怎样学好初二数学的方法
初中数学学习方法技巧6篇

初中数学学习方法技巧6篇初中数学学习方法技巧1数学是研究数量结构、变化、以及空间模型等概念的科学.它是物理、化学等学科的基础,而且与我们的生活息息相关.所以说,学好数学对于我们每个同学来说都是非常重要的.下面我向大家介绍一下初中数学的学习方法与技巧:一:平时的数学学习:1课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握○度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完。
2让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板○上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。
3课后及时复习.○写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课。
4单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,○关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”。
二:期中期末数学复习:要将平时的单元检测卷订成册,并且将错题再做一遍.如果整张试卷考得都不好,那么可以复印将试卷重做一遍.除试卷外,还可以将作业上的错题、难题、易错题重做一遍.另外,自己还可以做2-3张期末模拟卷。
三:数学考试技巧:如果想得高分,在选择、填空、计算题上是不能丢分的.在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容.在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种.遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,如这次考试有两个空白的钟,还有去年七年级期末的几题填空.这些条件都对你的解题有很大帮助.在期中、期末考试中有充足的时间,将自己的速度压下来,不是越快越好,争取一次做成功.大概留35分钟的时间检查。
初二数学如何学好?

初二数学如何学好?1、多做练习题要想学好初三数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。
后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”。
所以学好初三数学必须熟悉各种基本题型并掌握其解法,在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势,并且要多做综合题。
2、图是数学学习的生命线图是初等数学的生命线,能不能用图支撑思维活动是能否学好初等数学的关键。
无论是几何还是代数,拿到题后首先应该考虑的就是能否画图解决。
有的时候,一些简单题只要把图画出来,答案就直接出来了。
遇到难题时就更应该画图,图可以清楚地呈现出已知条件。
而且解难题时至少一问画一个图,这样看起来清晰,做题的时候也好捋顺思路。
3、图夯实基础,学会思考数学中考试题中,基础分值占的最多。
因此,初三数学复习教学中,必须扎扎实实地夯实基础,使每个学生对初中数学知识都能达到“理解”和“掌握”的要求;在应用基础知识时能做到熟练、正确和迅速。
4、养成良好的解题习惯在平时要养成良好的解题习惯。
让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。
5、总结规律很多数学题都有非常明显的规律性,而这种规律的探索,只能靠你自己,老师们所能教会你们的,仅仅是发现规律的窍门。
6、保持数学学习兴趣要形成对于数学的学习兴趣,学习兴趣对于学好数学至关重要,学习兴趣可以从解题方法和解题技巧中来逐步培养,可以从课堂上有趣的知识和计算来培养,另外可以从课上老师动画实例表演来培养。
家长和老师适当给予鼓励,让孩子找到学习的兴趣,进而提高思维能力。
初二数学学习方法:学好数学的三点建议

初二数学学习方法:学好数学的三点建议初二数学学习方法:学好数学的三点建议一、阅读明白得目前初中学生学习数学存在一个严峻的问题确实是不善于读数学教材,他们往往是死记硬背。
重视阅读方法对提高初中学生的学习能力是至关重要的。
新学一个章节内容,先粗粗读一遍,即扫瞄本章节所学内容的枝干,然后一边读一边勾,粗略明白得教材的内容及其重点、难点所在,对不明白得的地点打上记号。
然后细细地读,即依照每章节后的学习要求,认真阅读教材内容,明白得数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。
再次带着研究者的态度去读,即带着进展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读明白,并形成知识网络,完善认识结构,当学生把握了这三种读法,形成适应之后,就能从本质上改变其学习方式,提高学习效率了。
二、提高听课质量要培养会听课,听明白课的适应。
注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的说明及一节课最后的小结,如此,抓住重、难点,沿着知识的发生进展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。
教师范读的是阅读教学中不可缺少的部分,我常采纳范读,让幼儿学习、仿照。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
一样说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,事实上确实是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”因此也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副事实上的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
初二数学的复习技巧和方法

初二数学的复习技巧和方法数学是一门很考验逻辑思维能力的学科。
初二学生的数学复习方法和技巧有哪些?以下是收集整理的一些关于初二数学的复习技巧和方法_八年级学生数学方法须知,作为参考,希望你喜欢。
【1】数学复习五大方法:一、回归课本,夯实基础,做好预习。
数学的基本概念、定义、公式,数学知识点之间的内在联系,基本的数学解题思路与方法,是复习的重中之重。
回归课本,要先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要稳扎稳打,不要盲目攀高,欲速则不达。
复习课的内容多、时间紧。
要提高复习效率,必须使自己的思维与老师的思维同步。
而预习则是达到这一目的的重要途径。
没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,提高学习效率。
二、抓住关键,突出重点,不以题量论英雄学好数学要做大量的题,但反过来做了大量的题,数学不一定好。
“不要以题量论英雄”,题海战术,有时候往往起到事倍功半的效果,因此要提高解题的效率。
做题的目的在于检查你学的知识,方法是否掌握得很好。
如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,在准确地把握住基本知识和方法的基础上做一定量的练习是必要的,但是要有针对性地做题,突出重点,抓住关键。
复习中,所谓突出重点,主要是指突出教材中的重点知识,突出不易理解或尚未理解深透的知识,突出数学思想与解题方法。
数学思想与方法是数学的精髓,是联系数学中各类知识的纽带。
要抓住教材中的重点内容,掌握分析方法,从不同角度出发思索问题,由此探索一题多解、一题多变和一题多用之法。
培养正确地把日常语言转化为代数、几何语言。
并逐步掌握听、说、读、写译的数学语言技能。
三、提高复习兴趣,克服“高原现象”高原现象在数学复习阶段表现得十分明显。
平时授新课,新鲜有趣;搞复习,要重复已学的内容,有的同学会觉得单调、枯燥无味,致使成绩提高缓慢,甚至下降。
关于提高初二数学成绩的四大技巧

关于提高初二数学成绩的四大技巧前言数学是一门较为抽象且难以理解的学科,尤其对于初二学生来说,数学的难度系数又会有所提高。
提高初二数学成绩需要有有效合理的方法,下面将为大家介绍四大技巧,希望对大家有所帮助。
技巧一:掌握基础概念初二数学学的东西相对比较多,且涵盖的内容相对比较广泛,掌握数学基础概念是为了培养逻辑思维的基础,是提高数学成绩的核心。
具体来说,对于初二数学来讲,一定要掌握初中数学的数与式,方程与不等式,函数,平面几何,空间几何等基础概念。
学好这些基础概念,能够令初二学生对数学产生深层次的理解,从而较为快速的把握数学的各个章节内容。
技巧二:掌握思维方法对于初二的数学来讲,如果掌握思维方法,能够方便初二学生更好地理解和运用所学知识。
掌握思维方法的关键在于多做题和思考,不断阅读和理解题目,找到规律和方法,逐渐锤炼出自己的解题思路。
其次,在运用解题方法的时候要注意方法的选取,适时编写解题思路并运用所学理论和方法解题。
这样做能够推动整个数学思维模式的转化,逐步提高数学思维的灵活性和观察能力。
技巧三:做好基本功初二数学中涵盖了很多基本知识点,如分式,整式,三角形等基本概念,与此同时,要用好初二数学,必须要做好基本功,如加减乘除等计算。
当把基本功熟记于心,并能为所欲为时,初二学生的数学成绩将会有很大提升。
同时,做好基本功还能够帮助初二学生更好地理解和掌握新概念和新方法。
技巧四:联系实际应用初二数学学习内容较为广泛,知识点较多,而实际应用并不局限于应试环节,相反,实际应用更多地需要适时加强联系。
同时,联系实际应用还能够帮助初二学生更好地理解和掌握所学知识。
当初二学生一定涵盖了数学的基本概念且具有较为丰富的实际应用经验,即可有效应用数学知识解决实际问题。
结语初二数学学习难度系数相对较大,但只要有合理的学习方法与技巧,相信大家的数学成绩都能够有所提高。
总而言之,必须掌握数学基础概念、思维方法、做好科学的基础功和与实际应用联系,才能提高初二数学成绩。
初中数学学好的方法和技巧

初中数学是数学学习的重要基础阶段,以下是学好初中数学的方法和技巧:
1.制定学习计划:制定一个合理的学习计划,分配好每天的学习
时间和任务,确保按计划进行学习。
2.掌握基础知识:学好初中数学的关键在于掌握基础知识。
在学
习过程中,要注意理解概念、定理、公式等基础知识点,并不
断进行巩固练习。
3.多做练习:通过多做练习,可以加深对知识点的理解,提高解
题能力和思维灵活性。
4.重视错题:对于做错的题目,要认真分析错误原因,找出自己
的薄弱环节,以便更好地进行针对性学习。
5.积极思考:在学习的过程中,要积极思考,尝试从不同角度去
解决问题,培养自己的思维能力。
6.寻求帮助:如果遇到难以解决的问题,不要害羞,可以向老师、
同学请教,或者参加一些数学辅导班,以便得到更好的帮助和
指导。
7.培养良好的学习习惯:良好的学习习惯是学好数学的重要保障。
要养成认真听课、记笔记、独立完成作业、复习总结等良好的
学习习惯。
8.拓展学习:在学习过程中,可以适当地拓展学习范围,了解一
些数学文化、数学历史等方面的知识,这有助于增强对数学的
兴趣和认识。
初二数学学习方法技巧整理

初二数学学习方法技巧整理初中数学是由简洁明白的事项一步一步地开展而来,所以,只要学习数学的人老诚实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就必须能理解其全部内容。
接下来是我为大家整理的初二数学学习方法技巧整理,盼望大家喜爱!初二数学学习方法技巧整理一1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用非常特别广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的根底,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有很多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个特别重要而且应用非常广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比拟困难4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,探究函数乃至几何、三角运算中都有特别广泛的应用。
韦达定理除了确定一元二次方程的一个根,求另一根;确定两个数的和与积,求这两个数等简洁应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有特别广泛的应用。
5、待定系数法在解数学问题时,假设先判定所求的结果具有某种确定的形式,其中含有某些待定的系数,而后依据题设条件列出关于待定系数的等式,最终解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
初中数学学习方法总结(5篇)

初中数学学习方法总结1.突出一个“勤”字(克服一个“惰”字)数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”“勤能补拙是良训,一分辛劳一分才:我们在学习的时候要突出一个勤字,克服一个“懒”字,怎么突出“勤”字“聪”:怎么个勤法,从这个字面上来看,要做到五勤:“耳勤”“眼勤”(耳朵听,眼睛看,接受信息)“口勤”(讨论,回答问题,而不是讲话,消化信息)“脑勤”(善于思考问题,积极思考问题--吸收、储存信息)那是不是做到以上四点就行了呢?不是。
这个字还有缺陷,在聪下面加上“手”“手勤”(动手多实践,不仅光做题,做课件,做模型)这样的人聪明不聪明?最大的提高学习效率,首先要做到--上课认真听讲(这是根本)回家先复习再做题如果课听不好,就别想消化知识2.学好初中数学还有两个要点,要狠抓两个要点:学好数学,一要(动手),二要(动脑)。
动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么动手就是多实践,多做题,要“拳不离手”(武术)“曲不离口”(唱歌)同学就是“题不离手”,这两个要点大家要记住。
“动脑又动手,才能最大地发挥大脑的效率”3.做到“三个一遍”大家听过“失败是成功之母”听过“重复是学习之母”吗?培根(18-19世纪英国的哲学家)--“知识就是力量”“重复是学习之母”如何重复,我给你们解释一下:“上课要认真听一遍,动手推一遍,想一遍”“下课看”“考试前”4.重视“四个依据”读好一本教科书--它是教学、中考的主要依据;记好一本笔记--它是教师多年经验的结晶;做好做净一本习题集--它是使知识拓宽;记好一本心得笔记,最好每人自己准备一本错题集二、分课前、课上、课后三个方面来谈一谈数学的学习。
1.课前做什么,预习。
有的同学会认为预习是浪费时间,上课听老师讲讲不就可以了,为什么还要花时间预习。
其实预习非但不浪费时间,而且有很大的益处。
首先,预习是对自己自学能力的锻炼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎样学好初二数学的方法初二的学习是一个基础的积累过程,怎样学好每一门课程呢?下面是为大家收集整理的学好初二数学的方法,相信这些文字对你会有所帮助的。
一、记忆和背诵有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。
我说你只讲对了一半。
数学同样也离不开记忆。
试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9*9时用九个9去相加得出81就太不合算了。
而用“九九八十一”得出就方便多了。
同样,是运用大家熟记的法则做出来的。
同时,数学中还有大量的规定需要记忆,比如规定(a≠0) 等等。
因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。
因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。
比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。
在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。
打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。
同样,记不住数学的定义、法则、公式、定理就很难解数学题。
而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。
二、数学思想1、“方程”的思想数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。
最常见的等量关系就是“方程”。
比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。
我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。
如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。
初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。
解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。
物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。
因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想大千世界,“数”与“形”无处不在。
任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。
初中数学的两个分支棗-代数和几何,代数是研究“数”的,几何是研究“形”的。
但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。
在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。
往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。
在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。
尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
3、“对应”的思想“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。
比如我们在计算或化简中,将对应公式的左边,对应a ,y对应b ,再利用公式的右边直接得出原式的结果即。
这就是运用“对应”的思想和方法来解题。
初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。
“对应”的思想在今后的学习中将会发挥越来越大的作用。
三、培养自学能力在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。
因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。
我去佛山一中开家长会时,一中校长的一番话使我感触良多。
他说:我是教物理的,学生物理学得好,不是我教出来的,而是他们自己悟出来的。
当然,校长是谦虚的,但他说明了一个道理,学生不能被动地学习,而应主动地学习。
一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。
自学能力越强,悟性就越高。
随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。
因此,要养成预习的习惯。
在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。
由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。
因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。
同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。
有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。
学来学去,知识还是别人的。
检验数学学得好不好的标准就是会不会解题。
听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
四、自信在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。
当然,俗话说,艺高胆大,艺不高就胆不大。
但是,做不出是一回事,没有去做则是另一回事。
稍为难一点的数学题都不是一眼就能看出它的解法和结果的。
要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。
你都没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。
也同样要先分析、研究,找到正确的思路后才向你讲授。
不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。
在数学解题中,自信心是相当重要的。
要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。
要敢于去做题,要善于去做题。
这就叫做“在战略上藐视敌人,在战术上重视敌人”。
具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。
一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。
数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。
有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。
当然,做题先从哪儿下手是一件棘手的事,不一定找得准。
但是,做题一定要抓住其特殊性则绝对没错。
选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择与其它条件有关的、或与结论有关的、或与题目中的隐含条件有关的,进行推理或演算。
一般难题都有多种解法,条条大路通北京。
要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。
自学能力越强,悟性就越高。
随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。
因此,要养成预习的习惯。
在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。
由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。
因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。
同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。
有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。
学来学去,知识还是别人的。
检验数学学得好不好的标准就是会不会解题。
听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。