计算机视觉与图像处理、模式识别、机器学习学科之间的关系
计算机视觉的基础知识

计算机视觉的基础知识计算机视觉是一门研究计算机系统如何“理解”和解释视觉信息的学科领域。
它是人工智能和计算机图形学的交叉学科,涉及图像处理、模式识别、机器学习和计算机图形学等多个领域,可以应用于医学影像、自动驾驶、安防监控、智能手机相机等各种领域。
本文将介绍计算机视觉的基础知识,包括图像处理、特征提取、目标检测、深度学习和计算机视觉应用等方面的内容。
一、图像处理图像处理是计算机视觉的基础技术之一,它涉及对图像进行预处理、增强、噪声去除、边缘检测、图像分割等操作。
常见的图像处理技术包括模糊滤波、锐化滤波、直方图均衡化、腐蚀膨胀、边缘检测算子等。
图像处理技术可以帮助计算机系统更好地理解图像信息,为后续的特征提取和目标检测提供更好的输入数据。
二、特征提取特征提取是计算机视觉中的重要环节,它涉及将图像中的信息转化为计算机能够理解的特征向量。
常见的特征提取方法包括颜色直方图、梯度直方图、局部二值模式、哈尔小波变换等。
特征提取的目标是提取出能够表征图像内在信息的特征向量,为后续的目标检测和分类任务提供有效的输入。
三、目标检测目标检测是计算机视觉中的核心任务之一,它涉及在图像中识别和定位特定的目标物体。
目标检测技术可以分为两个阶段:特征提取和目标分类。
在特征提取阶段,计算机系统会对图像中的信息进行提取,然后通过各种分类算法进行目标分类。
常见的目标检测算法包括Haar特征级联检测器、HOG+SVM、YOLO、Faster R-CNN等。
四、深度学习深度学习是近年来计算机视觉领域取得突破性进展的重要驱动力。
深度学习借鉴了人脑神经元网络的结构,通过多层神经网络进行特征提取和分类,在图像识别、目标检测、语义分割等任务中取得了显著的成果。
常见的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆网络(LSTM)、生成对抗网络(GAN)等。
五、计算机视觉应用计算机视觉在各个领域都有着广泛的应用,以下是其中的一些典型应用:1.医学影像:计算机视觉可以帮助医生对CT、MRI等医学影像进行自动分析和诊断,辅助医生制定治疗方案。
机械识图知识点总结

机械识图知识点总结一、机械视觉的基本概念机械视觉,又称计算机视觉,是一门综合了图像处理、模式识别、图像分析、机器学习等多种技术的交叉学科。
其主要目标是让计算机系统具有类似人类视觉系统的能力,即能够通过摄像传感器获取外界图像信息,进行处理、分析和识别。
机械视觉的基本概念包括图像采集、图像处理和图像识别。
图像采集是指通过摄像传感器获取外界环境的图像信息,其关键技术包括图像传感器、光学成像系统、图像采集卡等。
图像处理是指对采集到的图像进行预处理、增强、去噪等处理,以便后续的图像识别和分析。
图像识别是机械视觉的核心技术,其主要目标是根据图像信息识别出图像中的目标物体,通常包括物体检测、目标跟踪、目标分类等内容。
二、机械视觉的工作原理机械视觉的工作原理主要包括图像采集、图像处理和图像识别三个方面。
首先是图像采集,通过摄像传感器获取外界环境的图像信息,通常采用CCD或CMOS传感器进行图像采集。
然后是图像处理,对采集到的图像进行预处理、增强、去噪等处理,以便后续的图像识别和分析。
最后是图像识别,通过图像处理技术识别出图像中的目标物体,包括物体检测、目标跟踪、目标分类等内容。
机械视觉的图像识别基于模式识别和机器学习技术,主要包括以下步骤:特征提取、特征匹配、目标分类和模式识别。
特征提取是指从图像中提取出一些具有代表性的特征,如边缘、纹理、颜色等特征。
特征匹配是指将提取出的特征与已知的目标特征进行匹配,以确定目标物体的位置和属性。
目标分类是指将匹配到的目标特征进行分类,判断目标物体属于哪一类别。
模式识别是指根据目标的特征和分类结果进行模式识别,以确定目标物体的具体属性和形态。
三、机械视觉技术的发展机械视觉技术的发展经历了几个阶段,主要包括图像处理技术、特征提取技术、模式识别技术和深度学习技术等。
图像处理技术是机械视觉技术的最早阶段,它主要应用于图像的预处理、增强、去噪等领域,为后续的图像识别提供了基础。
特征提取技术是机械视觉技术的关键技术之一,它通过提取图像中的特征信息,为后续的目标识别和分类提供了重要基础。
计算机视觉笔试题目及答案

计算机视觉笔试题目及答案第一部分:基础理论题目一:请简要介绍计算机视觉的定义和应用领域。
计算机视觉是指利用计算机和相关技术对图像或视频进行处理、分析和理解的一门学科。
它与图像处理、模式识别、机器学习等领域密切相关。
计算机视觉的应用广泛,包括人脸识别、目标检测与跟踪、图像检索、三维重建等。
题目二:请简要说明计算机视觉系统的基本流程。
计算机视觉系统的基本流程包括图像获取、前期处理、特征提取与描述、目标检测与识别、结果输出等步骤。
首先,通过相机或其他设备获取图像或视频数据;然后对获取的图像或视频进行去噪、滤波等前期处理;接着进行特征提取与描述,即通过提取图像中的特征信息来表示图像内容;然后使用目标检测与识别算法来分析图像中的目标信息,识别出感兴趣的目标;最后将结果输出,如在屏幕上显示或保存到文件中。
题目三:简述计算机视觉中常用的特征描述符有哪些,并分别说明其原理。
常用的特征描述符包括SIFT(Scale-Invariant Feature Transform)、SURF(Speeded Up Robust Features)和ORB(Oriented FAST and Rotated BRIEF)等。
SIFT特征描述符是一种尺度不变的特征描述符。
它通过在不同尺度上检测和描述稳定的关键点,建立图像间的匹配关系。
具体原理是通过高斯差分算子检测图像中的极值点,并在每个极值点处计算局部方向直方图。
SURF特征描述符是一种加速的稳健特征描述符。
它通过构建尺度空间和积分图像,提取图像中的兴趣点,并计算其局部特征。
SURF特征描述符的主要优势是计算速度快,并具有一定的旋转和尺度不变性。
ORB特征描述符是一种具有方向性的快速特征描述符。
它结合了FAST特征点检测器和BRIEF描述符。
ORB特征描述符通过检测图像特征点的FAST角点,并在每个角点附近生成二进制字符串来描述特征。
第二部分:应用案例分析题目四:请选取计算机视觉在无人驾驶汽车领域的一个应用案例进行分析,并说明其实现原理。
计算机视觉与图像处理、模式识别、机器学习学科之间的关系

计算机视觉与图像处理、模式识别、机器学习学科(xuékē)之间的关系计算机视觉与图像处理、模式识别、机器学习(xuéxí)学科之间的关系在我的理解里,要实现计算机视觉必须有图像处理的帮助,而图像处理倚仗与模式识别的有效(yǒuxiào)运用,而模式识别是人工智能领域的一个重要分支,人工智能与机器学习密不可分。
纵观一切关系,发现计算机视觉的应用服务于机器学习。
各个环节缺一不可,相辅相成。
计算机视觉(shìjué)(computer vision),用计算机来模拟人的视觉机理获取和处理信息(xìnxī)的能力。
就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。
计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息(xìnxī)’的人工智能系统。
计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。
机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。
一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。
图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。
又称影像处理。
基本内容图像处理一般指数字图像处理。
数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。
图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。
常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。
图像处理一般指数字图像处理。
模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
图像处理与计算机视觉技术

图像处理与计算机视觉技术近年来,图像处理和计算机视觉技术在各行各业得到了广泛应用。
从医学影像到自动驾驶,从安防监控到娱乐游戏,这些技术正在改变我们的生活方式和工作方式。
在本文中,将探讨这两种技术的应用和未来发展。
一、图像处理技术图像处理技术是数字图像处理、压缩、增强、修复和分析等技术的总称。
它主要包括以下几个方面:1. 数字图像处理数字图像处理是对数字图像进行操作和处理的技术,包括图像去噪、图像增强、图像复原、图像分割、图像压缩等。
数字图像处理技术广泛应用于医学影像、摄影以及工业检测等领域。
2. 图像识别图像识别技术是指利用计算机对图像进行处理,从而实现对图像中对象、形状、轮廓等特征的识别。
图像识别技术在工厂质检、遥感影像分析、安防监控等领域有着广泛的应用。
3. 人脸识别人脸识别技术是指利用计算机对人脸图像进行处理,从而实现对人脸的识别、比对和辨认的技术。
人脸识别技术可以应用在安防监控、门禁考勤、公安案件侦破等领域。
二、计算机视觉技术计算机视觉技术是指利用计算机对视觉信息进行处理、分析、理解和获取的技术,涵盖了图像处理、模式识别、机器学习、深度学习等多个领域。
计算机视觉技术主要包括以下几个方面:1. 物体检测和跟踪物体检测和跟踪技术是指利用计算机对图像中的指定物体进行识别、定位和跟踪的技术。
这种技术可以应用于自动驾驶、无人机、安防监控等领域。
2. 模式识别模式识别技术是指对大量数据进行分析和处理,从而寻找数据中的模式和规律,以进行分类和识别。
这种技术可以应用于人脸识别、指纹识别、语音识别、股票分析等领域。
3. 机器学习机器学习技术是指让计算机根据大量的数据自主学习并改进模型和算法的技术。
这种技术可以应用于自然语言处理、图像识别、人工智能等领域。
三、图像处理和计算机视觉的未来发展随着计算机技术和人工智能技术的不断发展,图像处理和计算机视觉技术将会在未来有更多的发展和应用:1. 智能制造智能制造是指利用数字化、网络化和智能化技术对制造业进行升级的过程。
计算机视觉

计算机视觉计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。
作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。
这里所指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。
因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。
目录1定义2解析3原理4相关5现状6用途7异同8问题9系统10要件11会议12期刊1定义计算机视觉是使用计算机及相关设备对生物视觉的一种模拟。
它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样。
计算机视觉是一门关于如何运用照相机和计算机来获取我们所需的,被拍摄对象的数据与信息的学问。
形象地说,就是给计算机安装上眼睛(照相机)和大脑(算法),让计算机能够感知环境。
我们中国人的成语"眼见为实"和西方人常说的"One picture is worth ten thousand words"表达了视觉对人类的重要性。
不难想象,具有视觉的机器的应用前景能有多么地宽广。
计算机视觉既是工程领域,也是科学领域中的一个富有挑战性重要研究领域。
计算机视觉是一门综合性的学科,它已经吸引了来自各个学科的研究者参加到对它的研究之中。
其中包括计算机科学和工程、信号处理、物理学、应用数学和统计学,神经生理学和认知科学等。
2解析视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。
由于它的重要性,一些先进国家,例如美国把对计算机视觉的计算机视觉与其他领域的关系研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战(grand challenge)。
计算机视觉的理论基础和应用探索

计算机视觉的理论基础和应用探索随着计算机技术的不断发展,计算机视觉技术也得到了迅速发展。
计算机视觉可以理解为计算机系统具备识别和理解图像信息的能力,它是一门交叉学科,涉及了图像处理、模式识别、机器学习和人工智能等领域。
计算机视觉技术的理论基础计算机视觉技术的理论基础主要包括图像处理、模式识别和机器学习等方面。
图像处理是计算机视觉技术的基础,它涉及到图像获取、压缩、增强、分割、匹配和调整等方面。
首先需要对图像进行数字化处理,将图像转化为计算机可以处理的数字信号,然后通过一系列的算法对图像进行处理,以实现各类目标,例如:图像增强可以使得图像更加清晰,图像分割可以将图像分成不同的区域等。
模式识别是计算机视觉技术的重要组成部分,可以理解为通过某些算法和方法识别图像中的特征,例如:人脸识别、文字识别等。
模式识别在计算机视觉中广泛应用,可以应用于智能监控、医学图像分析、自动驾驶等领域。
机器学习是计算机视觉技术的重要手段之一,它是一种通过大规模数据自动学习知识和经验的方法。
通过机器学习,计算机可以自动学习到图像的特征,并根据这些特征获取相关信息。
机器学习在计算机视觉领域也应用广泛,例如:图像分类、目标检测等领域。
计算机视觉技术的应用探索计算机视觉技术在各行各业都有广泛的应用,下面列举几个典型的应用场景。
智能监控:智能监控系统通过计算机视觉技术和机器学习方法,实现对监控区域内人或车辆的追踪和识别,并自动报警或做出相应处理。
医学图像分析:计算机视觉技术可以帮助医生对医学图像进行分析,例如:红外成像、X光片、MRI等。
这种技术可以辅助医生确定病情和治疗方案,并提供更精准的医学诊断。
自动驾驶:自动驾驶技术是未来的重要发展方向,计算机视觉技术可以帮助车辆感知周围环境,包括车辆和行人等,通过机器学习的方法实现车辆的自动控制。
工业自动化:工业自动化需要自动化的控制工具和自动感知工具,计算机视觉技术可以通过对工艺流程和产品的检测,实现智能化生产和质量控制。
计算机视觉技术与模式识别的关系

计算机视觉技术与模式识别的关系计算机视觉技术和模式识别是现代计算机科学领域中两个重要的研究方向。
它们都致力于让计算机具备理解和解释图像、视频等视觉数据的能力,从而实现自动化的视觉任务。
虽然两者有所区别,但也存在密切的联系和互相借鉴的关系。
计算机视觉技术是指通过计算机对图像、视频等视觉数据进行分析和理解,以实现目标检测、物体跟踪、图像分割、图像识别等视觉任务的能力。
它的主要目标是将物理世界真实场景中的视觉信息转化为计算机可理解和处理的形式,从而为计算机系统提供更高级别的智能化处理和决策能力。
计算机视觉技术的发展离不开数学、图像处理、机器学习等多个学科的支持和融合。
而模式识别是指从大量数据中识别和发现出重复出现的模式和规律,并将其用于对象分类、特征提取、数据压缩等任务中。
模式识别是计算机视觉技术的重要组成部分,它通过建立数学模型、设计算法等方法来分析和推理图像中的模式,并将其与已知的模式进行匹配和分类。
模式识别的发展借鉴了统计学、概率论、信息论等多个学科的理论基础,通过机器学习和深度学习等方法实现了诸如人脸识别、手写字识别等复杂的视觉任务。
计算机视觉技术与模式识别相互依赖,互相促进的关系可以从以下几个方面进行阐述。
首先,在计算机视觉技术中,模式识别是一种技术手段,用于从视觉数据中提取和表示图像或视频中的模式,并将其用于后续的分析和决策过程中。
例如,在人脸识别任务中,模式识别可以用来提取人脸图像中的特征,并将其与已知的人脸模式进行匹配和分类。
因此,模式识别为计算机视觉技术提供了重要的算法支持和理论基础。
其次,计算机视觉技术也为模式识别提供了强大的数据源和应用场景。
视觉数据是模式识别的重要输入,而计算机视觉技术则可以通过采集、处理和分析视觉数据来帮助模式识别任务的完成。
例如,在图像分类任务中,计算机视觉技术可以通过图像识别和特征提取的方法,将图像数据转化为模式识别算法所需要的统计特征,从而提高分类准确度和鲁棒性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机视觉与图像处理、模式识别、机器学习学科之间的关系
在我的理解里,要实现计算机视觉必须有图像处理的帮助,而图像处理倚仗与模式识别的有效运用,而模式识别是人工智能领域的一个重要分支,人工智能与机器学习密不可分。
纵观一切关系,发现计算机视觉的应用服务于机器学习。
各个环节缺一不可,相辅相成。
计算机视觉(computer vision),用计算机来模拟人的视觉机理获取和处理信息的能力。
就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。
计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。
计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。
机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。
一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。
图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。
又称影像处理。
基本内容图像处理一般指数字图像处理。
数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。
图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。
常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。
图像处理一般指数字图像处理。
模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种。
模式还可分成抽象的和具体的两种形式。
前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。
我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。
模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。
应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。
这些对象与数字形式的信息相区别,称为模式信息。
模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。
它与人工智能、图像处理的研究有交叉关系。
机器学习(Machine Learning)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
机器学习在人工智能的研究中具有十分重要的地位。
一个不具有学习能力的智能系统难以称得上是一个真正的智能系统,但是以往的智能系统都普遍缺少学习的能力。
随着人工智能的深入发展,这些局限性表现得愈加突出。
正是在这种情形下,机器学习逐渐成为人工智能研究的核心之一。
它的应用已遍及人工智能的各个分支,如专家系统、自动推理、自然语言理解、模式识别、计算机视觉、智能机器人等领域。
机器学习的研究是根据生理学、认知科学等对人类学习机理的了解,建立人类学习过程的计算模型或认识模型,发展各种学习理论和学习方法,研究通用的学习算法并进行理论上的分析,建立面向任务的具有特定应用的学习系统。
这些研究目标相互影响相互促进。
人类研究计算机的目的,是为了提高社会生产力水平,提高生活质量,把人从单调复杂甚至危险的工作中解救出来。
今天的计算机在计算速度上已经远远超过了人,然而在很多方面,特别是在人类智能活动有关的方面例如在视觉功能、听觉功能、嗅觉功能、自然语言理解能力功能等等方面,还不如人。
这种现状无法满足一些高级应用的要求。
例如,我们希望计算机能够及早地发现路上的可疑情况并提醒汽车驾驶员以避免发生事故,我们更希望计算机能帮助我们进行自动驾驶,目前的技术还不足以满足诸如此类高级应用的要求,还需要更多的人工智能研究成果和系统实现的经验。
什么是人工智能呢?人工智能,是由人类设计并在计算机环境下实现的模拟或再现某些人智能行为的技术。
一般认为,人类智能活动可以分为两类:感知行为与思维活动。
模拟感知行为的人工智能研究的一些例子包括语音识别、话者识别等与人类的听觉功能有关的“计算机听觉”,物体三维表现的形状知识、距离、速度感知等与人类视觉有关的“计算机视觉”,等等。
模拟思维活动的人工智能研究的例子包括符号推理、模糊推理、定理证明等与人类思维有关的“计算机思维”,等等。
从图像处理和模式识别发展起来的计算机视觉研究对象之一是如何利用二维投影图像恢复三维景物世界。
计算机视觉使用的理论方法主要是基于几何、概率和运动学计算与三维重构的视觉计算理论,它的基础包括射影几何学、刚体运动力学、概率论与随机过程、图像处理、人工智能等理论。
计算机视觉要达到的基本目的有以下几个:
(1)根据一幅或多幅二维投影图像计算出观察点到目标物体的距离;
(2)根据一幅或多幅二维投影图像计算出目标物体的运动参数;
(3)根据一幅或多幅二维投影图像计算出目标物体的表面物理特性;
(4)根据多幅二维投影图像恢复出更大空间区域的投影图像。
计算机视觉要达到的最终目的是实现利用计算机对于三维景物世界的理解,即实现人的视觉系统的某些功能。
在计算机视觉领域里,医学图像分析、光学文字识别对模式识别的要求需要提到一定高度。
又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。
在计算机视觉的大多数实际应用当中,计算机被预设为解决特定的任务,然而基于机器学习的方法正日渐普及,一旦机器学习的研究进一步发展,未来“泛用型”的电脑视觉应用或许可以成真。
人工智能所研究的一个主要问题是:如何让系统具备“计划”和“决策能力”?从而使之完成特定的技术动作(例如:移动一个机器人通过某种特定环境)。
这一问题便与计算机视觉问题息息相关。
在这里,计算机视觉系统作为一个感知器,为决策提供信息。
另外一些研究方向包括模式识别和机器学习(这也隶属于人工智能领域,但与计算机视觉有着重要联系),也由此,计算机视觉时常被看作人工智能与计算机科学的一个分支。
机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演译。
为了达到计算机视觉的目的,有两种技术途径可以考虑。
第一种是仿生学方法,即从分析人类视觉的过程入手,利用大自然提供给我们的最好参考系——人类视觉系统,建立起视觉过程的计算模型,然后用计算机系统实现之。
第二种是工程方法,即脱离人类视觉系统框框的约束,利用一切可行和实用的技术手段实现视觉功能。
此方法的一般做法是,将人类视觉系统作为一个黑盒子对待,实现时只关心对于某种输入,视觉系统将给出何种输出。
这两种方法理论上都是可以使用的,但面临的困难是,人类视觉系统对应某种输入的输出到底是。