恒定磁场
大学物理第7章恒定磁场(总结)

磁场对物质的影响实验
总结词
磁场对物质的影响实验是研究磁场对物质性 质和行为影响的实验,通过观察物质在磁场 中的变化,可以深入了解物质的磁学性质和 磁场的作用机制。
详细描述
在磁场对物质的影响实验中,常见的实验对 象包括铁磁性材料、抗磁性材料和顺磁性材 料等。通过观察这些材料在磁场中的磁化、 磁致伸缩等现象,可以研究磁场对物质内部 微观结构和宏观性质的影响。此外,还可以 通过测量物质的磁化曲线和磁滞回线等参数 ,进一步探究物质的磁学性质和磁畴结构。
毕奥-萨伐尔定律
02
描述了电流在空间中产生的磁场分布,即电流元在其周围空间
产生的磁场与电流元、距离有关。
磁场的高斯定理
03
表明磁场是无源场,即穿过任意闭合曲面的磁通量恒等于零。
磁场中的电流和磁动势
安培环路定律
描述了电流在磁场中所受的力与 电流、磁动势之间的关系,即磁 场中的电流所受的力与电流、磁 动势沿闭合回路的线积分成正比。
磁流体动力学
研究磁场对流体运动的影响,如磁场对流体流动的导向、加速和 减速作用。
磁力
磁场可以产生磁力,对物体进行吸引或排斥,可以用于物体的悬 浮、分离和搬运等。
磁电阻
某些材料的电阻会受到磁场的影响,这种现象称为磁电阻效应, 可以用于电子器件的设计。
磁场的工程应用
1 2
磁悬浮技术
利用磁场对物体的排斥力,实现物体的无接触悬 浮,广泛应用于高速交通、悬浮列车等领域。
磁动势
描述了产生磁场的电流的量,即 磁动势等于产生磁场的电流与线 圈匝数的乘积。
磁阻
描述了磁通通过不同材料的难易 程度,即磁阻等于材料磁导率与 材料厚度的乘积。
磁场中的力
安培力
恒定磁场

三、恒定磁场电流或运动电荷在空间产生磁场。
不随时间变化的磁场称恒定磁场。
它是恒定电流周围空间中存在的一种特殊形态的物质。
磁场的基本特征是对置于其中的电流有力的作用。
永久磁铁的磁场也是恒定磁场。
1、磁通密度与毕奥-萨伐尔定律磁通密度是表示磁场的基本物理量之一,又称磁感应强度,符号为B。
电流元受到的安培力 B l d I f d⨯''=毕奥——萨伐尔定律 ⎰⨯=l r r l Id B 2004 πμ对于粗导线,可将导线划分为许多体积元dV 。
⎰⎰⎰⨯=Vrr dV J B 24 πμ 2、磁通连续性定理磁场可以用磁力线描述。
若认为磁场是由电流产生的,按照毕奥-萨伐尔定律,磁力线都是闭合曲线。
磁场中的高斯定理 0d =⋅⎰⎰SS B式中,S 为任一闭合面,即穿出任一闭合面的磁通代数和为零。
应用高斯散度定理⎰⎰⎰⎰⎰⋅∇=⋅VSdV B S B d0=⎰⎰⎰⋅∇VdV B由于V 是任意的,故 0=B⋅∇式中⋅∇为散度算符。
这是磁场的基本性质之一,称为无散性。
磁场是无源场。
3、磁场中的媒质磁场对其中的磁媒质产生磁化作用,即在磁场的作用下磁媒质中出现分子电流。
总的磁场由自由电流与分子电流共同产生。
永磁铁本身有自发的磁化,因而不需要外界自由电流也能产生磁场。
磁媒质的磁化程度用磁化强度M来表征,它是单位体积内的磁偶极矩。
磁偶极矩:环形电流所围面积与该电流的乘机为磁偶极矩,其方向与电流环绕方向符合右螺旋关系。
n IS P m =磁场强度 M B H-=0μ 或 )(0M H B +=μ本构方程 由m H M χ=可得 H B μ=,该式称为磁媒质的成分方程或本构方程。
磁媒质的分类:r m μμχμμ00)1(=+=,顺磁质 1>r μ,抗磁质 1<r μ,铁磁质1>>r μ。
4、安培环路定律磁场强度H沿闭合回路的积分,等于穿过该回路所限定的面上的自由电流。
回路的方向与电流的正向按右螺旋规则选定。
恒定磁场边界条件公式

恒定磁场边界条件公式恒定磁场是指在时间上不发生变化的磁场。
磁场边界条件是指在不同材料的边界上,磁场强度和磁感应强度需要满足一定的关系。
根据麦克斯韦方程组和电磁感应原理,可以得到恒定磁场的边界条件公式。
在这篇文章中,我将详细介绍恒定磁场边界条件公式。
恒定磁场的边界条件公式主要包括两个方面:磁场强度的切向分量和法向分量在两边界上的关系。
首先,考虑磁场强度的切向分量在两个边界上的关系。
设在两个材料之间有一个边界,其中材料1的磁场强度为H1,角标1代表材料1;材料2的磁场强度为H2,角标2代表材料2根据电磁感应原理,磁场强度的切向分量在两个边界上需要满足以下条件:1. 磁场强度的切向分量在边界上连续。
即H1t = H2t,其中H1t和H2t分别代表磁场强度的切向分量,t代表tangential(切向)。
2. 在无自由电荷和电流的区域,磁场强度的切向分量在任意闭合回路上的线积分为零。
即∮Ht·dl = 0,其中∮代表线积分,Ht代表磁场强度的切向分量,dl代表回路上的微小位移元素。
其次,考虑磁感应强度的法向分量在两个边界上的关系。
设在两个材料之间有一个边界,其中材料1的磁感应强度为B1,角标1代表材料1;材料2的磁感应强度为B2,角标2代表材料2根据麦克斯韦方程组和电磁感应原理,磁感应强度的法向分量在两个边界上需要满足以下条件:1. 磁感应强度的法向分量在边界上连续。
即B1n = B2n,其中B1n和B2n分别代表磁感应强度的法向分量,n代表normal(法向)。
2.在无自由电荷和电流的区域,磁感应强度的法向分量在任意闭合回路上的线积分为零。
即∮Bn·dA=0,其中∮代表面积分,Bn代表磁感应强度的法向分量,dA代表回路投影在平面上的微小面积元素。
综上所述,恒定磁场的边界条件公式可以总结为以下四个方程:1.H1t=H2t2. ∮Ht·dl = 03.B1n=B2n4.∮Bn·dA=0这四个公式是根据电磁感应原理和麦克斯韦方程组推导出来的,可以用来描述恒定磁场在边界上的行为,并应用于不同材料的接触面。
《恒定磁场》PPT课件

任何物质的分子都存在着圆形电流,称为分子电流。
nˆ
每个分子电流都相当于一个基本磁元体。
各基本磁元体的磁效应相叠加
永磁体
IN e
v
S
基本磁元体受磁场力作用而转向 2、磁场
磁化
图 4- 4 分 子 电 流
运动的电荷在其周围空间激励出了磁场这种特殊的物质。
磁作用力都是通过磁场来传递的。
3、磁单极子 ①理论上预言存在,但是没有在实验中发现 ②即使存在也是极少的,不会影响现有的一般工程应用。
③洛仑兹力方程
Fq(EvB )
B 的单位: 在SI单位制中,为特斯拉(T) 高斯单位制中,为高斯(Gs )
1 特斯拉 =1 (牛顿·秒)/(库仑·米) 1 T=104 Gs
5、磁感应线 ①磁感应线上任一点的切线方向为该点磁感应强度 B 的方向; ②通过垂直于的单位面积上的磁感应线的条数正比于该点 B 值的大小。
2、安培磁力定律符合牛顿第三定律
F21F12
二、毕奥----沙伐定律
1、电流回路的 B
将安培磁力定律改写为
写成微分形式
F21
l2I2dl240
l1
I1dl1R21
R231
dF21I2dl24 0
l1
I1dl1R21
R231
只与回路 l1 有关
而电流回路所受磁力可以归结为回路中运动电荷受力的结果
B
A
A
q
F
B
图4-11 磁聚焦
图4-12 磁镜
图4-13 磁瓶
三. 回旋加速器
回旋加速器的优点在于以不很高的振 荡电压对粒子不断加速而使其获极高 的动能。
设D形盒的半径为R0,则离子所能
电磁场 恒定磁场

工程电磁场导论:恒定磁场
2)无外场时,各分子环流无规取向,总体磁矩为零,此时无宏观 磁场。有外场时,这些微磁矩受到力矩
的作用,趋于沿外场方向排列(
)。此时,出现
的有
序分布,总磁场不再为零,宏观上呈现磁性。这个过程,称为物 质(媒质)的磁化。 3)磁化的后果,就是媒质产生附加的磁场,叠加于外磁场之上, 空间的磁场,由二者共同决定。
(沿 R 方向)那么前者对后者的磁场作用力可表示为
eR方向由施力者指向
受力者
其中 ,称为真空磁导率。
工程电磁场导论:恒定磁场
• 这个规律没有官方的名称,但常常称为 Ampere 定律,
其在磁场中的地位与 Coulomb 定律在电场中的地位相
当。因此,对于真空中的两个载流回路 的作用力 和 , 对
工程电磁场导论:恒定磁场
•
也可以定义磁力线( B 线),其微分方程:
工程电磁场导论:恒定磁场
【例3-1】有限长直线电流的磁场问题。
•
考虑对称性,选取柱坐标,导线中点为坐标原点,导线与 z 轴重 合。显然,磁场与 维度无关。
取元电流
在 z′处,其在 P
点产生的元磁场
其中
工程电磁场导论:恒定磁场 因此
故
工程电磁场导论:恒定磁场
工程电磁场导论:恒定磁场
• 各向同性线性磁介质,有本构方程
称为磁化率,是一个无量纲的纯数。此时有
其中
为相对磁导率,
为磁导率。
工程电磁场导论:恒定磁场 一些磁介质的性能
工程电磁场导论:恒定磁场
• 对于铁磁介质,情况十分复杂。
等式 仍然成立,但是
不成立。 M~H 间没有线性关系。
工程电磁场导论:恒定磁场
恒定磁场ppt

恒定磁场研究的前沿进展
01
恒定磁场作为一种独特的物理场,具有无辐射、无污染、易于调控等优势,在 基础科学、应用科学和工程技术等领域具有广泛的应用前景。
02
近年来,研究者们在恒定磁场相关的物理、材料、生物医学等领域取得了许多 前沿进展,如在磁性材料研究方面,发现了多种新型磁性材料,提高了磁性材 料的性能和稳定性。
光学性质
恒定磁场可以影响物质的光学性质,如折射率、吸收光谱等。
恒定磁场对物质化学性质的影响
电子结构
恒定磁场可以影响物质的电子结构,从而影响化学键的形成 和断裂。
反应速率
恒定磁场可以影响化学反应速率,从而影响化学反应的能量 转换和物质转化。
04
恒定磁场的应用实例
恒定磁场在医学领域的应用
核磁共振成像(MRI)
恒定磁场的基本特征
恒定磁场是一种非均匀场,其 强度和方向随空间位置的变化
而变化。
恒定磁场具有旋度,因此不会 产生电场。
恒定磁场与电场不同,其强度 不与电流密度成正比,而是与 电流密度和磁导率成正比。
恒定磁场的应用场景
ቤተ መጻሕፍቲ ባይዱ磁性材料制备
磁记录
利用恒定磁场可以控制磁性材料的磁性能参 数,如磁化强度、磁晶各向异性等,从而制 备高性能的磁性材料。
利用恒定磁场将人体中的氢原子磁化,通过检测这些原子核产生的信号,生 成人体内部的高分辨率图像。
磁分离技术
恒定磁场可用于分离血液中的肿瘤细胞、细菌等有害物质,提高疾病诊断和 治疗的准确性。
恒定磁场在材料科学领域的应用
磁性材料制造
恒定磁场可以用于制造高性能的磁性材料,如稀土永磁材料、铁氧体材料等。
磁记录
未来,恒定磁场的研究和应用将会有更多的创新和发 展,为人类的生产和生活带来更多的便利和效益。
电磁场4恒定磁场

S
L
S
磁化电流体密度:
Jm M
磁化电流面密度:
JS
M
en
结论:
➢有磁介质存在时,场中任一点的 B 是自由电流和磁化 电流共同作用在真空中产生的磁场;
➢磁化电流具有与传导电流相同的磁效应。
磁偶极子与电偶极子对比
模型
电量
产生的电场与磁场
电 偶
v p P
1 4π0
pv
1 R
pv evR 4π0R2
➢电流与电流之间 存在相互作用
➢磁场对运动电荷的作用 运动电荷既能产生磁效应也 受到磁力的作用
表明: ➢电流与电流之间,磁铁与电流之间都存在力的作用 ➢磁铁和电流周围存在磁场 ➢磁力是通过磁场来传递的
运动电荷
磁场
运动电荷
存在于电流或永久磁铁周围空间且能 对运动电荷和电流施加作用力的物质
(1) 安培定律
dF
Idl
0
4
I
dl
eR
l R2
点电荷q1对点电荷q2 的作用力
F
1
4 0
q2q1 R2
eR
电荷之间相互作用 力通过电场传递
F q
1
4 0
V
dV
R2
eR
qE
点电荷 库仑定律 电场强度
电流元I′dl′对电流元
Idl的作用力
F
0 4
Idl
(
I
dl
eR
)
R2
电流之间相互作用 力通过磁场传递
F
Idl
0
l
4
l
I
dl
eR
R2
Idl B
l
电流元 安培定律 磁感应强度
大学物理第七章恒定磁场

在均匀磁场中,有一段长度为l的导线,导线的一端固定在x=0处,另一端在x=l处自由悬 挂。当导线受到外力作用而摆动时,求摆动的周期T是多少?
问题三
在均匀磁场中,有一段长度为l的导线,导线的一端固定在x=0处,另一端在x=l处自由悬 挂。当导线受到外力作用而摆动时,求摆动的振幅A是多少?
THANK YOU
04
磁场中的电流
电流产生的磁场
安培环路定律
描述电流产生的磁场,即磁场与电流 成正比,并与电流的环绕方向有关。
毕奥-萨伐尔定律
描述电流在其周围空间产生的磁场, 与电流的大小和距离有关。
磁场对电流的作用
洛伦兹力
描述带电粒子在磁场中受到的力,该 力垂直于粒子的运动方向和磁场方向。
霍尔效应
当电流垂直于磁场通过导体时,会在 导体两侧产生电势差,这种现象称为 霍尔效应。
在磁场中画出一系列从N极指向S 极的曲线,表示磁力作用的路径 。
磁感应强度和磁场强度
磁感应强度
描述磁场对放入其中的导体的作用力,用B表示。
磁场强度
描述磁场本身的强弱,用H表示。
恒定磁场与变化磁场
恒定磁场
磁场强度不随时间变化的磁场。
变化磁场
磁场强度随时间变化的磁场。
03
磁场中的物质
物质的磁性分类
磁化现象
当物质处于磁场中时,物质内部会产生感应磁场,感应磁场 与外磁场相互作用,使物质表现出磁性。这种现象被称为磁 化现象。
磁滞效应
当外磁场变化时,物质的磁化强度不仅与外磁场有关,还与 外磁场的历史状态有关。这种现象被称为磁滞效应。磁滞效 应是磁性材料中常见的一种现象,也是制造电磁铁和电机的 重要原理。
磁场中的能量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1恒定磁场1.真空中位于'r点的点电荷q的电位的泊松方程为()2.由()可知,无界空间中的恒定磁场由恒定磁场的散度和旋度方程共同决定3.恒定磁场在自由空间中是()场4.磁通连续性定律公式物理意义:穿过任意闭和面的磁通量为()。
即进入闭和面S的磁力线数与穿出闭和面S的磁力线数(),磁力线是闭和的5.安培环路定律公式物理意义:磁感应强度B沿任意闭和路径l的线积分,()穿过路径l所围面积的总电流与的乘积6.一个载流的小闭和圆环称为()7.电流环的面积与电流的乘积,称为()8.在远离偶极子处,磁偶极子和电偶极子的场分布是()的,但在偶极子附近,二者场分布()9.磁力线是()的,电力线是间断的10.介质在磁场作用下会产生()11.磁化引起的分子电流、原子电流相当于()12.磁偶极子产生()磁场,叠加于原场之上,使磁场发生变化。
磁化的结果使介质中的合成磁场可能减弱,也可能增强13.介质磁性能分类:()磁性介质,()磁性介质,铁磁性及亚铁磁性介质14.()磁性介质:二次磁场与外加磁场方向相反,导致介质中合成磁场减弱15.()磁性介质:二次磁场与外加磁场方向相同,导致介质中合成磁场增强16.铁磁性及亚铁磁性介质:在()作用下,磁化现象非常显著17.在无传导电流的均匀介质中,束缚电流体密度为()18.只有磁场强度为零或磁场强度与介质表面相垂直的区域,束缚电流面密度为()19.磁感应强度通过某一表面的通量称为()20.与某电流交链的磁通量称为()21.导线回路的总自感等于内、外自感之()22.单位导线回路的内自感为()23.磁场问题的基本变量是场源变量和两个基本的场变量:磁感应强度和磁场强度。
实验证明:磁场的两个基本变量之间的关系为()24.磁通量连续性方程微分形式:()25.安培力可以用磁能量的空间变化率称()来计算26.自由空间中一半径为a的无限长导体圆柱,其中均匀流过电流I,求导体内外的磁感应强度27.一段长为L的导线,当其中有电流I通过时,求空间任一点的矢量磁位及磁感应强度28.磁导率为,内外半径分别为a,b的无限长空心导体圆柱,其中存在轴向均匀电流密度,求各处磁场强度和磁化电流密度。
29.计算半径为的无限长直导体的内自感。
导线的磁导率为30.两根半径为a,轴间距为D()的平行长直导线,导线和周围空间的磁导率为,求平行双导线间单位长度的自感31.一根长直导线与一边长为的矩形线圈共面,线圈b与直导线平行,接近直导线的b边到直导线的距离为d,求两导线间的互感32.一对宽为a相距h的平行带线传输线,其中流有相反方向的电流I。
如果带线宽,忽略边沿效应,求带线间单位长度上的作用力33.真空中直线长电流I的磁场中有一等边三角形回路,求三角形回路内的磁通34.通过电流密度为的均匀电流的长圆柱导体中有一平行的圆柱形空腔,计算各部分的磁感应强度,并证明腔内的磁场是均匀的35.下面的矢量函数中哪些可能是磁场?如果是,求其源变量。
(1),(圆柱坐标) (2), (3),(4),36.由矢量位的表示式证明磁场的积分公式,并证明式的散度等于零。
37.有一电流分布,求矢量位和磁感应强度38.边长分别为a和b载有电流I的小矩形回路,求远处的一点P(x,y,z)的矢量位,并证明它可以写成式。
39.半径为a的磁介质球,其磁化强度,A、B均为常数。
若采用安培电流模型求磁化电流(和)。
40.无限长直线电流I垂直于磁导率分别为和的两种磁介质的交界面,试求两种媒质中的磁感应和41.任意一个平面电流回路在真空中产生的磁场强度为,若平面回路位于磁导率分别为和的两种媒质分界平面上。
试求两种媒质内的磁场强度和。
42.证明:在不同介质的分界面上矢量位的切向分量是连续的43.一根极细的圆铁杆和很薄的圆铁盘放在磁场中并使它们的轴与平行。
求两样品内的和。
如已知,,求两样品内的。
44.一环形螺旋管,平均半径为5cm,其圆形截面的半径为2cm,铁心的相对磁导率假定是,环上绕有1000匝线圈,通过电流0.7A。
(1)计算螺旋管的电感;(2)若铁心上开个0.1cm的空气隙,假定开口后铁心的没有变化,再计算电感;(3)求空气隙和铁心内的磁场能量的比值。
45.证明:单匝线圈励磁下磁路的自感量为,为磁路的磁阻,故NI 激励下,电感量为。
磁路中单匝激励下的磁场储能,则NI 激励下的。
46.两个长的平行矩形线圈放置在同一平面上,长度各为和,宽度各为及,两线圈最靠近边的距离为s。
证明:两线圈的互感是上面已设,两线圈都只有一匝,且已略去端部效应。
47.直导线附近有一矩形回路,回路与导线不共面,证明互感为。
48.长螺管单位长度内有N匝线圈,通过电流I,铁心磁导率为,截面积为S,求作用在它上面的磁力。
49.求习题2.3中面电流在球心处的磁感应强度B50.两个相同的半径为b,各有N匝的同轴线圈,互相隔开距离d,电流I以相同方向流过两个线圈。
(1)求两个线圈中点处的;(2)证明:在中点处 等于零;(3)使中点处也要等于零,则b 和d 之间应有何种关系。
(这样一对线圈可用 于在中点附近获得近似的均匀磁场,称为亥姆霍兹线圈。
)51.有一个电矩为的电偶极子,位于坐标原点上,另一个电矩为的电偶极子,位于矢径的某一点上,试证明偶极子之间的互相作用力为,,式中,,是两个平面和间的夹角。
并问两个偶极子在怎样的相对取向下这个力值最大? 52.两平行无限长直线电流和,相距为d ,求每跟导线单位长度受到的安培力。
53.一个通电流的长直导线和一个通电流的圆环在同一个平面上,圆心与导线的距离为d ,证明:两电流间互相作用的安培力为 这里是圆环在直线最接近圆环的点所张的角。
54.一半径为a 介电常数为ε的无限长圆柱形介质棒,垂直于均匀电场0E 放置,令电场沿x 轴正向,介质棒的轴线与z 轴重合。
设介质棒外区域的电位为1ϕ,棒内区域的电位为2ϕ。
(1)写出棒内、外区域中电位在柱面坐标系中的通解(2)列出边界条件55.真空中直线长电流I的磁场中有一等边三角形回路,如图所示,求三角形回路内的磁通。
56. 下面的矢量函数中哪些可能是磁场?如果是,求其源变量J57. 无限长直线电流I垂直于磁导率分别为μ1和μ2的两种磁介质的交界面,试求两种媒质中的磁感应B1和B2。
58.一根极细的圆铁杆和很薄的圆铁盘放在磁场B0中并使它们的轴与B0平行。
求在两样品内的B和H。
如已知B0=1T,μ=5000μ0,求两样品内的M。
59.一环形螺旋管,平均半径为15cm,其圆形截面的半径为2cm,铁心的相对磁导率μr=1400,环上绕1000匝线圈,通过电流0.7A。
求空气隙和铁心内的磁场能量比值。
60.证明:单匝线圈励磁下磁路的自感量为L0=1/Rm,Rm为磁路的磁组,故NI激励下,电感量为L=N2/Rm。
磁路中单匝激励下的磁场储能,则激励下的Wm=N2Wm0。
61.有一电流分布求矢量位A和磁感应强度B。
62.半径为a的磁介质球,其磁化强度为A、B均为常数。
求磁化电流Jm和Jm s。
63.一环形螺旋管,平均半径为15cm,其圆形截面的半径为2cm,铁心的μr=1400,环上绕1000匝线圈,通过电流0.7A。
(1)计算螺旋管的电感;(2)在铁心上开个0.1cm的空气隙,再计算电感(假设开口后铁心的μr不变)。
64.两个长的平行矩形线圈放置在同一平面上,长度各为和宽度各为及,两线圈最近的边的距离是s。
证明:两线圈的互感是设,两线圈都只有一匝,略去端部效应。
65.如图所示的长螺线管,单位长度密饶n匝线圈,通过电流I,铁心的磁导率为μ,截面积为S,求作用在它上面的力。
66.半径为a的导线圆环载有电流I,已求得在以下条件下求B:(1)r<<a,近圆心(2)sinθ<<1,近轴67.如图所示,无限长直线电流I位于磁导率为μ的磁介质与空气的分界面上。
试求:(1)磁介质内外的磁场分布;(2)磁化电流分布。
68.一个平面电流回路在真空中产生的磁场强度为H0,若此平面电流回路位于磁导率分别为μ1 和μ2 的两种均匀磁介质的分界平面上,试求两种磁介质中的磁场强度H1和H269.同轴线的内导体是半径为a的圆柱,外导体是半径为b 的薄圆柱面,其厚度可忽略不计。
内、外导体间填充有磁导率分别为μ1和μ2两种不同的磁介质如图所示。
设同轴线中通过的电流为I,试求:(1)同轴线中单位长度所储存的磁场能量;(2)单位长度的自感。
70.两个互相平行且共轴的圆形线圈,相距为d ,半径分别为a1和a2,其中a1<<d 。
两线圈中分别载有电流I1和I2,如图所示。
求:(1)两线圈的互感;(2)两线圈间的磁场力。
71.求双线传输线单位长度的自感,导线半径为a ,导线间距离 D a 。
72.两个互相平行且共轴的圆线圈,其中一个圆的半径a 远小于距离 d ,另一个 圆的半径b 不受此限制,两者都只有一匝,求互感。
73. 计算无限长的,电流为I 的线电流产生的磁感应强度。
74. 计算半径为a ,电流为 I 的小电流环产生的磁感应强度75. 已知半径为a ,长度为 l 的圆柱形磁性材料,沿轴线方向获得均匀磁化。
若磁化强度为M ,试求位于圆柱轴线上距离远大于圆柱半径 P 点处由磁化电流产生的磁感应强度。
φ r o zy d l Ir ′ r - r ′e φ76. 在具有气隙的环形磁芯上紧密绕制N 匝线圈,如图示。
当线圈中的恒定电流为 I 时,若忽略散逸在线圈外的漏磁通,试求磁芯及气隙中的磁感应强度及磁场强度。
77. 设一根载有恒定电流 I 的无限长导线与无限大的理想导磁平面平行放置,如图示。
导线与平面间的距离为 h ,试求上半空间任一点磁场强度。
xyzlP (0,0, z ) 0asJ78. 一根无限长的电流为 I 的线电流,位于两种媒质形成的无限大的平面边界附近,两种媒质的磁导率分别为 μ1 及 μ2 ,试求两种媒质中的恒定磁场。
79.自由空间中有一半径为a 的载流线圈,电流强度为I ,求其轴线上任一点处的磁感应强度。
80. 真空中直线长电流I 的磁场中有一等边三角形回路,如题图所示,求通过三角形回路磁通量。
81.若半径为a 、电流为I 的无限长圆柱导体置于空气中,已知导体的磁导率为μ,求导体内、外的磁场强度H 和磁感应强度B 。
Xhy xμ = ∞ μ 0IO82. 如果在半径为为a 、电流为I 的无限长圆柱导体内有一个不同轴的半径为b 的圆柱空腔,两轴线的距离为c ,且a b c <+,如题图所示。
求空腔内的磁感应强度。
83. 在下面的矢量中,哪些可能是磁感应强度B ?如果是,与它相应的电流密度J 为多少?(1)ρρa F =(圆柱坐标系)(2)xy y x a a F +-=(3)yx y x a a F -=(4)rϕa F -=(球坐标系)84. 已知某电流在空间产生的磁矢位是()2222z y xy y x z y x -++=a a a A 求磁感应强度B 。