同步发电机短路电流的计算和仿真
同步发电机突然三相短路分析-第二讲资料

iD iD iD
;
2.磁链轴线在q轴方向的称为交轴阻尼绕组Q,
iQ iQ
;
定、转子回路电流分量的对应关系:
自由电流分量:维持绕组本身磁链不突变而感生的电流, 其衰减主要由该绕组的电阻所确定; 强制电流分量:由电势产生的电流。
定、转子回路电流分量的衰减关系:
所经的磁路为绕励磁绕组外侧, 其对应的电压降为 I xad ,则电压方程为
jI x jI x 0 E ad q0
I Id Eq 0 xd
短路电流基频交流分量的初始值:
计及阻尼回路时基频交流分量初始值
Eq 0 xd
I”
:
I I d
依然存在;
2. 定子三相交流产生去磁的旋转磁场 Ψad= -ψ0, 其突然 穿越励磁绕组,则励磁绕组要保持磁链不突变,需感生 直流电流 i f ;
4. i f i f 0 i f i f
阻尼回路电流分量 :
i2 按定子回路时间常数 Ta 定子绕组自由分量电流 i、 i D、 iQ也按 Ta 衰减,所以,由静止磁场引起的转子电流 i f、 衰减;
维持转子绕组磁链不突变的自由分量电流i f 、i D 起 到励磁电流的作用,其衰减变化引起定子周期分量电流 由初始的 I 衰减到 I
起始
I
阻尼电流衰减完毕
I
Td
阻尼电流衰减完毕
I
Td
稳态 I
短路电流的近似公式 :
基频交流分量电流的近似公式 :
t Td t Td
I m (t ) ( I I )e
( I I )e
同步发电机发生三相短路电流分析1

发电机简介
发电机通常由定子、转子、端盖及轴承等部件
组成。由轴承及端盖将发电机的定子,转子连接 组装起来,使转子能在定子中旋转,做切割磁力 线的运动,从而产生感应电势,通过接线端子引 出,接在回路中,便产生电流。
汽轮发电机是与汽轮机配套的发电机 。其转 速通常为3000转/分(频率为50赫)或3600转/分 (频率为60赫)。高速汽轮发电机为了减少因离 心力而产生的机械应力以及降低风磨耗,转子直 径一般较小,长度较大(即细长转子)。这种细 长转子使大型高速汽轮发电机的转子尺寸受到限 制。20世纪70年代以后,汽轮发电机的最大容量 达130~150万千瓦。
主磁通交链三相磁链的表达 ψb |0 |=ψ0 cos(θ0-120°)
式为:Βιβλιοθήκη ψa0=ψ0cos(θ0+ω0t)
ψc |0|=ψ0cos(θ0+120°)
ψb0=ψ0 cos(θ0+ω0t-120°)
ψc0=ψ0cos(θ0+ω0t+120°)
三相短路电流的磁链: ψai=ψa|0|-ψa0= ψ0cosθ0 -ψ0cos(ω0t)
事故
题 课题简介
同步发电机是电力系统中最重要和最复杂的元件,
由多个具有 电磁耦合关系的绕组构成。同步发电机三相
突然短路时,定子绕组中会产生很大的冲击电流,其峰 值可达额定电流的 10倍以上,从而将在电机内部产生很 大的电磁力和电磁转矩,如果设计和制造时未加充分考 虑,会使定子绕组端部受到损伤,或使转轴发生有害的 变形,还可以破坏电网的稳定和正常运行。因此,虽然 突然短路的瞬态过程时间很短,却受到设计和运行人员 的密切关注。了解短路后电流变化情况至关重要。
31.同步发电机的空载短路实验

一、空载特性空载特性:n =n 1,I =0时,U 0=f (i f )§10-6 空载和短路特性空载特性是发电机的基本特性之一:(1)空载特性表征了电机磁路的饱和情况;(2)空载特性和短路特性等其它特性配合在一起,可以确定同步电机的基本参数。
测取方法:ff δfU Uf 1.00*U定子短路特性:n =n 1,U =0时,I k =f (i f )测取方法:二、短路特性AAA定子fkNI 短路特性是直线的原因:k E U jI x δσ=+=f i E I δ∴∝∝ka1f k E jI x δσ=∴电机磁路处于不饱和状态0151015k x .I =E =.σδ***≈∴当时,fkI 从物理意义上解释:忽略电阻,短路回路只包含电抗,故I k 总是滞后于E 0 900。
F a 与F f 1方向相反,去磁作用,磁路不饱和。
三、利用空载特性和短路特性求同步电抗的不饱和值sk s k a k xI j x I j r I E ≈+=00s kE x I =f0E k I 注意:1)取E 0而非E 0’计算x s2)E 0、I k 为相值3)凸极机计算为直轴同步电抗x dfi 0k I 0'E 短路时电枢的电动势方程:同步电抗的不饱和值四、短路比定义:在能产生空载额定电压的励磁电流下,三相稳态短路时的短路电流与额定电流的比值(K c )。
000()()()kN f f f N c Nfk k N I i i i U U K I i I I =====0fE kNI fkI N U N I kE fk 0k dE jI x =−000**//1/1N d c N N d N N ddE U E x E K I I x U U x k x φφφμ===⨯=不计饱和时:*/1dc xK =dkNx E I 0=当i f =i f 0时有:f δ短路比对电机的影响:1)短路比小则同步电抗大,短路电流小,但负载变化时发电机的电压变化较大,而且并联运行时发电机的稳定性较差,但电机的成本较低;*d x 2)短路比大电机性能较好,但成本高,因为短路比大表示小,故气隙大,使励磁电流和转子用铜量增大;4)我国汽轮发电机的K c =0.47-0.63,水轮发电机的K c =1.0-1.4。
电力系统短路电流计算

电力系统的短路计算 第 4 篇 附录 1
钢质海船入级规范
为计算短路电流,将运行中的各台发电机和各台电动机综合成一台等效发电机,该等效发电机馈 送的短路电流等效于各台发电机和各台电动机馈送的短路电流之和。
1.1.2.8 等效电动机 为简化短路电流的计算,将运行中除大电动机以外的各台电动机综合成一台等效电动机,该等效 电动机馈送的短路电流等效于上述各台电动机馈送的短路电流之和。 1.1.2.9 大电动机 任何额定输出功率大于 100kW,或者大于系统中最大发电机额定功率的 25% 的电动机。
电力系统的短路计算 第 4 篇 附录 1
钢质海船入级规范
(4) 时间和时间常数见表 1.1.3.2(4)。
时间和时间常数符号
表 1.1.3.2(4)
符号
名称
单位
t
以短路发生时刻为起点的持续时间
ms
tx
以短路发生时刻为起点的某一规定时间
ms
T″d、Td′ 同步发电机直轴超瞬态和瞬态短路时间常数
ms
T″d*、Td′* 等效发电机直轴超瞬态和瞬态短路时间常数
符号
E″qo E’ qo E″M Ur UrM UrT2 uK uR uX
电压符号
名称 短路发生前发电机超瞬态交轴电动势 短路发生前发电机瞬态交轴电动势 电动机超瞬态电动势 系统额定线电压 电动机额定线电压 变压器次级额定线电压 以百分比表示的变压器短路电压 以百分比表示的变压器短路电压的电阻分量 以百分比表示的变压器短路电压的电抗分量
1.2.2 同步电机馈送的短路电流计算
1.2.2.1 概述
(1) 在船舶和海上设施的电气装置中使用的同步电机,包括同步发电机、同步电动机和调相机。
6.3 同步发电机突然三相短路的物理过程及短路电流分析

6.3 同步发电机突然三相短路的物理过程及短路电流分析6.3.1 同步发电机在空载情况下突然三相短路的物理过程上一节讨论了无限大电源供电电路发生三相对称短路的情况。
实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。
所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。
由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。
同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。
但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。
由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。
这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。
定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。
图6-6 凸极式同步发电机示意图图6-6为凸极同步发电机的示意图。
定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。
转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。
转子逆时针旋转为正方向,轴超前轴90o。
励磁绕组的轴线与轴重合。
阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。
定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。
励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。
第三章 电力系统三项短路电流的使用计算

近似计算2:
假设条件:
所有发电机的电势为1,相角为 0,即 E 10 不计电阻、电纳、变压器非标准变比。 不计负荷(空载状态)或负荷用等值电抗表示。 短路电路连接到内阻抗为零的恒定电势源上
起始次暂态电流和冲击电流的 实用计算
没有给出系统信息
X S*
IB IS
有阻尼绕组 jxd
jxd 无阻尼绕组
E
E
三、起始次暂态电流和冲击电流的实用计算 1. 起始次暂态电流的计算
•起始次暂态电流:短路电流周期分量(基频分量) 的初值。
•静止元件的次暂态参数与稳态参数相同。
•发电机:用次暂态电势 E 和次暂态电抗 X d
表示。
E G 0 U G 0 jX dIG 0
三、起始次暂态电流和冲击电流的实用计算 1. 起始次暂态电流的计算
(3)短路电流使用计算步骤
较精确计算步骤
绘制电力系统等值电路图 进行潮流计算 计算发电机电势 给定短路点,对短路点进行网络简化 计算短路点电流 由短路点电流推算非短路点电流、电压。
例题
三、起始次暂态电流和冲击电流的实用计算 1. 起始次暂态电流的计算
电力系统三相短路的实用计算
三、起始次暂态电流和冲击电流的实用计算 1. 起始次暂态电流的计算
(1)同步发电机的模型
ia
Eq xd
cos(t
0 )
Ed xq
sin(t
0 )
I cos(t 0-)
ia
Eq|0| xd
当cos(xtd
0
)xq(时Exqd|0|
Exqd|0I| )cos(x1td0E)qe|0|Ttd E(qE|0x|qd|0| ExE|dx0q|d|0|
同步发电机短路电流的计算和仿真

主要内容
作为水轮发电机突然短路温度场分析和仿真的一个子课 题,本次讲座涉及以下内容:
2
概述 大型水轮发电机的结构、损耗 突然短路概念和特征 突然短路电流分析方法和依据 空载时突然三相对称短路磁链分析 空载时突然三相对称短路电流分析 突然单相对称短路电流分析 突然两相对称短路电流分析
3
1
概
述
摘要:突然短路是同步电机的一种重要的瞬 变现象。本次讲座从分析同步电机突然短路 的工具----超导体回路磁链守恒原理全面分 析了开路时三相、两相和单相突然短路的同 步电机短路和负载突然短路时定子电流的变 化规律,并利用Matlab对短路电流和铜耗进 行了仿真。
大型水轮发电机的结构、损耗 18
冷却系统
空气冷却系统 双路径径轴向有(无)风扇系统 双路径径向无风扇系统 单路径轴向系统
氢冷却系统 水冷却系统 其他冷却系统
大型水轮发电机的结构、损耗 19
我 国 部 鲁布革(云 SF150.5分 18/6250 贵) 水 SF300天生桥一级 轮 44/12440 发 电 天生桥二级 SF220.530/9050 机 组 SF302.5岩滩 代 80/17000 表 SF200水口 产 56/11950 品 SF300技 隔河岩 44/12440 术 参 SF240五强溪 数 88/17290
电站名称
型号
容量 MVA 172 /198
转速 r/min 333.3
结构形式 台数 空冷悬式 4
投运年代 1989
333.4
245 /278 345.7 222.2/ 230 333.3 267 /280
136.4
200 145 107.1 136.4 68.2
第二章 同步发电机的数学模型及机端三相短路分析(第十六讲 三相短路分析及短路电流计算)_350507388

第二章同步发电机的数学模型及机端三相短路分析(回顾)第十六讲三相短路分析及短路电流计算1问题1、什么是发电机的超暂态过程、暂态过程?2、超暂态电抗、暂态电抗、同步电抗?大小关系?3、哪些绕组短路瞬间磁链不突变?4、短路电流计算时如何等值?5、为什么要计算0时刻短路电流?6、短路容量?23§1 三相短路电流的变化规律一、短路电流的组成定子abc 绕组短路电流有哪些成分?交流(周期)分量直流(非周期)分量直流分量交流分量dq0绕组电流6短路电流计算机分析结果(i d 、i q 、i 0)i d 交流分量+直流分量i q 直流分量为0i 0=0分析中关心dq0 绕组的直流分量!用标幺派克方程分析三相短路1、只需要考虑d轴方向绕组?2、d绕组直流分量衰减有什么特点?为什么?716t E′22t ′E−t t ′′′′′E E E E E−−29X adX d X f X DX qX QX aq互感为0ad qf fX E X ψ′=各电势的物理含义?磁链不突变353、假设短路前发电机为空载?,即取10=≈U E 假定各发电机内电势相角相同,且均为0,即101=°∠≈E&4、在网络方面,忽略线路对地电容,变压器的励磁回路,在高压网络中忽略电阻。
线路1/2变压器1变压器2F41作业1、比较d轴超暂态电抗、暂态电抗及同步电抗的大小并从物理上解释之。
2、一台汽轮发电机其S r =15MVA,空载额定电压U r =6.3kV,在空载额定电压下发生机端三相突然短路。
已知其参数标幺值如下:s T s T s T X X X a d d d d d162.0,84.0,105.0,86.1,192.0,117.0==′=′′==′=′′设短路瞬间θa (0)=-60°。
(1)试写出三相短路电流的表达式;(2)绘出B相及C相的电流波形;(3)最大冲击电流发生在哪一相?图-3图-442。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
6 4 7 4 5
1998
1992 /1998 1992 1993 1994 1994
20
我 国 部 分 水 轮 发 电 机 组 代 表 产 品 技 术 参 数
电站名称
二滩 龙羊峡 小浪底 万家寨 三峡 李家峡 葛洲坝 葛洲坝
型号
SF55042/12782
容量 MVA 612 /642
转速 r/min 142.9 125 107.1 100 75 125 62.5 62.5
本文还分析了各种相关因素如进风温度、径向通风沟风速、 绝缘材料属性、绝缘老化和线圈电流的集肤效应对定子温 度场的影响,给出了相应的温度场的分布规律。
11
2 大型水轮发电机的结构、损耗
悬式结构主要用于中 高速机组; 伞式结构主要用于中 低速大容量机组 1 2 3 4 5 6 7 8 发电机推力轴承 发电机上导轴承 发电机上机架 发电机下机架 发电机转轴 水轮机转轴 水轮机导轴承 发电机下导轴承
同步发电机突然短路电流 计算和仿真
Calculation and Simulation of the Short Circuit Current of Synchronous Generator
樊
亚
东
1
目的
通过本次讲座,希望大家了解对问题分析的一个思路;
分析一个问题所需要的基本手段;
了解内容本身。
9
国内外研究现状
2
数值计算方法
是求解温度场的常用方法,主要包括有限差分法和有 限元法等。
有限差分法不足之处是,由于采用的是直交网格,因此对 于边界形状复杂的区域和第二类边界条件及内部介质界面 的处理比较困难。
有限元法是当今科学技术发展和工程分析中获得最广泛应 用的数值计算方法,由于它的通用性和有效性,受到工程 技术界的高度重视,伴随着计算机科学和技术的快速发展, 现已成为计算机辅助工程和数值仿真的重要组成部分。
结构形式 台数
空冷半伞 空冷半伞 空冷半伞 空冷半伞 水冷半伞 空冷半伞 空冷半伞 空冷半伞 6 4 6 6 14 5
投运年代
1999 1990 1999 1998 2003~ 2005 1997 1991 1991 21
SF320—48 355.6 /12800 SF30056/13600 SF18060/12800 SF70080/17920 SF40048/12800 SFl70—96 /15600 SFl25—96 /15600 333.3/ 360 200/21 0.5 777.8/ 840 444 194 143
8
国内外研究现状
等效热路法 温度场法 等效热网络法 数值计算方法
2
有限差分法 有限元法
等效热路法
利用传热学和电路理论的相似性把温度场简化为带有 集中参数的热路来进行计算,把分布的真实热源和热阻用 集中的热源和热阻代替,形成等效热路 。
等效热网络法
是应用图论原理,通过网络的拓扑结构进行热分析的 一种方法。它实质是把热路法的参数和热源进行局部分布 参数化 。
若t=0 时,突然移动 磁极,在线圈里有
d ia r 0 dt
0
超导回路的磁链守恒原理
28
超导回路的磁链守恒原理
无论外磁场交链超导体闭合回路的磁链如何变 化,回路感应电流所产生的磁链总会抵制这种 变化,使回路中的总磁链保持不变。
实际线圈总是有电阻的,由于电阻上要消耗能量,促使线圈 的电流和磁链都要发生衰减。 如果是一个孤立的线圈的话,它的衰减时间常数T=L/r,磁链 和电流都会呈指数衰减; 如果这个线圈不是孤立的,周围还有其它线圈,那么,这个 线圈的磁链,除了自身的磁链以外,还包括了其它线圈对它的 互感磁链,这时,保持这个线圈磁链不变的电流,除了自身的 电流外,还要考虑其它线圈电流。同步电机的电枢、转子励磁 线圈和阻尼绕组正好就是这种情况。
大型水轮发电机的定子结构
15
大型水轮发电机 定子线圈截面图
16
电机的损耗
铁心损耗 绕组损耗 机械损耗 铁心损耗
基本铁耗是指主磁场交变时所产生的铁心损耗, 分为磁滞损耗和涡流损耗。 附加铁耗是由于定转子开槽引起气隙磁导谐波磁 场在对方铁心中产生的损耗,在铁心表面产生的损耗 称为表面损耗,主要以涡流损耗为主。而在齿内部产 生的损耗称为脉振损耗。上述两种损耗统称为空载附 加损耗。电机带负载后,由于存在漏磁场和谐波磁场 而在铁心中产生的损耗称为负载附加铁耗。
温升对电机的影响
6
研究的目的和意义
1
我国水电资源的理论蕴藏量为 6.89亿千瓦,技术可 开发量为4.93亿千瓦,经济可开发量为3.95亿千瓦, 目前我国的水电总装机容量为0.75亿千瓦,已开发量 还不到经济可开发量的1/5,继三峡水利工程后,我 国在金沙江、澜沧江流域进行梯级电站的水电开发, 在2020年前,金沙江将开工12座电站,其中8座建成 发电。年总发电量超过2000亿度,等于两个多三峡的 发电量。澜沧江水电开发目标也初步确定,预计到 2020年,流域共规划建设15个电站,总装机容2200万 千瓦左右,年发电量约1200亿度。因此,水电工业的 发展将是一个长期开发的过程。
4 突然短路电流分析方法和依据
理论上分析突然短路电流---方法1 一般习惯从电机的基本电磁关系出发,建立其 状态方程,并通过各种坐标变换来研究电机的 瞬变过程,其计算精确性依赖于准确的电感系 数和互感系数,而在工程实际中,测量这些参 数比较困难。
27
基于超导体回路磁链守恒原理分析--方法2
超导体回路磁链守恒原 则就是指和超导体闭合回路 交链的磁链永远保持不变。 同步发电机的绕组在突 然短路时都是闭合的。电枢 绕组经过短路点闭合,励磁 绕组经过直流励磁电源闭合, 而阻尼绕组本身就是闭合的。
13
大型水轮发电机的结构、损耗
1 2 3 4 5 6 7 8 半伞式结构
发电机推力轴承 发电机上导轴承 发电机上机架 发电机下机架 发电机转轴 水轮机转轴 水轮机导轴承 发电机下导轴承 伞式结构
14
定子结构
定子部分由机座、铁心和绕组 等部件组成。 铁芯是发电机定子的一个重要 部件。它是磁路的主要组成部分, 并用于固定线圈,它由扇形冲片, 通风槽片,拉紧螺年杆,定位筋, 齿压片、拉紧螺杆及固定片等零部 件组成。扇形冲片用0.5或0.35毫 米厚的硅钢片冲制而成。 大中型水轮发电机的定子 绕组一般采用条式波绕组。
22
三峡水电站
三峡工程设计安装26台单机容量70万千瓦的发电机组,总装机容 量1820万千瓦。机组全部投产后每年可发电847亿千瓦时。
23
24
3 同步电机的突然短路概念和特征
突然短路时,同步电机有以下主要特征:
1、突然短路时,短路电流的峰值可以达到额定电流 的十多倍甚至几十倍; 2、随着短路冲击电流的出现,电机绕组端部将受到 强大的冲击电磁力的作用;
鲁布革水电站
鲁布革水电站位于南盘江支流黄泥河上,云贵界河上,为引水式水电站。主要任务为 发电。装机容量600MW,4台150MW,平均年发电量28.49亿kw· h。以220kV和110kV电压输 电线路接入云南省电力系统。工程于1982年开工,1985年底截流,1988年底第一台机发电, 1990年底建成。鲁布革水电站是我国第一个使用世界银行贷款、部分工程实行国际招标的 水电建设工程。被誉为我国水电建设对外开放的一个窗口。
大型水轮发电机的结构、损耗 18
冷却系统
空气冷却系统 双路径径轴向有(无)风扇系统 双路径径向无风扇系统 单路径轴向系统
氢冷却系统 水冷却系统 其他冷却系统
大型水轮发电机的结构、损耗 19
我 国 部 鲁布革(云 SF150.5分 18/6250 贵) 水 SF300天生桥一级 轮 44/12440 发 电 天生桥二级 SF220.530/9050 机 组 SF302.5岩滩 代 80/17000 表 SF200水口 产 56/11950 品 SF300技 隔河岩 44/12440 术 参 SF240五强溪 数 88/17290
分析短路电流的目的
5
研究的目的和意义
1
由于局部部件发热,电机中常用的铜、铝、合金 铝、银铜和钎焊材料等金属材料的强度和硬度会 逐步下降,从而引起结构部件严重变形,导致机 组振动危及电机运行安全。
正确研究和计算电机各部件温升情况,不仅可以 优化电机设计,还为今后电机高效、安全运行奠 定了坚实的基础。
4
研究的目的和意义
1
大型电机本身是一个由多种材料组合而成的组合 体,它的发热过程较复杂,因而它的温升过程也 较复杂,但在一定的容量下,各部分的温升是一 定的,温度分布也是一定的。 对电机的稳态温度场计算的目的就是核算电机中 各发热部件在稳定运行时的温升情况; 对电机的瞬态温度场计算的目的是为了核算电机 的瞬态最高温度是否超过材料所允许的限度。
7
研究的目的和意义
1
大型水电站的建设,推动了大型水轮发电机发热与 冷却技术的研究工作。目前,三峡电站的水轮发电 机单机容量己达700MW,是世界上单机容量最大的水 轮发电机之一,它的温度场的研究和分析是发电机 优化设计的重要一环。随着电机设计水平和制造工 艺的提高,大型水电站所采用水轮发电机容量有不 断提高的趋势。因此,有关水轮发电机温度场的计 算和分析作为水轮机组有待研究的几大系列问题之 一,显得越来越重要。
10
本研究所做的工作
3
本文根据大型水轮发电机结构特点(通风系统的对称性), 通过对比和计算,把定子温度场的求解区域确定为半齿半 槽、轴向半个铁心的范围;
提出了一些基本假设及相应的边界条件,计算和确定了各 散热面的表面散热系数,计算了定子各个部分的等效导热 系数和损耗引起的发热率; 应用有限元法的通用软件——ANSYS,对大型水轮发电机定 子稳态和瞬态温度场进行了仿真计算和研究,绘制了相应 的二维和三维温度场图,得到了一些典型路径上的温度分 布曲线和一些典型点的温度变化;