高中物理动量拔高题(尖子生辅导)
压轴题07 动量专题(原卷版)-2020年高考物理挑战压轴题(尖子生专用)

压轴题07动量专题1.激光由于其单色性好、亮度高、方向性好等特点,在科技前沿的许多领域有着广泛的应用。
根据光的波粒二象性可知,当光与其他物体发生相互作用时,光子表现出有能量和动量,对于波长为λ的光子,其动量p=h。
已知光在真空中的传播速度为c,普朗克常量为h。
(1)科研人员曾用强激光做过一个有趣的实验:一个水平放置的小玻璃片被一束强激光托在空中。
已知激光竖直向上照射到质量为m的小玻璃片上后,全部被小玻璃片吸收,重力加速度为g。
求激光照射到小玻璃片上的功率P;(2)激光冷却和原子捕获技术在科学上意义重大,特别是对生物科学将产生重大影响。
所谓激光冷却就是在激光的作用下使得做热运动的原子减速,其具体过程如下:一质量为m的原子沿着x轴负方向运动,频率为ν的激光束迎面射向该原子。
运动着的原子就会吸收迎面而来的光子从基态跃迁,而处于激发态的原子会立即自发地辐射光子回到基态。
原子自发辐射的光子方向是随机的,在上述过程中原子的速率已经很小,因而光子向各方向辐射光子的可能性可认为是均等的,因而辐射不再对原子产生合外力的作用效果,并且原子的质量没有变化。
①设原子单位时间内与n个光子发生相互作用,求运动原子做减速运动的加速度a的大小;②假设某原子以速度v0沿着x轴负方向运动,当该原子发生共振吸收后跃迁到了第一激发态,吸收一个光子后原子的速度大小发生变化,方向未变。
求该原子的第一激发态和基态的能级差ΔE?2.如图所示,质量m1=0.1kg的长木板静止在水平地面上,其左、右两端各有一固定的半径R=0.4m 的四分之一光滑圆弧轨道,长木板与右侧圆弧轨道接触但无粘连,上表面与圆弧轨道最低点等高。
长木板左端与左侧圆弧轨道右端相距x0=0.5m。
质量m3=1.4kg的小物块(看成质点)静止在右侧圆弧轨道末端。
质量m2=0.2kg的小物块(看成质点)从距木板右端1718x m处以v0=9m/s的初速度向右运动。
小物块m2和小物块m3发生弹性碰撞(碰后m3不会与长木板m1发生作用)。
高中物理动量定理解题技巧(超强)及练习题(含答案)含解析

高中物理动量定理解题技巧(超强)及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。
求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。
【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。
2.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。
质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。
现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A 点运动到B 点的过程,根据机械能守恒: 解得v B =4m/s ;R=0.8m ;(2)对甲乙碰撞过程,由动量守恒定律: ;若甲与乙碰撞后运动到D 点,由动量定理:解得t=0.4s3.在某次短道速滑接力赛中,质量为50kg 的运动员甲以6m/s 的速度在前面滑行,质量为60kg 的乙以7m/s 的速度从后面追上,并迅速将甲向前推出,完成接力过程.设推后乙的速度变为4m/s ,方向向前,若甲、乙接力前后在同一直线上运动,不计阻力,求: ⑴接力后甲的速度大小;⑵若甲乙运动员的接触时间为0.5s ,乙对甲平均作用力的大小.【答案】(1)9.6m/s ;(2)360N ; 【解析】 【分析】 【详解】(1)由动量守恒定律得+=+m v m v m v m v ''甲甲乙乙甲甲乙乙 =9.6/v m s '甲; (2)对甲应用动量定理得-Ft m v m v '=甲甲甲甲 =360F N4.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.物块以v 0=8m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以5m/s 的速度反向运动直至静止.g 取10 m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F ; (3)求物块在反向运动过程中克服摩擦力所做的功W . 【答案】(1)0.32μ=(2)130F N =(3)9W J =【解析】(1)由动能定理,有:2201122mgs mv mv μ-=-可得0.32μ=. (2)由动量定理,有'F t mv mv ∆=-可得130F N =. (3)'2192W mv J ==. 【考点定位】本题考查动能定理、动量定理、做功等知识5.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值.(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s .分别应用动量定理和动能定理求出平均力F 1和F 2的值.(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x .分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的.(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2mt kπ=,求此过程中物块所受合力对时间t 的平均值.【答案】(1)F 1=1.0N ,F 2=0.8N ;(2)当02v v x v t +==时,F 1=F 2;(3)2kA F π=. 【解析】 【详解】解:(1)物块在加速运动过程中,应用动量定理有:1t F t mv =g解得:1 1.0 2.0N 1.0N 2.0t mv F t ⨯=== 物块在加速运动过程中,应用动能定理有:2212t F x mv =g解得:222 1.0 2.0N 0.8N 22 2.5t mv F x ⨯===⨯(2)物块在运动过程中,应用动量定理有:10Ft mv mv =- 解得:01()m v v F t-=物块在运动过程中,应用动能定理有:22201122F x mv mv =- 解得:2202()2m v v F x-=当12F F =时,由上两式得:02v v x v t +== (3)由图2可求得物块由0x =运动至x A =过程中,外力所做的功为:21122W kA A kA =-=-g设物块的初速度为0v ',由动能定理得:20102W mv '=-解得:0kv A m'= 设在t 时间内物块所受平均力的大小为F ,由动量定理得:00Ft mv -=-' 由题已知条件:2m t kπ= 解得:2kAF π=6.如图所示,用0.5kg 的铁睡把钉子钉进木头里去,打击时铁锤的速度v =4.0m/s ,如果打击后铁锤的速度变为0,打击的作用时间是0.01s (取g =10m/s 2),那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力多大? (2)考虑铁锤的重力,铁锤钉钉子的平均作用力又是多大? 【答案】(1)200N ,方向竖直向下;(2)205N ,方向竖直向下 【解析】 【详解】(1)不计铁锤受的重力时,设铁锤受到钉子竖直向上的平均作用力为1F ,取铁锤的速度v 的方向为正方向,以铁锤为研究对象,由动量定理得10F t mv -=-则10.5 4.0N 200N 0.01mv F t ⨯=== 由牛顿第三定律可知,铁锤钉钉子的平均作用力1F '的大小也为200N ,方向竖直向下。
高考物理力学知识点之动量技巧及练习题含答案(1)

高考物理力学知识点之动量技巧及练习题含答案(1)一、选择题1.中国空间站的建设过程是,首先发射核心舱,核心舱入轨并完成相关技术验证后,再发射实验舱与核心舱对接,组合形成空间站。
假设实验舱先在近地圆形过渡轨道上运行,某时刻实验舱短暂喷气,离开过渡轨道与运行在较高轨道上的核心舱安全对接。
忽略空气阻力,以下说法正确的是 A .实验舱应当向前喷出气体B .喷气前后,实验舱与喷出气体的总动量不变C .喷气前后,实验舱与喷出气体的机械能不变D .实验舱在飞向核心舱过程中,机械能逐渐减小2.如图所示,静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,则下列说法不正确的是( )A .α粒子与反冲粒子的动量大小相等,方向相反B .原来放射性元素的原子核电荷数为90C .反冲核的核电荷数为88D .α粒子和反冲粒子的速度之比为1:883.半径相等的两个小球甲和乙,在光滑的水平面上沿同一直线相向运动,若甲球质量大于乙球质量,发生碰撞前,两球的动能相等,则碰撞后两球的状态可能是( )A .两球的速度方向均与原方向相反,但它们动能仍相等B .两球的速度方向相同,而且它们动能仍相等C .甲、乙两球的动量相同D .甲球的动量不为零,乙球的动量为零 4.下列说法正确的是( ) A .速度大的物体,它的动量一定也大 B .动量大的物体,它的速度一定也大C .只要物体的运动速度大小不变,物体的动量就保持不变D .物体的动量变化越大则该物体的速度变化一定越大5.如图所示,A 、B 是位于水平桌面上两个质量相等的小滑块,离墙壁的距离分别为L 和2L,与桌面之间的动摩擦因数分别为A μ和B μ,现给滑块A 某一初速度,使之从桌面右端开始向左滑动,设AB 之间、B 与墙壁之间的碰撞时间都很短,且碰撞中没有能量损失,若要使滑块A 最终不从桌面上掉下来,滑块A 的初速度的最大值为( )A .()AB gL μμ+ B .()2A B gL μμ+C .()2A B gL μμ+D .()12A B gL μμ+ 6.“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是( )A .摩天轮转动过程中,乘客的机械能保持不变B .在最高点,乘客重力大于座椅对他的支持力C .摩天轮转动一周的过程中,乘客重力的冲量为零D .摩天轮转动过程中,乘客重力的瞬时功率保持不变7.如图所示,光滑绝缘水平轨道上带正电的甲球,以某一水平速度射向静止在轨道上带正电的乙球,当它们相距最近时,甲球的速度变为原来的15.已知两球始终未接触,则甲、乙两球的质量之比是A .1:1B .1:2C .1:3D .1:48.如图所示,一个质量为M 的滑块放置在光滑水平面上,滑块的一侧是一个四分之一圆弧EF ,圆弧半径为R =1m .E 点切线水平.另有一个质量为m 的小球以初速度v 0从E 点冲上滑块,若小球刚好没跃出圆弧的上端,已知M =4m ,g 取10m/s 2,不计摩擦.则小球的初速度v 0的大小为( )A .v 0=4m/sB .v 0=6m/sC .v 0=5m/sD .v 0=7m/s9.如图所示,两个相同的木块A 、B 静止在水平面上,它们之间的距离为L ,今有一颗子弹以较大的速度依次射穿了A 、B ,在子弹射出A 时,A 的速度为v A ,子弹穿出B 时,B 的速度为v B ,A 、B 停止时,它们之间的距离为s ,整个过程A 、B 没有相碰,则( )A .s =L ,v A =v BB .s >L ,v A <v BC .s <L ,v A >v BD .s <L ,v A <v B10.如图所示,在冰壶世锦赛上中国队以8:6战胜瑞典队,收获了第一 个世锦赛冠军,队长王冰玉在最后一投中,将质量为19kg 的冰壶推出,运动一段时间后以0.4m /s 的速度正碰静止的瑞典冰壶,然后中国队冰壶以0.1m /s 的速度继续向前滑向大本营中心.若两冰壶质量相等,则下列判断正确的是( )A .瑞典队冰壶的速度为0.3m /s ,两冰壶之间的碰撞是弹性碰撞B .瑞典队冰壶的速度为0.3m /s ,两冰壶之间的碰撞是非弹性碰撞C .瑞典队冰壶的速度为0.5m /s ,两冰壶之间的碰撞是弹性碰撞D .瑞典队冰壶的速度为0.5m /s ,两冰壶之间的碰撞是非弹性碰撞11.一个不稳定的原子核质量为M ,处于静止状态.放出一个质量为m 的粒子后反冲,已知放出的粒子的动能为E 0,则原子核反冲的动能为 A .E 0B .m ME 0 C .mM m-E 0D .MmM m-E 0 12.忽然“唵——”的一声,一辆运沙车按着大喇叭轰隆隆的从旁边开过,小明就想,装沙时运沙车都是停在沙场传送带下,等装满沙后再开走,为了提高效率,他觉得应该让运沙车边走边装沙。
高考物理动量定理解题技巧(超强)及练习题(含答案)

高考物理动量定理解题技巧(超强)及练习题(含答案)一、高考物理精讲专题动量定理1.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。
现将细绳拉至与水平方向成30︒,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。
若忽略空气阻力,重力加速度为g 。
(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。
请通过计算,说明你的观点。
【答案】(1)F =2mg ;(2)()22F I mgt m gL =+;(3)当2HL =时小球抛的最远 【解析】 【分析】 【详解】(1)小球从释放到最低点的过程中,由动能定理得201sin 302mgL mv ︒=小球在最低点时,由牛顿第二定律和向心力公式得20mv F mg L-= 解得:F =2mg(2)小球从释放到最低点的过程中,重力的冲量I G =mgt动量变化量0p mv ∆=由三角形定则得,绳对小球的冲量()22F I mgt m gL =+(3)平抛的水平位移0x v t =,竖直位移212H L gt -=解得2()x L H L =-当2HL =时小球抛的最远2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.3.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。
高中物理动量定理解题技巧讲解及练习题(含答案)及解析

高中物理动量定理解题技巧讲解及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t=0时,导体棒位于顶角O 处;导体棒的质量为m=4kg ;OM 、ON 接触处O 点的接触电阻为R=0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求:(1)t =2s 时流过导体棒的电流强度的大小;(2)在1~2s 时间内导体棒所受安培力的冲量大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式.【答案】(1)8A (2)8N s (3)32639Fx【解析】【分析】【详解】(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为4VE由欧姆定律得24A 8A0.5E I R(2)由图2可知,1(T m)xB 由图3可知,E 与时间成正比,有E=2t (V )4E ItR因=53°,可知任意t 时刻回路中导体棒有效切割长度43x L又由F BIL安所以163F t安即安培力跟时间成正比所以在1~2s 时间内导体棒所受安培力的平均值163233N8N2F故8N sI F t 安(3)因为43v EBLv Bx所以1.5(m/s)vt 可知导体棒的运动时匀加速直线运动,加速度21.5m/sa又212xat ,联立解得32639Fx【名师点睛】本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R=0.1 m ,半圆形轨道的底端放置一个质量为m=0.1 kg 的小球B ,水平面上有一个质量为M=0.3 kg 的小球A 以初速度v 0=4.0 m/ s 开始向着木块B 滑动,经过时间t=0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s(2)v A =1m/s ,v B =3m/s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μMg t =M v –M v 0解得:v =2m/s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:AB Mv Mv mv 222111222ABMvMvmv解得:v A =1m/sv B =3m/s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222BCmvmvmg R在最高点C 对小球B 受力分析,由牛顿第二定律有:2CNvmgF m R解得:F N =4N 由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.3.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以v 0=12 m/s的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A 、B的质量分别为m 1=0.5 kg 、m 2=1.5 kg 。
物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。
在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。
在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。
高中物理动量拔高题(尖子生辅导)

高中物理拔高题(尖子生辅导)一.解答题(共30小题)1.(2014•山东模拟)如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中.(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.,解得组成的系统动量守恒,有:系统损失的机械能为=)整个系统损失的机械能为)弹簧被压缩到最短时的弹性势能为2.(2014•和平区三模)在粗糙的水平桌面上有两个静止的木块A和B,两者相距为d.现给A一初速度,使A与B发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d.已知两木块与桌面之间的动摩擦因数均为μ,B的质量为A的2倍,重力加速度大小为g.求A的初速度的大小.mv•v==﹣联立解得:的初速度的大小是3.(2014•吉安二模)一质量为2m的物体P静止于光滑水平地面上,其截面如图所示.图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接.现有一质量为m 的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止.重力加速度为g.求:(1)木块在ab段受到的摩擦力f;(2)木块最后距a点的距离s.…..点的距离4.(2014•邢台一模)质量为M=2kg的小平板车C静止在光滑水平面上,车的一端静止着质量为m A=2kg的物体A (可视为质点),如图所示,一颗质量为m B=20g的子弹以600m/s的水平速度射穿A后,速度变为100m/s,最后物体A在C上滑了1.25m和C保持相对静止,求AC间的动摩擦因素.根据能量守恒得:5.(2013•海南)如图,光滑水平面上有三个物块A、B和C,它们具有相同的质量,且位于同一直线上.开始时,三个物块均静止,先让A以一定速度与B碰撞,碰后它们粘在一起,然后又一起与C碰撞并粘在一起,求前后两次碰撞中损失的动能之比.,动能的损失为,动能的损失为=6.(2013•北京)对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S、长为l的直导线,单位体积内有n个自由电子,电子电量为e.该导线通有电流时,假设自由电子定向移动的速率均为v.(a)求导线中的电流I;(b)将该导线放在匀强磁场中,电流方向垂直于磁感应强度B,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F,推导F安=F.(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m,单位体积内粒子数量n为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f与m、n和v的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明))粒子与器壁有均等的碰撞机会,即相等时间内与某一截面碰撞的粒子为该段时间内粒子数的由动量定理可得:.7.(2013•山东)如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2kg、m B=1kg、m C=2kg.开始时C静止,A、B一起以v0=5m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A 与C发生碰撞后瞬间A的速度大小.8.(2013•江苏)[选修3﹣5](1)如果一个电子的德布罗意波长和一个中子的相等,则它们的C也相等.A.速度B.动能C.动量D.总能量(2)根据玻尔原子结构理论,氦离子(He+)的能级图如图1所示.电子处在n=3轨道上比处在n=5轨道上离氦核的距离近(选填“近”或“远”).当大量He+处在n=4的激发态时,由于跃迁所发射的谱线有6条.(3)如图2所示,进行太空行走的宇航员A和B的质量分别为80kg和100kg,他们携手远离空间站,相对空间站的速度为0.1m/s.A将B向空间站方向轻推后,A的速度变为0.2m/s,求此时B的速度大小和方向.,激发发态跃迁的谱线满足,一个电子的德布罗意波长和一个中子的波长相等,则动量,代入9.(2012•山东)光滑水平轨道上有三个木块A、B、C,质量分别为m A=3m、m B=m C=m,开始时B、C均静止,A 以初速度νo向右运动,A与B相撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变.求B 与C碰撞前B的速度大小.vv10.(2012•安徽)如图所示,装置的左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M=2kg 的小物块A.装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接.传送带始终以u=2m/s 的速率逆时针转动.装置的右边是一光滑的曲面,质量m=1kg的小物块B从其上距水平台面h=1.0m处由静止释放.已知物块B与传送带之间的摩擦因数μ=0.2,l=1.0m.设物块A、B中间发生的是对心弹性碰撞,第一次碰撞前物块A 静止且处于平衡状态.取g=10m/s2.(1)求物块B与物块A第一次碰撞前速度大小;(2)通过计算说明物块B与物块A第一次碰撞后能否运动到右边曲面上?(3)如果物块A、B每次碰撞后,物块A再回到平衡位置时都会立即被锁定,而当他们再次碰撞前锁定被解除,试求出物块B第n次碰撞后的运动速度大小.,有,同上计算可知的速度大小依次为…的速度大小为次碰撞后的运动速度大小是11.(2012•东城区三模)装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对以下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.12.(2012•海南)一静止的U核经α衰变成为Th,释放出的总动能为4.27MeV.问此衰变后Th核的动能为多少MeV(保留1位有效数字)?衰变成为M+=答:衰变后13.(2012•洛阳模拟)如图所示,光滑水平面上放置质量均为M=2kg的甲、乙两辆小车,两车之间通过一感应开关相连(当滑块滑过感应开关时,两车自动分离),甲车上表面光滑,乙车上表面与滑块P之间的动摩擦因数μ=0.5.一根通过细线拴着且被压缩的轻质弹簧固定在甲车的左端,质量为m=1kg的滑块P(可视为质点)与弹簧的右端接触但不相连,此时弹簧的弹性势能E0=10J,弹簧原长小于甲车长度,整个系统处于静止状态.现剪断细线,求:①滑块P滑上乙时的瞬时速度的大小;②滑块P滑上乙车后最终未滑离乙车,滑块P在乙车上滑行的距离.(取g=10m/s2)mgL=m在乙车上滑行的距离为m14.(2012•湖南模拟)如图,质量为m的b球用长h的细绳悬挂于水平轨道BC的出口C处.质量也为m的小球a,从距BC高h的A处由静止释放,沿ABC光滑轨道滑下,在C处与b球正碰并与b粘在一起.已知BC轨道距地面有一定的高度,悬挂b球的细绳能承受的最大拉力为2.8mg.试问:①a与b球碰前瞬间,a球的速度多大?②a、b两球碰后,细绳是否会断裂?(要求通过计算回答)mgh=v==;2mg=2m球的速度为15.(2012•乐山模拟)如图所示,在足够长的光滑水平轨道上有三个小木块A、B、C,质量分别为m A、m B、m C,且m A=m B=1.0kg,m C=2.0kg,其中B与C用一个轻弹簧拴接在一起,开始时整个装置处于静止状态.A和B之间有少许塑胶炸药,A的左边有一个弹性挡板.现在引爆塑胶炸药,若炸药爆炸产生的能量中有E=9.0J转化为A和B 的动能,A和B分开后,A恰好在B、C之间的弹簧第一次恢复到原长时追上B,并且与B发生碰撞后粘在一起.忽略小木块和弹性挡板碰撞过程中的能量损失.求:(1)塑胶炸药爆炸后瞬间A与B的速度各为多大?(2)在A追上B之前弹簧弹性势能的最大值;(3)A与B相碰以后弹簧弹性势能的最大值.由机械能守恒,得:16.(2012•温州模拟)如图,足够长的水平传送带始终以大小为v=3m/s的速度向左运动,传送带上有一质量为M=2kg 的小木盒A,A与传送带之间的动摩擦因数为μ=0.3,开始时,A与传送带之间保持相对静止.先后相隔△t=3s有两个光滑的质量为m=1kg的小球B自传送带的左端出发,以v0=15m/s的速度在传送带上向右运动.第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时△t1=s而与木盒相遇.求(取g=10m/s2)(1)第1个球与木盒相遇后瞬间,两者共同运动的速度时多大?(2)第1个球出发后经过多长时间与木盒相遇?(3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?,则:17.(2011•广东)如图所示,以A、B和C、D为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平地面上,左端紧靠B点,上表面所在平面与两半圆分别相切于B、C,一物块被轻放在水平匀速运动的传送带上E点,运动到A时刚好与传送带速度相同,然后经A沿半圆轨道滑下,再经B滑上滑板,滑板运动到C时被牢固粘连,物块可视为质点,质量为m,滑板质量M=2m,两半圆半径均为R,板长l=6.5R,板右端到C的距离L在R<L<5R范围内取值,E距A为S=5R,物块与传送带、物块与滑板间的动摩擦因数均μ=0.5,重力加速度取g.(1)求物块滑到B点的速度大小;(2)试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功W f与L的关系,并判断物块能否滑到CD轨道的中点.…,得 (12)…点的速度18.(2011•盐城一模)(选修模块3﹣5)(1)下列说法中正确的是BDA.β衰变现象说明电子是原子核的组成部分B.目前已建成的核电站的能量来自于重核裂变C.一个氢原子从n=3的激发态跃迁到基态时,最多能辐射3种不同频率的光子D.卢瑟福依据极少数α粒子发生大角度散射提出了原子核式结构模型(2)光照射到金属上时,一个光子只能将其全部能量传递给一个电子,一个电子一次只能获取一个光子的能量,成为光电子,因此极限频率是由金属(金属/照射光)决定的.如图1所示,当用光照射光电管时,毫安表的指针发生偏转,若再将滑动变阻器的滑片P向右移动,毫安表的读数不可能变小(变大/变小/不变).(3)如图2,总质量为M的火箭被飞机释放时的速度为υ0,方向水平.释放后火箭立即向后以相对于地面的速率u喷出质量为m的燃气,火箭相对于地面的速度变为多大?最多能辐射v=19.(2011•武昌区模拟)如图所示,一固定的光滑斜面倾角为θ=30°,斜面长为L.从斜面顶端无初速释放一质量为m的小球A,同时另一质量为m的小球B从斜面底端以某一初速度沿斜面向上运动,已知两球都可看成质点,碰撞为正碰且碰撞时无机械能损失,重力加速度为g.问:(1)要使碰撞后A球恰好能够回到斜面顶端,则B球的初速度v0多大?(2)若A球从斜面顶端、B球从斜面底端都以(1)中求出的初速度v0作为各自的初速度而相向运动,要使两球碰撞后同时回到各自的出发点,则A球出发比B球要晚的时间△t是多少?=沿斜面向上做匀减速直线运动,+=,)2.20.(2011•深圳二模)细管AB内壁光滑、厚度不计,加工成如图所示形状,长L=0.8m的BD段固定在竖直平面内,其B端与半径R=0.4m的光滑圆弧轨道平滑连接,CD段是半径R=0.4m的圆弧,AC段在水平面上,与长S=1.25m、动摩擦因数μ=0.25的水平轨道AQ平滑相连,管中有两个可视为质点的小球a、b,m a=3m b.开始b球静止,a球以速度v0向右运动,与b球发生弹性碰撞之后,b球能够越过轨道最高点P,a球能滑出AQ.(重力加速度g取10m/s2,).求:①若v0=4m/s,碰后b球的速度大小;②若v0未知,碰后a球的最大速度;③若v0未知,v0的取值范围.的最大速度为碰撞后的速度为,经过最高点时的速度为碰撞前的速度为21.(2011•山西模拟)(1)2011年3月11日,日本东部海域发生里氏9.0级地震.地震所引发的福岛核电站泄漏事故让全世界都陷入了恐慌.下面有关核辐射的知识,说法正确的是A.核泄漏中放射性物质放射出α、β、γ三种射线,其中α射线的穿透能力最强B.β衰变所释放的电子是原子核内的中子转变为质子时所产生的C.若使放射性物质的温度降低,其半衰期将减小D.铀核()衰变为铅核()的过程中,要经过8次α衰变和6次β衰变(2)如图所示,质量为M的弧形槽静止在光滑的水平面上,弧形槽的光滑弧面底端与水平地面相切.一个质量为m的小物块以速度v0沿水平面向弧形槽滑来,并冲上弧形槽,设小物块不能越过弧形槽最高点,试求小物块所能上升的最大高度?(22.(2011•河南模拟)(1)用某种单色光照射某种金属表面,发生了光电效应.现将该单色光的强度减弱,则C.A.光电子的最大初动能增大B.光电子的最大初动能减小C.单位时间内产生的光电子数减少D.可能不发生光电效应(2)如图所示,甲车质量为2kg,静止在光滑水平面上,上表面光滑,右端放一个质量为lkg的小物体(可视为质点).乙车质量为4kg,以5m/s的速度向左运动,与甲车碰撞后甲车获得6m/s的速度,小物体滑到乙车上.若乙车足够长,上表面与小物体间的动摩擦因数μ=0.2,则小物体在乙车上表面滑行多长时间相对乙车静止?(g取10m/s2,甲、乙两车上表面等高)==1.6m/st=23.(2010•北京)雨滴在穿过云层的过程中,不断与漂浮在云层中的小水珠相遇并结合为一体,其质量逐渐增大.现将上述过程简化为沿竖直方向的一系列碰撞.已知雨滴的初始质量为m0,初速度为v0,下降距离l后与静止的小水珠碰撞且合并,质量变为m1.此后每经过同样的距离l后,雨滴均与静止的小水珠碰撞且合并,质量依次变为m2、m3…m n…(设各质量为已知量).不计空气阻力.(1)若不计重力,求第n次碰撞后雨滴的速度v n;(2)若考虑重力的影响,a.求第1次碰撞前、后雨滴的速度v1和v n′;b.求第n次碰撞后雨滴的动能.得:,式得:次碰撞后:+动能为:=+2gL、次碰撞后雨滴的动能为(+2gL24.(2010•山东)如图所示,滑块A、C质量均为m,滑块B质量为,开始时A、B分别以v1、v2的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C无初速地放在A上,并与A粘合不再分开,此时A与B相距较近,B与挡板相距足够远.若B与挡板碰撞将以原速率反弹,A与B碰撞将粘合在一起.为使B能与挡板碰撞两次,v1、v2应满足什么关系?,由动量守恒定律得,③式得应满足的关系是25.(2010•宁夏)(1)用频率为v0的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为v1、v2、v3的三条谱线,且v3>v2>v1,则B.(填入正确选项前的字母)A.v0<v1 B.v3=v2+v1 C.v0=v1+v2+v3 D.(2)如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ.使木板与重物以共同的速度v0向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短.求木板从第一次与墙碰撞到再次碰撞所经历的时间.设木板足够长,重物始终在木板上.重力加速度为g..26.(2009•广东)如图所示,水平地面上静止放置着物块B和C相距l=1.0m物块A以速度v0=10m/s沿水平方向与B正碰,碰撞后A和B牢固粘在一起向右运动,并再与C发生正碰,碰后瞬间C的速度v=2.0m/s,已知A和B的质量均为m.C的质量为A质量的k倍,物块与地面的动摩擦因数μ=0.45(设碰撞时间很短,g取10m/s2)(1)计算与C碰撞前瞬间AB的速度(2)根据AB与C的碰撞过程分析k的取值范围,并讨论与C碰撞后AB的可能运动方向.,由动能定理得联立以上两式解得27.(2009•山东)(1)历史中在利用加速器实现的核反应,是用加速后动能为0.5MeV的质子11H轰击静止的X,生成两个动能均为8.9MeV的24He.(1MeV=1.6×﹣13J)①上述核反应方程为11H+37X→24He+24He或11H+37Li→24He+24He.②质量亏损为 3.1×10kg.(2)如图所示,光滑水平面轨道上有三个木块,A、B、C,质量分别为m A=m c=2m,m B=m,A、B用细绳连接,中间有一压缩的弹簧(弹簧与滑块不栓接).开始时A、B以共同速度v0运动,C静止.某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三滑块速度恰好相同.求B与C碰撞前B的速度..的速度为28.(2009•宁夏)[物理﹣选修3﹣5](1)关于光电效应,下列说法正确的是A(填入选项前的字母,有填错的不得分)A.极限频率越大的金属材料逸出功越大B.只要光照射的时间足够长,任何金属都能产生光电效应C.从金属表面出来的光电子的最大初动能越大,这种金属的逸出逸出功越小D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数(2)两个质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上.A和B的倾斜面都是光滑曲面,曲面下端与水平相切,如图所示.一质量为m的物体块位于劈A的倾斜面上,距水平面的高度为h.物块从静止开始滑下,然后又滑上劈B.求物块在B上能够达到的是大高度.v==mv2H=上能够达到的是大高度为.29.(2009•中山市模拟)如图,一个带有1/4圆弧的粗糙滑板A,总质量为m A=3kg,其圆弧部分与水平部分相切于D点,水平部分DQ长为L=3.75m,开始时,A静止在光滑水平面上,有一质量m B=2kg的小木块B从滑板A 的右端以水平初速度v0=5m/s滑上A,小木块B与滑板A的动摩擦因数为μ=0.15,小木块滑到滑板A的左端,并沿圆弧部分向上滑行一段距离后返回,最终停在滑板A的水平部分上(1)求A、B相对静止时速度的大小;(2)若B最终停在A的水平部分C点,L DC=1m,求B在圆弧上运动的过程中,因摩擦产生的热量;(3)若圆弧部分光滑,且除v0不确定外,其他条件不变,试解出B在水平部分既能对地向右滑动,又不滑离滑板A的v0的取值范围(g=10m/s2,结果可保留根号).(m(m(30.(2009•河东区一模)如图所示,在光滑水平面上放有质量为2kg的长木板B,模板B右端距竖直墙s=4m,木板B上有一质量为1kg的金属块A,金属块A和木版B间滑动摩擦因数μ=0.20.开始A以υo=3m/s的初速度向右运动,木板B很长,A不会从B上滑下,木板B与竖直墙碰撞后以碰前速率返回,且碰撞时间极短.g取10m/s2.求(1)木半B碰墙前,摩擦力对金属块A做的功(2)A在B上滑动过程中产生的热量(3)A在B上滑动,A相对B滑动的路程L.解得:。
高三物理 尖子生辅导材料【有答案】

高三物理尖子生辅导材料(一)机械能、动量专题三、典型习题:1.(2003夏季高考物理广东卷)图1所示为一根竖直悬挂的不可伸长的轻绳,下端拴一小物块A,上端固定在C点且与一能测量绳的拉力的测力传感器相连.已知有一质量为m0的子弹B沿水平方向以速度v0射入A内(未穿透),接着两者一起绕C点在竖直面内做圆周运动,在各种阻力都可忽略的条件下测力传感器测得绳的拉力F随时间t的变化关系如图2所示。
已知子弹射入的时间极短,且图2中t=0为A、B开始以相同速度运动的时刻,根据力学规律和题中(包括图)提供的信息,对反映悬挂系统本身性质的物理量(例如A的质量)及A、B一起运动过程中的守恒量,你能求得哪些定量的结果2.(2000夏季高考物理广东卷)在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”,这类反应的前半部分过程和下述力学模型类似。
两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。
在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图所示。
C与B发生碰撞并立即结成一个整体D。
在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变。
然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解锁定(锁定及解除锁定均无机械能损失)。
已知A、B、C三球的质量均为m。
(1)求弹簧长度刚被锁定后A球的速度。
(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。
尖子生辅导材料(一)答案1: 由图2可直接看出,A 、B 一起做周期性运动,运动的周期T =2t 0 ①令m 表示A 的质量,l 表示绳长.1v 表示B 陷入A 内时即0=t 时A 、B 的速度(即圆周运动最低点的速度),2v 表示运动到最高点时的速度,F 1表示运动到最低点时绳的拉力,F 2表示运动到最高点时绳的拉力,根据动量守恒定律,得1000)(v m m v m += ②在最低点和最高点处运用牛顿定律可得 l v m m g m m F 21001)()(+=+- ③lv m m g m m F 22002)()(+=++ ④ 根据机械能守恒定律可得2202100)(21)(21)(2v m m v m m g m m l +-+=+ ⑤ 由图2可知 02=F ⑥m F F =1 ⑦由以上各式可解得,反映系统性质的物理量是06m gF m m -= ⑧g Fv m l m 22020536= ⑨A 、B 一起运动过程中的守恒量是机械能E ,若以最低点为势能的零点,则210)(21v m m E += ⑩ 由②⑧⑩式解得g F v m E m 20203=⑾2:高三物理尖子生辅导材料(二)牛顿运动定律专题1.(09·江苏)(15分)航模兴趣小组设计出一架遥控飞行器,其质量m =2㎏,动力系统提供的恒定升力F =28 N。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理拔高题(尖子生辅导)一.解答题(共30小题)1.(2014•山东模拟)如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中.(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.,解得组成的系统动量守恒,有:系统损失的机械能为=)整个系统损失的机械能为)弹簧被压缩到最短时的弹性势能为2.(2014•和平区三模)在粗糙的水平桌面上有两个静止的木块A和B,两者相距为d.现给A一初速度,使A与B发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d.已知两木块与桌面之间的动摩擦因数均为μ,B的质量为A的2倍,重力加速度大小为g.求A的初速度的大小.mv•v==﹣联立解得:的初速度的大小是3.(2014•吉安二模)一质量为2m的物体P静止于光滑水平地面上,其截面如图所示.图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接.现有一质量为m 的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止.重力加速度为g.求:(1)木块在ab段受到的摩擦力f;(2)木块最后距a点的距离s.…..点的距离4.(2014•邢台一模)质量为M=2kg的小平板车C静止在光滑水平面上,车的一端静止着质量为m A=2kg的物体A (可视为质点),如图所示,一颗质量为m B=20g的子弹以600m/s的水平速度射穿A后,速度变为100m/s,最后物体A在C上滑了1.25m和C保持相对静止,求AC间的动摩擦因素.根据能量守恒得:5.(2013•海南)如图,光滑水平面上有三个物块A、B和C,它们具有相同的质量,且位于同一直线上.开始时,三个物块均静止,先让A以一定速度与B碰撞,碰后它们粘在一起,然后又一起与C碰撞并粘在一起,求前后两次碰撞中损失的动能之比.,动能的损失为,动能的损失为=6.(2013•北京)对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S、长为l的直导线,单位体积内有n个自由电子,电子电量为e.该导线通有电流时,假设自由电子定向移动的速率均为v.(a)求导线中的电流I;(b)将该导线放在匀强磁场中,电流方向垂直于磁感应强度B,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F,推导F安=F.(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m,单位体积内粒子数量n为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f与m、n和v的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明))粒子与器壁有均等的碰撞机会,即相等时间内与某一截面碰撞的粒子为该段时间内粒子数的由动量定理可得:.7.(2013•山东)如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2kg、m B=1kg、m C=2kg.开始时C静止,A、B一起以v0=5m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A 与C发生碰撞后瞬间A的速度大小.8.(2013•江苏)[选修3﹣5](1)如果一个电子的德布罗意波长和一个中子的相等,则它们的C也相等.A.速度B.动能C.动量D.总能量(2)根据玻尔原子结构理论,氦离子(He+)的能级图如图1所示.电子处在n=3轨道上比处在n=5轨道上离氦核的距离近(选填“近”或“远”).当大量He+处在n=4的激发态时,由于跃迁所发射的谱线有6条.(3)如图2所示,进行太空行走的宇航员A和B的质量分别为80kg和100kg,他们携手远离空间站,相对空间站的速度为0.1m/s.A将B向空间站方向轻推后,A的速度变为0.2m/s,求此时B的速度大小和方向.,激发发态跃迁的谱线满足,一个电子的德布罗意波长和一个中子的波长相等,则动量,代入9.(2012•山东)光滑水平轨道上有三个木块A、B、C,质量分别为m A=3m、m B=m C=m,开始时B、C均静止,A 以初速度νo向右运动,A与B相撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变.求B 与C碰撞前B的速度大小.vv10.(2012•安徽)如图所示,装置的左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M=2kg 的小物块A.装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接.传送带始终以u=2m/s 的速率逆时针转动.装置的右边是一光滑的曲面,质量m=1kg的小物块B从其上距水平台面h=1.0m处由静止释放.已知物块B与传送带之间的摩擦因数μ=0.2,l=1.0m.设物块A、B中间发生的是对心弹性碰撞,第一次碰撞前物块A 静止且处于平衡状态.取g=10m/s2.(1)求物块B与物块A第一次碰撞前速度大小;(2)通过计算说明物块B与物块A第一次碰撞后能否运动到右边曲面上?(3)如果物块A、B每次碰撞后,物块A再回到平衡位置时都会立即被锁定,而当他们再次碰撞前锁定被解除,试求出物块B第n次碰撞后的运动速度大小.,有,同上计算可知的速度大小依次为…的速度大小为次碰撞后的运动速度大小是11.(2012•东城区三模)装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对以下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.12.(2012•海南)一静止的U核经α衰变成为Th,释放出的总动能为4.27MeV.问此衰变后Th核的动能为多少MeV(保留1位有效数字)?衰变成为M+=答:衰变后13.(2012•洛阳模拟)如图所示,光滑水平面上放置质量均为M=2kg的甲、乙两辆小车,两车之间通过一感应开关相连(当滑块滑过感应开关时,两车自动分离),甲车上表面光滑,乙车上表面与滑块P之间的动摩擦因数μ=0.5.一根通过细线拴着且被压缩的轻质弹簧固定在甲车的左端,质量为m=1kg的滑块P(可视为质点)与弹簧的右端接触但不相连,此时弹簧的弹性势能E0=10J,弹簧原长小于甲车长度,整个系统处于静止状态.现剪断细线,求:①滑块P滑上乙时的瞬时速度的大小;②滑块P滑上乙车后最终未滑离乙车,滑块P在乙车上滑行的距离.(取g=10m/s2)mgL=m在乙车上滑行的距离为m14.(2012•湖南模拟)如图,质量为m的b球用长h的细绳悬挂于水平轨道BC的出口C处.质量也为m的小球a,从距BC高h的A处由静止释放,沿ABC光滑轨道滑下,在C处与b球正碰并与b粘在一起.已知BC轨道距地面有一定的高度,悬挂b球的细绳能承受的最大拉力为2.8mg.试问:①a与b球碰前瞬间,a球的速度多大?②a、b两球碰后,细绳是否会断裂?(要求通过计算回答)mgh=v==;2mg=2m球的速度为15.(2012•乐山模拟)如图所示,在足够长的光滑水平轨道上有三个小木块A、B、C,质量分别为m A、m B、m C,且m A=m B=1.0kg,m C=2.0kg,其中B与C用一个轻弹簧拴接在一起,开始时整个装置处于静止状态.A和B之间有少许塑胶炸药,A的左边有一个弹性挡板.现在引爆塑胶炸药,若炸药爆炸产生的能量中有E=9.0J转化为A和B 的动能,A和B分开后,A恰好在B、C之间的弹簧第一次恢复到原长时追上B,并且与B发生碰撞后粘在一起.忽略小木块和弹性挡板碰撞过程中的能量损失.求:(1)塑胶炸药爆炸后瞬间A与B的速度各为多大?(2)在A追上B之前弹簧弹性势能的最大值;(3)A与B相碰以后弹簧弹性势能的最大值.由机械能守恒,得:16.(2012•温州模拟)如图,足够长的水平传送带始终以大小为v=3m/s的速度向左运动,传送带上有一质量为M=2kg 的小木盒A,A与传送带之间的动摩擦因数为μ=0.3,开始时,A与传送带之间保持相对静止.先后相隔△t=3s有两个光滑的质量为m=1kg的小球B自传送带的左端出发,以v0=15m/s的速度在传送带上向右运动.第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时△t1=s而与木盒相遇.求(取g=10m/s2)(1)第1个球与木盒相遇后瞬间,两者共同运动的速度时多大?(2)第1个球出发后经过多长时间与木盒相遇?(3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?,则:17.(2011•广东)如图所示,以A、B和C、D为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平地面上,左端紧靠B点,上表面所在平面与两半圆分别相切于B、C,一物块被轻放在水平匀速运动的传送带上E点,运动到A时刚好与传送带速度相同,然后经A沿半圆轨道滑下,再经B滑上滑板,滑板运动到C时被牢固粘连,物块可视为质点,质量为m,滑板质量M=2m,两半圆半径均为R,板长l=6.5R,板右端到C的距离L在R<L<5R范围内取值,E距A为S=5R,物块与传送带、物块与滑板间的动摩擦因数均μ=0.5,重力加速度取g.(1)求物块滑到B点的速度大小;(2)试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功W f与L的关系,并判断物块能否滑到CD轨道的中点.…,得 (12)…点的速度18.(2011•盐城一模)(选修模块3﹣5)(1)下列说法中正确的是BDA.β衰变现象说明电子是原子核的组成部分B.目前已建成的核电站的能量来自于重核裂变C.一个氢原子从n=3的激发态跃迁到基态时,最多能辐射3种不同频率的光子D.卢瑟福依据极少数α粒子发生大角度散射提出了原子核式结构模型(2)光照射到金属上时,一个光子只能将其全部能量传递给一个电子,一个电子一次只能获取一个光子的能量,成为光电子,因此极限频率是由金属(金属/照射光)决定的.如图1所示,当用光照射光电管时,毫安表的指针发生偏转,若再将滑动变阻器的滑片P向右移动,毫安表的读数不可能变小(变大/变小/不变).(3)如图2,总质量为M的火箭被飞机释放时的速度为υ0,方向水平.释放后火箭立即向后以相对于地面的速率u喷出质量为m的燃气,火箭相对于地面的速度变为多大?最多能辐射v=19.(2011•武昌区模拟)如图所示,一固定的光滑斜面倾角为θ=30°,斜面长为L.从斜面顶端无初速释放一质量为m的小球A,同时另一质量为m的小球B从斜面底端以某一初速度沿斜面向上运动,已知两球都可看成质点,碰撞为正碰且碰撞时无机械能损失,重力加速度为g.问:(1)要使碰撞后A球恰好能够回到斜面顶端,则B球的初速度v0多大?(2)若A球从斜面顶端、B球从斜面底端都以(1)中求出的初速度v0作为各自的初速度而相向运动,要使两球碰撞后同时回到各自的出发点,则A球出发比B球要晚的时间△t是多少?=沿斜面向上做匀减速直线运动,+=,)2.20.(2011•深圳二模)细管AB内壁光滑、厚度不计,加工成如图所示形状,长L=0.8m的BD段固定在竖直平面内,其B端与半径R=0.4m的光滑圆弧轨道平滑连接,CD段是半径R=0.4m的圆弧,AC段在水平面上,与长S=1.25m、动摩擦因数μ=0.25的水平轨道AQ平滑相连,管中有两个可视为质点的小球a、b,m a=3m b.开始b球静止,a球以速度v0向右运动,与b球发生弹性碰撞之后,b球能够越过轨道最高点P,a球能滑出AQ.(重力加速度g取10m/s2,).求:①若v0=4m/s,碰后b球的速度大小;②若v0未知,碰后a球的最大速度;③若v0未知,v0的取值范围.的最大速度为碰撞后的速度为,经过最高点时的速度为碰撞前的速度为21.(2011•山西模拟)(1)2011年3月11日,日本东部海域发生里氏9.0级地震.地震所引发的福岛核电站泄漏事故让全世界都陷入了恐慌.下面有关核辐射的知识,说法正确的是A.核泄漏中放射性物质放射出α、β、γ三种射线,其中α射线的穿透能力最强B.β衰变所释放的电子是原子核内的中子转变为质子时所产生的C.若使放射性物质的温度降低,其半衰期将减小D.铀核()衰变为铅核()的过程中,要经过8次α衰变和6次β衰变(2)如图所示,质量为M的弧形槽静止在光滑的水平面上,弧形槽的光滑弧面底端与水平地面相切.一个质量为m的小物块以速度v0沿水平面向弧形槽滑来,并冲上弧形槽,设小物块不能越过弧形槽最高点,试求小物块所能上升的最大高度?(22.(2011•河南模拟)(1)用某种单色光照射某种金属表面,发生了光电效应.现将该单色光的强度减弱,则C.A.光电子的最大初动能增大B.光电子的最大初动能减小C.单位时间内产生的光电子数减少D.可能不发生光电效应(2)如图所示,甲车质量为2kg,静止在光滑水平面上,上表面光滑,右端放一个质量为lkg的小物体(可视为质点).乙车质量为4kg,以5m/s的速度向左运动,与甲车碰撞后甲车获得6m/s的速度,小物体滑到乙车上.若乙车足够长,上表面与小物体间的动摩擦因数μ=0.2,则小物体在乙车上表面滑行多长时间相对乙车静止?(g取10m/s2,甲、乙两车上表面等高)==1.6m/st=23.(2010•北京)雨滴在穿过云层的过程中,不断与漂浮在云层中的小水珠相遇并结合为一体,其质量逐渐增大.现将上述过程简化为沿竖直方向的一系列碰撞.已知雨滴的初始质量为m0,初速度为v0,下降距离l后与静止的小水珠碰撞且合并,质量变为m1.此后每经过同样的距离l后,雨滴均与静止的小水珠碰撞且合并,质量依次变为m2、m3…m n…(设各质量为已知量).不计空气阻力.(1)若不计重力,求第n次碰撞后雨滴的速度v n;(2)若考虑重力的影响,a.求第1次碰撞前、后雨滴的速度v1和v n′;b.求第n次碰撞后雨滴的动能.得:,式得:次碰撞后:+动能为:=+2gL、次碰撞后雨滴的动能为(+2gL24.(2010•山东)如图所示,滑块A、C质量均为m,滑块B质量为,开始时A、B分别以v1、v2的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C无初速地放在A上,并与A粘合不再分开,此时A与B相距较近,B与挡板相距足够远.若B与挡板碰撞将以原速率反弹,A与B碰撞将粘合在一起.为使B能与挡板碰撞两次,v1、v2应满足什么关系?,由动量守恒定律得,③式得应满足的关系是25.(2010•宁夏)(1)用频率为v0的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为v1、v2、v3的三条谱线,且v3>v2>v1,则B.(填入正确选项前的字母)A.v0<v1 B.v3=v2+v1 C.v0=v1+v2+v3 D.(2)如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ.使木板与重物以共同的速度v0向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短.求木板从第一次与墙碰撞到再次碰撞所经历的时间.设木板足够长,重物始终在木板上.重力加速度为g..26.(2009•广东)如图所示,水平地面上静止放置着物块B和C相距l=1.0m物块A以速度v0=10m/s沿水平方向与B正碰,碰撞后A和B牢固粘在一起向右运动,并再与C发生正碰,碰后瞬间C的速度v=2.0m/s,已知A和B的质量均为m.C的质量为A质量的k倍,物块与地面的动摩擦因数μ=0.45(设碰撞时间很短,g取10m/s2)(1)计算与C碰撞前瞬间AB的速度(2)根据AB与C的碰撞过程分析k的取值范围,并讨论与C碰撞后AB的可能运动方向.,由动能定理得联立以上两式解得27.(2009•山东)(1)历史中在利用加速器实现的核反应,是用加速后动能为0.5MeV的质子11H轰击静止的X,生成两个动能均为8.9MeV的24He.(1MeV=1.6×﹣13J)①上述核反应方程为11H+37X→24He+24He或11H+37Li→24He+24He.②质量亏损为 3.1×10kg.(2)如图所示,光滑水平面轨道上有三个木块,A、B、C,质量分别为m A=m c=2m,m B=m,A、B用细绳连接,中间有一压缩的弹簧(弹簧与滑块不栓接).开始时A、B以共同速度v0运动,C静止.某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三滑块速度恰好相同.求B与C碰撞前B的速度..的速度为28.(2009•宁夏)[物理﹣选修3﹣5](1)关于光电效应,下列说法正确的是A(填入选项前的字母,有填错的不得分)A.极限频率越大的金属材料逸出功越大B.只要光照射的时间足够长,任何金属都能产生光电效应C.从金属表面出来的光电子的最大初动能越大,这种金属的逸出逸出功越小D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数(2)两个质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上.A和B的倾斜面都是光滑曲面,曲面下端与水平相切,如图所示.一质量为m的物体块位于劈A的倾斜面上,距水平面的高度为h.物块从静止开始滑下,然后又滑上劈B.求物块在B上能够达到的是大高度.v==mv2H=上能够达到的是大高度为.29.(2009•中山市模拟)如图,一个带有1/4圆弧的粗糙滑板A,总质量为m A=3kg,其圆弧部分与水平部分相切于D点,水平部分DQ长为L=3.75m,开始时,A静止在光滑水平面上,有一质量m B=2kg的小木块B从滑板A 的右端以水平初速度v0=5m/s滑上A,小木块B与滑板A的动摩擦因数为μ=0.15,小木块滑到滑板A的左端,并沿圆弧部分向上滑行一段距离后返回,最终停在滑板A的水平部分上(1)求A、B相对静止时速度的大小;(2)若B最终停在A的水平部分C点,L DC=1m,求B在圆弧上运动的过程中,因摩擦产生的热量;(3)若圆弧部分光滑,且除v0不确定外,其他条件不变,试解出B在水平部分既能对地向右滑动,又不滑离滑板A的v0的取值范围(g=10m/s2,结果可保留根号).(m(m(30.(2009•河东区一模)如图所示,在光滑水平面上放有质量为2kg的长木板B,模板B右端距竖直墙s=4m,木板B上有一质量为1kg的金属块A,金属块A和木版B间滑动摩擦因数μ=0.20.开始A以υo=3m/s的初速度向右运动,木板B很长,A不会从B上滑下,木板B与竖直墙碰撞后以碰前速率返回,且碰撞时间极短.g取10m/s2.求(1)木半B碰墙前,摩擦力对金属块A做的功(2)A在B上滑动过程中产生的热量(3)A在B上滑动,A相对B滑动的路程L.解得:。