1,0),D(0,2,0),E(0,1,1),F(0,0,1),M 12,1,12,A(0,0,0).则BF →=(-1,0,1),DE →=(0,-1,1),于是cos 〈BF →,DE →〉=BF →·DE →|BF →||DE →|=0+0+12×2=12.所以异面直线BF 与DE 所成的角的大小为60°.(2)证明由AM →=12,1,12,CE →=(-1,0,1),AD →=(0,2,0),可得CE →·AM →=0,CE →·AD →=0. 因此,CE ⊥AM ,CE ⊥AD.又AM ∩AD =A ,AM?平面AMD ,AD?平面AMD ,故CE ⊥平面AMD.又CE?平面CDE ,所以平面AMD ⊥平面CDE.(3)解设平面CDE 的法向量为u =(x ,y ,z),则u ·CE →=0,u ·DE →=0,即-x +z =0,-y +z =0,令x =1,可得u =(1,1,1).又由题设知,平面ACD 的一个法向量为v =(0,0,1).所以,cos 〈u ,v 〉=u ·v |u||v|=0+0+13×1=33.因为二面角A -CD -E 为锐角,所以其余弦值为33. 13.如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BC ,A 1D 1的中点.(1)求直线A 1C 与DE 所成角的余弦值;(2)求直线AD 与平面B 1EDF 所成角的余弦值;(3)求平面B 1EDF 与平面ABCD 所成锐二面角的余弦值.考点向量法求面面角题点向量法求面面角解以A 为坐标原点,分别以AB ,AD ,AA 1所在直线为x 轴,y 轴,z轴,建立空间直角坐标系Axyz.(1)则A 1(0,0,a),C(a ,a,0),D(0,a,0),E a ,a2,0,∴A 1C -→=(a ,a ,-a),DE →=a ,-a 2,0,∴cos 〈A 1C -→,DE →〉=A 1C -→·DE →|A 1C -→||DE →|=1515,故A 1C 与DE 所成角的余弦值为1515. (2)连接DB 1,∵∠ADE =∠ADF ,∴AD 在平面B 1EDF 内的射影在∠EDF 的平分线上.又B 1EDF 为菱形,∴DB 1为∠EDF 的平分线,故直线AD 与平面B 1EDF 所成的角为∠ADB 1. 由A(0,0,0),B 1(a,0,a),D(0,a,0),得DA →=(0,-a,0),DB 1→=(a ,-a ,a),∴cos 〈DA →,DB 1→〉=DA →·DB 1→|DA →||DB 1→|=33,又直线与平面所成角的范围是0,π2,故直线AD 与平面B 1EDF 所成角的余弦值为33. (3)由已知得A(0,0,0),A 1(0,0,a),B 1(a,0,a),D (0,a,0),E a ,a 2,0,则ED →=-a ,a 2,0,EB 1→=0,-a2,a ,平面ABCD 的一个法向量为m =AA 1→=(0,0,a).设平面B 1EDF 的一个法向量为n =(1,y ,z),由n ·ED →=0,n ·EB 1→=0,得y =2,z =1,∴n =(1,2,1),∴cos 〈n ,m 〉=m ·n |m ||n |=66,∴平面B 1EDF 与平面ABCD 所成锐二面角的余弦值为66. 四、探究与拓展14.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为A 1B 1和BB 1的中点,那么异面直线AM 与CN 所成角的余弦值为()A.32 B.1010C.35D.25考点向量法求线线角题点向量法求线线角答案 D解析如图所示,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x轴,y 轴,z 轴,建立空间直角坐标系Dxyz ,则A(1,0,0),M 1,12,1,C(0,1,0),N 1,1,12,∴AM →=0,12,1,CN →=1,0,12,∴AM →·CN →=12,|AM →|=|CN →|=52,∴cos 〈AM →,CN →〉=1252×52=25,又异面直线所成角的范围是0,π2,∴异面直线AM 与CN 所成角的余弦值为25. 15.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ;(2)求二面角E -BC -A 的余弦值.考点向量法求二面角题点向量法求二面角(1)证明由已知可得AF ⊥DF ,AF ⊥FE ,DF ∩FE =F ,DF ?平面EFDC ,FE ?平面EFDC ,所以AF ⊥平面EFDC.又AF ?平面ABEF ,故平面ABEF ⊥平面EFDC.(2)解过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF.以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则DF =2,DG =3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知得,AB ∥EF ,EF?平面EFDC ,AB?平面EFDC ,所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF.由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,即∠CEF =60°,从而可得C(-2,0,3).连接AC ,则EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z)是平面BCE 的法向量,则n ·EC →=0,n ·EB →=0,即x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.。

用空间向量求空间角课件(共22张PPT)

用空间向量求空间角课件(共22张PPT)

向量的加法与数乘
向量的加法满足平行四边形法则或三 角形法则,即$vec{a} + vec{b} = vec{b} + vec{a}$。
数乘是指实数与向量的乘积,满足分 配律,即$k(vec{a} + vec{b}) = kvec{a} + kvec{b}$。
向量的数量积
向量的数量积定义为$vec{a} cdot vec{b} = left| vec{a} right| times left| vec{b} right| times cos theta$,其中$theta$为两 向量的夹角。
数量积满足交换律和分配律,即$vec{a} cdot vec{b} = vec{b} cdot vec{a}$和$(lambdavec{a}) cdot vec{b} = lambda(vec{a} cdot vec{b})$。
03 向量的向量积与混合积
向量的向量积
定义
两个向量a和b的向量积是一个向量,记作a×b,其模长为 |a×b|=|a||b|sinθ,其中θ为a与b之间的夹角。
适用范围
适用于直线与平面不垂直的情况。
利用向量的混合积求二面角
1 2 3
定义
二面角是指两个平面之间的夹角。
计算公式
cosθ=∣∣a×b×c∣∣∣∣a∣∣∣∣b∣∣∣∣c∣∣,其中a、 b和c分别是三个平面的法向量,θ是两个平面之 间的夹角。
适用范围
适用于两个平面不平行的情况。
06 案例分析
案例一:利用空间向量求线线角
定义
线线角是指两条直线之间的夹角。
计算公式
cosθ=∣∣a⋅b∣∣∣∣a∣∣∣∣b∣∣∣, 其中a和b是两条直线的方向向量,

高考必考题—运用空间向量解决空间角(含解析)

高考必考题—运用空间向量解决空间角(含解析)

运用空间向量解决空间角一、题型选讲题型一 、异面直线所成的角以及研究异面直线所成的角首先要注意交的范围,然后转化为有直线的方向向量的夹角。

例1、【2018年高考江苏卷】如图,在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.例2、(2019南京学情调研) 如图,在正四棱柱ABCDA 1B 1C 1D 1中,已知底面ABCD 的边长AB =3,侧棱AA 1=2,E 是棱CC 1的中点,点F 满足AF →=2FB →.(1) 求异面直线FE 和DB 1所成角的余弦值; (2) 记二面角EB 1FA 的大小为θ,求|cos θ|.题型二、直线与平面所成的角直线与平面所成的角是通过研究直线的方向向量和平面的法向量的所成的角,因此,要特别注意所求的角与已求的角之间的关系。

例3、【2020年高考浙江】如图,在三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC =2BC.(Ⅰ)证明:EF⊥DB;(Ⅱ)求直线DF与平面DBC所成角的正弦值.例4、【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.题型三、平面与平面所成的角利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n1,n2时,要根据观察判断向量在图形中的方向,从而确定二面角与向量n1,n2的夹角是相等还是互补,这是利用向量求二面角的难点、易错点例5、【2019年高考全国Ⅱ卷理数】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.例6、【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.例7、(2020届山东省潍坊市高三上期中)如图,在棱长均为2的三棱柱111ABC A B C -中,平面1ACB ⊥平面11A ABB ,11AB A B =,O 为1AB 与1A B 的交点.(1)求证:1AB CO ⊥;(2)求平面11ACC A 与平面ABC 所成锐二面角的余弦值.二、达标训练1、【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.2、【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.3、【2018年高考全国Ⅰ卷理数】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.4、(2020届山东省九校高三上学期联考)已知四棱柱1111ABCD A B C D -的底面为菱形,12AB AA ==,3BAD π∠=,ACBD O =,AO ⊥平面1A BD ,11A B A D =.(1)证明:1//B C 平面1A BD ; (2)求钝二面角1B AA D --的余弦值.5、(2020届山东省潍坊市高三上期末)在底面为正方形的四棱锥P ABCD -中,平面PAD ⊥平面,,,ABCD PA PD E F =分别为棱PC 和AB 的中点.(1)求证://EF 平面PAD ;(2)若直线PC 与AB ,求平面PAD 与平面PBC 所成锐二面角的大小.6、(2019南京、盐城一模)如图,四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA =AB=2,点E是棱PB的中点.(1) 求异面直线EC与PD所成角的余弦值;(2) 求二面角BECD的余弦值.一、题型选讲题型一 、异面直线所成的角以及研究异面直线所成的角首先要注意交的范围,然后转化为有直线的方向向量的夹角。

利用向量法求空间角》教案

利用向量法求空间角》教案

利用向量法求空间角一、教学目标1. 让学生掌握空间向量的基本概念和性质。

2. 让学生学会使用向量法求解空间角。

3. 培养学生解决实际问题的能力。

二、教学内容1. 空间向量的基本概念和性质。

2. 向量法求解空间角的基本步骤。

3. 实际问题中的应用案例。

三、教学方法1. 采用讲授法,讲解空间向量的基本概念和性质。

2. 采用演示法,展示向量法求解空间角的步骤。

3. 采用案例教学法,分析实际问题中的应用。

四、教学步骤1. 引入空间向量的概念,讲解其基本性质。

2. 讲解向量法求解空间角的基本步骤。

3. 分析实际问题中的应用案例,引导学生运用向量法解决问题。

五、课后作业1. 复习本节课所学内容,整理笔记。

2. 完成课后练习题,巩固所学知识。

3. 选择一个实际问题,尝试运用向量法解决。

六、教学评价1. 课堂讲解:观察学生对空间向量概念和性质的理解程度。

2. 课后作业:检查学生对向量法求解空间角的掌握情况。

3. 实际问题解决:评估学生在实际问题中的应用能力。

七、教学资源1. 教案、PPT、教材等相关教学资料。

2. 计算机、投影仪等教学设备。

3. 实际问题案例库。

八、教学时间1课时(45分钟)九、教学重点与难点1. 空间向量的基本概念和性质。

2. 向量法求解空间角的基本步骤。

3. 实际问题中的应用案例。

十、教学PPT内容1. 空间向量的基本概念和性质。

2. 向量法求解空间角的基本步骤。

3. 实际问题中的应用案例。

十一、教学案例案例一:求解空间直角坐标系中两向量的夹角。

案例二:求解空间四边形的对角线夹角。

案例三:求解空间旋转体的主轴与旋转轴的夹角。

十二、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对空间向量法的理解和应用能力。

十三、教学拓展1. 研究空间向量在几何中的应用。

2. 探索向量法在物理学、工程学等领域的应用。

十四、教学建议1. 注重学生空间想象能力的培养。

2. 鼓励学生积极参与课堂讨论,提高课堂氛围。

空间向量与立体几何(角度问题)教学设计

空间向量与立体几何(角度问题)教学设计

空间向量与立体几何(角度问题)教学设计空间向量与立体几何(角度问题)教学设计一、学习目标:1.能借助空间几何体内的位置关系求空间的夹角;2.能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。

3、探究题型,掌握解法。

二、重难点:向量法在立体几何中求空间的夹角应用。

探究题型,掌握解法。

三、学情分析:本节内容是高考热点问题,需要学生做到非常熟练。

在平时的学习中,学生已经对该几类问题有所认识,本堂课重点在于让学生体会空间角度与向量角度之间的差异,培养学生养成良好的答题习惯。

四、教学过程本节课为高三复习课,所以从开始直奔主题,从回顾旧知开始直接进入例题讲解、课堂练习、方法提炼、课堂小结,重点在于提炼解决类型题的方法并配合相应例题进行巩固,提高课堂效率。

设计意图我们都已经学过空间向量,在空间中如何将点线面的位置量化?回顾旧知,让学生理解空间坐标系的作用在于量化点线面位置①点→空间直角坐标系下点的坐标②线→直线的方向向量③面→平面上一的一点、平面的法向量直线的方向向量→直线上任意两点坐标之差平面的法向量→①设;②找;③列;④求。

所谓平面的法向量,就是指所在的直线与的向量,显然一个平面的法向量有多个,它们是向量.明确点、线、面如何用空间直角坐标系里的坐标进行标示明确方向向量与平面法向量的求法,回顾旧知识。

因为在后续问题中,求已知平面的法向量会多次出现,在此再次回顾法向量为何能确定一个平面,让学生加深对平面法向量的认识。

在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是.二:几个空间角的范围(1)异面直线所成的角θ:0<θ≤π2;(2)直线与平面所成的角θ:0≤θ≤π2;(3)二面角θ:0≤θ≤π.回顾空间角的范围,先从范围的角度与向量与向量的夹角范围进行比较,强调两者的不同三、利用向量求空间角1.两条异面直线所成角的求法设两条异面直线a,b的方向向量为a,b,其夹角为θ,则cosφ=|cosθ|=(其中φ为异面直线a,b所成的角).2.直线和平面所成的角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sinφ=|cosθ|= .3.求二面角的大小(1)如图①,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=.结合图像,让学生更直观地了解到线面所成的角与直线方向向量同平面法向量之间所成的角存在的区别与联系,从而找到适当的方法进行调整结合图像,让学生更直观地了解到二面角与直线方向向量同平面法向量之(2)如图②③,n1,n2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的小大θ=.求空间角:设直线l1,l2的方向向量分别为a,b,平面α、β的法向量分别为n,m.①异面直线l1与l2所成的角为θ,则cosθ=|a·b||a||b|.②直线l1与平面α所成的角为θ,则sinθ=|a·n||a||n|.③平面α与平面β所成的二面角为θ,则|cosθ|=|n·m||n||m|.、间所成的角存在的区别与联系,从而找到适当的方法进行调整通过之前的对比,分析清楚空间角与向量角之间存在的差异后,找寻适当的方法去解决差异,从而统一解题方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以 BD 与
1
所成角的余弦值为 AF
1
30 10
题型一:线线角 练习: 在长方体 ABCD A1B1C1D1 中, AB= 5,AD 8,
AA1 4, M 为B1C1上的一点,且B1M 2,点N 在线段A1D上,
A1D AN . (1)求证:A1D AM .
A1 (2)求AD与平面ANM 所成的角. B1 M A(0,0,0), A1 (0,0, 4),D(0,8, 0), M (5, 2, 4) A
•小结
题型一:线线角
例一:Rt ABC中,BCA 900 , 现将 ABC沿着
平面ABC的法向量平移到A1B1C1位置,已知
求BD1与AF1所成的角的余弦值. C1
F1
取A1B1、AC BC CA CC1, 1 1的中点D 1、F 1,
B1
D1
A1
C
A
B
题型一:线线角 解:以点C为坐标原点建立空间直角坐标系 C xyz 如图 z 所示,设 则: CC1 1 C

n2


A
n2 n1
B
n1


cos | cos n1 , n2 |
关键:观察二面角的范围
cos | cos n1 , n2 |
例3 如所示, ABCD是一直角梯形,ABC=900 , 1 SA 平面ABCD, SA AB BC 1, AD , 求面SCD与面SBA 2 所成二面角的余弦值.
A(1,0,0), B(0,1,0),
1 1 1 F1 ( , 0, a), D1 ( , ,1) 2 2 2 1 所以: AF1 ( , 0,1), 2
1 1 BD1 ( , ,1) 2 2
F1
1
B1
A1
C
D1
A x
By
1 1 AF1 BD1 30 4 cos AF1 , BD1 10 5 3 | AF1 || BD1 | 4 2
2 5 cos AD, A1D 5 AD与平面ANM 所成角的正弦值是
B1 M A
D
C
y
x
B
2 5 5
题型二:线面角
练习1: 正方体 ABCD A1B1C1D1 的棱长为1.
求B1C1与面AB1C 所成的角.
A1 B1 C1 D1ຫໍສະໝຸດ A BCD
题型三:二面角
二面角的范围:

O
[0, ]
y x 0 2 yz0 2
S
练习2:
如图,PA⊥平面 ABC, AC⊥BC,PA=AC=1,BC= 2 , 求二面角 A-PB-C 的余弦值.
z
y
x
练习2: 如图,PA⊥平面 ABC,AC⊥BC,PA=AC=1,
BC= 2 ,求二面角 A-PB-C 的余弦值.
分析: 若用几何法本题不太好处 理,注意到适当建立空间直角坐 标系后各点坐标容易处理,可考 虑尝试用向量法处理 ,从而把问 x 题转化为向量运算问题.
空间向量的引入为代数方法处理立体几 何问题提供了一种重要的工具和方法,解题 时,可用定量的计算代替定性的分析,从而 避免了一些繁琐的推理论证。求空间角与距 离是立体几何的一类重要的问题,也是高考 的热点之一。本节课主要是讨论怎么样用向 量的办法解决空间角问题。
1.若a (a1 , a2 , a3 ), b (b1 , b2 , b3 ), 则:
AA1 4, M 为BC1上的一点,且B1M 2,点N 在线段A1D上,
A1D AN . (1)求证:A1D AM . A1 (2)求AD与平面ANM 所成的角正弦.
A(0,0,0), A1 (0,0, 4), D(0,8, 0),
z
N
C1
D1
AD (0,8,0), A1D (0,8, 4),
AB ( x2 x1 , y2 y1 , z2 z1 )
题型一:线线角
异面直线所成角的范围: 0, 2 思考: C D

结论:
A
B
D1
CD, AB 与的关系? DC , AB 与的关系?
cos
| cos CD, AB |
数量积: a b
a1b1 a2b2 a3b3
| a ||b |

| a | | b | cos a, b
a1b1 a2b2 a3b3 a12 a2 2 a32 b12 b2 2 b32
a b 夹角公式: cos a b
2.若A( x1 , y1 , z1 ), B( x2 , y2 , z2 ),则:
z
y x 2 任取n2 (1, 2,1) z y 2 n1 n2 6 6 cos n1 , n2 即所求二面角得余弦值是 | n1 || n2 | 3 3
解: 建立空直角坐系A - xyz如所示, 1 B - 1, 1, 0) , D (0, , 0), S (0, 0,1) A( 0, 0, 0) , C( C 2 1 易知面SBA的法向量n1 AD (0, , 0) 2 A y 1 1 D x CD (1, , 0), SD (0, , 1) 2 2 设平面SCD的法向量n2 ( x, y, z ), 由n2 CD, n2 SD, 得:
z
N
C1
D1
AM (5, 2, 4), A1D (0,8, 4),
D
C
y
AM A1D=0 A1D AM .
x
B
题型二:线面角
直线与平面所成角的范围: [0, ] 2

A
n
O
思考:
n, BA 与的关系?

B

结论:
sin
|
cos n, AB
|
题型二:线面角 例2: 在长方体 ABCD A1B1C1D1 中, AB= 5,AD 8,
z
y
例 4.如图,PA⊥平面 ABC,AC⊥BC,PA=AC z =1, BC= 2 ,求二面角 A-PB-C 的余弦值.
解:建立坐标系如图,
则 A(0,0,0),B( 2 ,1,0),C(0,1,0),P(0,0,1), x
y
AP =(0,0,1), AB ( 2,1,0), CB ( 2,0,0), CP (0, 1,1) , m AP 0 设平面 PAB 的法向量为 m =(x,y,z),则 m AB 0 ( x , y , z ) (0, 0,1) 0 y 2x ∴ ∴ ,令 x=1,则 m =(1, 2,0) ,
相关文档
最新文档