高等代数第一章 基本概念

合集下载

高等代数教案

高等代数教案

全套高等代数教案第一章:高等代数概述1.1 高等代数的定义与意义理解高等代数的基本概念了解高等代数在数学及其它领域中的应用1.2 基本术语和符号学习常见的代数运算符掌握基本的代数表达式1.3 基本定理和性质学习线性方程组的解的存在性定理理解线性空间的基本性质第二章:矩阵和行列式2.1 矩阵的基本概念理解矩阵的定义和矩阵元素的意义学习矩阵的运算规则2.2 行列式的定义和性质理解行列式的概念掌握行列式的计算方法2.3 矩阵和行列式的应用学习矩阵在几何中的应用了解矩阵在概率论和统计中的应用第三章:线性方程组3.1 高斯消元法学习高斯消元法的原理和步骤掌握高斯消元法的应用3.2 矩阵的秩理解矩阵秩的概念学习矩阵秩的计算方法3.3 线性方程组的解的结构理解线性方程组解的存在性定理学习线性方程组解的方法第四章:特征值和特征向量4.1 特征值和特征向量的定义理解特征值和特征向量的概念学习特征值和特征向量的计算方法4.2 矩阵的对角化理解矩阵对角化的概念掌握矩阵对角化的方法4.3 特征值和特征向量的应用学习特征值和特征向量在几何中的应用了解特征值和特征向量在物理中的应用第五章:向量空间和线性变换5.1 向量空间的基本概念理解向量空间和子空间的概念学习向量空间的基和维数5.2 线性变换的基本概念理解线性变换的定义和性质学习线性变换的矩阵表示5.3 线性变换的应用学习线性变换在几何中的应用了解线性变换在信号处理中的应用第六章:特征多项式和最小多项式6.1 特征多项式的定义和性质理解特征多项式的概念学习特征多项式的计算方法6.2 最小多项式的定义和性质理解最小多项式的概念掌握最小多项式的计算方法6.3 特征多项式和最小多项式的应用学习特征多项式和最小多项式在矩阵对角化中的应用了解特征多项式和最小多项式在多项式环中的应用第七章:二次型7.1 二次型的定义和基本性质理解二次型的概念学习二次型的标准形和规范形7.2 惯性定理和二次型的分类理解惯性定理的概念学习二次型的分类方法7.3 二次型的应用学习二次型在几何中的应用了解二次型在优化问题中的应用第八章:线性微分方程组8.1 线性微分方程组的定义和性质理解线性微分方程组的概念学习线性微分方程组的解的结构8.2 常系数线性微分方程组的解法学习常系数线性微分方程组的解法掌握常系数线性微分方程组的通解8.3 线性微分方程组的应用学习线性微分方程组在物理学中的应用了解线性微分方程组在经济学中的应用第九章:特征值问题的数值解法9.1 特征值问题的数值解法概述了解特征值问题的数值解法的概念学习特征值问题的数值解法的方法9.2 幂法和反幂法学习幂法和反幂法的原理和步骤掌握幂法和反幂法的应用9.3 稀疏矩阵和迭代法理解稀疏矩阵的概念学习迭代法的原理和步骤第十章:高等代数的进一步研究10.1 向量丛和纤维丛理解向量丛和纤维丛的概念学习向量丛和纤维丛的分类方法10.2 群表示论的基本概念理解群表示论的概念学习群表示论的基本性质10.3 高等代数的其它研究领域了解高等代数在数学物理方程中的应用学习高等代数在和机器学习中的应用重点和难点解析重点环节一:矩阵的秩秩的概念是高等代数中的重要概念,理解秩的计算方法和秩的性质对于后续学习线性变换、矩阵对角化等高级内容至关重要。

高等代数(第1章)

高等代数(第1章)
i
称为系数在数域P中的一元多项式,简称为数域P上 符号x 可以是为未知数, 的一元多项式.
也可以是其它待定事物.
习惯上记为f (x),g(x)……或f, g……上述形 n 式表达式可写为 i
2012-12-2
f (x)
a
i0
i
x
8
几个概念:

零多项式 ——系数全为0的多项式 多项式相等 —— f (x)=g(x)当且仅当同次项的系 数全相等 (系数为零的项除外) 多项式 f (x)的次数 ——f (x)的最高次项对应的幂 次,记作(f (x)) 或deg (f (x)) .
数域 一元多项式 整除的概念 最大公因式 因式分解定理 重因式 多项式函数 复系数与实系数多项式的因式分解 有理系数多项式
3
2012-12-2
§1

数域


要说的话:对所要讨论的问题,通常要明确所考 虑的数的范围,不同范围内同一问题的回答可能 是不同的。例如,x2+1=0在实数范围与复数范围 内解的情形不同。 常遇到的数的范围:有理数集 、实数集、复数集 共性(代数性质):加、减、乘、除运算性质 有些数集也有与有理数集 、实数集、复数集相同 的代数性质 为在讨论中将其统一起来,引入一个一般的概 念——数域。
解之得
a
6 5
,b
13 5
,c
6 5
.
2012-12-2
15
例2 设 f (x), g(x)与h(x)为实数域上多项式.证明:如果 f 2(x)= x g2(x)+ x h2(x) 则 f (x)=g(x)=h(x)=0 证:反证. 若f (x)0,则f 2(x) 0.由 若g(x)0,由于

大一高等代数第一章知识点总结

大一高等代数第一章知识点总结

大一高等代数第一章知识点总结导读:在大一高等代数第一章学习中,我们了解了数学中的代数运算、集合论、函数与映射、二次函数等重要基础知识。

本文将对这些知识点进行总结和归纳,帮助读者更好地理解和掌握这些概念。

一、代数运算1. 代数运算的基本性质:加法和乘法运算的结合律、交换律和分配律。

这些性质是进行代数运算的基础,通过它们可以将复杂的代数式简化,或将代数式转换为更方便计算的形式。

2. 代数运算的逆元:对于加法运算,零是唯一的单位元,每个元素都有唯一的相反元;对于乘法运算,一是唯一的单位元,每个非零元素都有唯一的倒数。

3. 代数方程与不等式:代数方程是由字母和数构成的等式,通过方程解的求解过程,可以得到含有未知数的具体数值;不等式则是不等关系构成的不等式。

二、集合论1. 集合的概念:集合是由一定规则约定所组成的一种对象的整体。

2. 集合的运算:包括交集、并集、补集和差集等。

运用这些运算可以对集合元素进行组合或筛选,从而得到满足一定条件的集合。

3. 集合的表示方法:包括列举法、描述法、乘积集和无穷集等。

不同的表示方法适用于不同的问题求解。

三、函数与映射1. 函数的概念:函数是两个集合之间的一种对应关系,每个自变量对应唯一的因变量。

2. 函数的性质:包括定义域、值域、单调性、奇偶性等。

这些性质描述了函数的基本特征,可以帮助我们更好地理解和分析函数。

3. 映射的概念:映射是一种更广义的函数,它可以是一对一的、多对一的或一对多的关系。

四、二次函数1. 二次函数的概念与性质:二次函数是一种具有二次项和一次项的一元多项式函数。

它的图像呈现抛物线形状,关键点包括顶点、焦点和对称轴等。

2. 二次函数的图像与方程:通过观察二次函数的图像可以了解其方程的特征,反之也可以通过方程描述二次函数的图像。

3. 二次函数的应用:二次函数在实际生活中有广泛应用,如物体抛出运动、摄影中焦距的调整等。

通过掌握二次函数的性质和应用,能够更好地理解和解决相关实际问题。

高等代数第一章 第1节基本概念

高等代数第一章 第1节基本概念

第一章 基本概念1.1 集合一定事物的集体,我们称它们为集合或集.我们常用大写的拉丁字母 C,,B ,A 表示集合,用小写拉丁字母 c,b a ,,表示元素.如果a 是集合A 的元素,就说a 属于A ,记作A a ∈;或者说A 包含a ,记作A ∋a .如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉;或者说A 不包含a ,记作A ∌a .一个集合可能只含有有限多个元素,这样的集合叫做有限集合.如果一个集合是由无限多个元素组成的,就叫做无限集合.设B ,A 是两个集合.如果A 的每一个元素都是B 的元素,那么就说A 是B 的子集,记作B ⊆A (读作A 属于B ),或记作A ⊇B (读作B 包含A ).根据这个定义,A 是B 的子集必要且只要对于每一元素x ,如果 B.x A,x ∈∈就有我们现在引入几个记号.用)(⇒)( 表示“如果)( ,则)( ”.用)(⇔)( 表示“)( 必要且只要)( ”.)∈⇒∈(⇒)B ⊆A (B x A x :x 对一切A (⊈)∉∈(⇔)B B x A x x 但,至少存在一个元素根据定义,一个集合A 总是它自己的子集.即.A ⊆A).∈⇔∈(⇔)B =A (B x A x :x 对一切AB(CC).且B⊆⊆⊆(A⇒)(BAxx或⋃x∈A)B∈∈(⇔).∉A(Bx⋃x且x)B∉⇔A).∉((BAxx且x∈∈)BA).⇔(∈(B∉xAx或x)BA).∉∉⇔(设B,A是两个集合.令A Bxx|x但-A=B∉}.{∈设B,A是两个集合.令bA BA,a,⨯baB∈=∈}.|){(称为A与B的笛卡尔积(简称积).A是由一切元素对(a,b)所成的集合,其中第一个位置的元B⨯素a取自A,第二个位置的元素b取自B.。

高等代数第1章

高等代数第1章
1 2 i
⎪ ⎩
( −1)n an = α 1α 2
αn
的 αk j 的积 之和
sihuabin@
南昌大学理学院数学系
⎧ − a1 = α 1 + α 2 + + α n ⎪ a2 = α 1α 2 + α 1α 3 + + α n−1α n ⎪ ⎪ ⎨ ( −1)i a = α α ∑ k1 k2 α ki i ⎪ ⎪ ⎪ ( −1)n an = α 1α 2 α n ⎩
sihuabin@
南昌大学理学院数学系
§1.11 对称多项式
对称多项式的来源之一以及它应用的一个重要 方面,是一元多项式根的研究。 设f(x)=xn+a1xn-1+…+an-1x+an∈P[x] 若f(x)在数域P中有n个根α1,α2,…,αn 则f(x)在数域P上可以 ⎧ − a1 = α 1 + α 2 + + α n ⎪ a2 = α 1α 2 + α 1α 3 + + α n−1α n 分解成f(x) 所有 =(x-α1)(x-α2)…(x-αn) ⎪ ⎪ 可能 i 展开后比较多项式系数 ⎨ ( −1) ai = ∑ α k α k α k 的i个 不同 即得根与系数的关系: ⎪ ⎪
x1 x2
k1
k2
xn
kn
称为数域P上的一个n元多项式。
n元多项式中系数不为零的单项式的最高次数 称为这个n元多项式的次数。
例如:多项式3x12x22+2x1x22x3+x33的次数是 4次 定义 数域P上关于文字x1,x2,…,xn的全体n元 多项式的集合称为数域P上的n元多项式环。 记为P[x1,x2,…,xn]

《高等代数》考试大纲

《高等代数》考试大纲

《高等代数》考试大纲(适用专业:数学与应用数学、应用统计学)第一章基本概念一.主要内容1、集合子集集的相等集合的交与并及其运算律笛卡儿积2、映射映射满射单射双射映射的相等映射的合成可逆映射映射可逆的充要条件3、数学归纳法自然数的最小数原理第一数学归纳法第二数学归纳法4、整数的一些整除性质5、数环和数域二. 考试要求(一)掌握1、集合的交与并及其运算律2、映射满射单射双射映射的相等映射的合成3、数环和数域的定义及性质4、数学归纳法的运用(二)理解1、集合的交与并及其运算律2、可逆映射映射可逆的充要条件3、数环和数域的判别(三)了解自然数的最小数原理第一数学归纳法、第二数学归纳法的证明整数的一些整除性质第二章多项式一. 主要内容1、一元多项式的定义和运算2、多项式的整除性整除的基本性质带余除法定理3、多项式的最大公因式最大公因式概念、性质辗转相除法多项式互素概念、性质4、多项式的唯一因式分解定理不可约多项式概念唯一因式分解定理典型分解式5、多项式的重因式多项式的重因式概念多项式有重因式的充要条件6、多项式函数与多项式的根多项式函数的概念余式定理综合除法多项式的根的概念根与一次因式的关系多项式根的个数7、复数域和实数域上多项式的因式分解(代数基本定理不证明)8、有理数域上多项式的可约性及有理根本原多项式的定义Gauss引理整系数多项式在有理数域上的可约性问题Eisenstein判别法有理数域上多顶式的有理根9、多元多项式多元多项式的概念字典排列法多元多项式的和与积的次数10、对称多项式对称多项式的概念初等对称多项式对称多项式基本定理二. 考试要求(一)掌握1、一元多项式的定义和运算2、整除的基本性质带余除法定理3、最大公因式概念、性质辗转相除法多项式互素概念、性质4、唯一因式分解定理典型分解式5、多项式的重因式概念多项式有重因式的充要条件6、余式定理综合除法多项式的根的概念7、复数域和实数域上多项式的因式分解有理数域上多顶式的有理根(二)理解1、不可约多项式概念2、多项式的重因式概念3、多项式函数与多项式的根4、多项式函数的概念5、本原多项式的定义 Gauss引理6、整系数多项式在有理数域上的可约性问题Eisenstein判别法(三)了解1、对称多项式的概念2、多元多项式的概念3、多元多项式的概念字典排列法初等对称多项式对称多项式基本定理三. 说明本章主要介绍数域上一元多项式的概念及其运算、整除性、因式分解和有理系数多项式有理根的求法,简单介绍了多元多项式及对称多项式。

高等代数教(学)案第一章基本概念

高等代数教(学)案第一章基本概念

第一章基本概念一 综述 1.本章是本门课程所需要的最基本概念(集合、映射、整数的一些性质、数环和数域)和方法(数学归纳法、反证法).所需位置不同,可根据课时安排及进度分散处理.如集合、整数的一些整除性质、数学归纳法、数环和数域可先讲,映射可放在线性空间前讲.2.从内容上讲,除集合中的卡氏积的概念及数环、数域的概念外,其它内容是学生在中学数学当中熟知的,只不过是将有关内容的系统化、理论化(如整数的整除性、映射、数学归纳法,其在中学中熟知其一些事实,今在理论上加以严密论证).3.新的知识点是集合的卡氏积、数环、数域的概念,数学归纳法作为定理的论证.4.学习本部分的难点是:从概念出发进行推理论证,这需要从具体例子引导训练,逐步培养.二 重点、难点1. 重点在于所有基本概念,特别是引入的新概念.2. 难点是可逆映射、整数的整除性、数学归纳法本身的证明.1.1 集 合一 教学思考1.集合可以作为不定义的概念来处理,有些教材上给出了一个简单刻化.2.确定一个集合A,就是要确定哪些是集合的元素,哪些不是集合的元素.说明一个集合包含哪些元素时,常用“列举法”、“示性法”(描述法).3.中学代数大部分的内容是计算,因此一开始遇到证明题时,往往不知从何入手,此需注意培养学生的推理能力,这里应通过证明“集合相等”来加强这方面的训练.4.为稍拓宽知识,可讲解一下补集、幂集等概念.二 重点、要求1.重点、难点:卡氏积的概念及从概念出发(集合相等、子集等)进行推理.2.要求:使学生了解有关集合的刻化及运算,培养推理能力.三 教学过程1.集合:简称集,在此是一个不定义的原始概念,通常可给出如下描述性的解释:即所谓集合,是指由某些确定的事物(或具有某种性质的事物)组成的集体.其中每个事物称为这个集合的元素. 常用大写字母A 、B 、C K 表示集合,用小写字母a 、b 、c K 表示集合的元素.若a 是集合A 的元素,就说a 属于A,记作A a ∈,或者说A 包含a.若a 不是集合A 的元素,就说a 不属于A,记作a ∉A,或者说A 不包含a.常采用两种方法:(1)列举法:列出集合的所有元素(包括利用一定的规律列出无限集)的方法.如{}K ,3,2,1=A . (2)示性法(描述法):给出集合所具有的特征性质.如{}043|2=-+=x x x B 表示方程0432=-+x x 的解集.2.集合的分类(按所含元素的个数分):有限集:只含有有限多个元素的集合.无限集:由无限多个元素组成的集合.空集:不含任何元素的集合.用Φ表示.约定:Φ是任何集合的子集.3.集合间的关系:(1) 设A 、B 是两个集合.子集:若A 的每个元素都是B 的元素,则称A 是B 的子集.(即若""B x A x ∈⇒∈∀).记作B A ⊆(读作A 属于B );或者A B ⊇(读作B 包含A ).相等:若集合A 和B 是由完全相同的元素组成的,则称A 与B 相等,记为A=B.(2)性质:(由定义易得)A )A A ⊆;(反身性)B )若C A C B B A ⊆⇒⊆⊆,;(传递性)C )B A ⊆且A B ⊆⇒A=B.(反对称性)4.几个常用的数集(略)5.集合的运算(由两个集合得到一个新的集合)——交、并、补、卡氏积:设A 、B 是两个集合(1)并:由A 的一切元素和B 的一切元素组成的集合叫做A 与B 的并集,简称并.记作B A Y .即{}B x A x x B A ∈∈=或,|Y .(2)交:由集合A 与B 的公共元素组成的集合,叫做A 与B 的交集,简称交.记作B A I .即{}B x A x x B A ∈∈=但,|I . (3)余(差、补):由一切属于A 而不属于B 的元素组成的集合,叫做B 在A 中的余(补)集,或称为A 与B 的差集.记作A-B.即{}B x A x x B A ∉∈=-,|.(4)积(卡氏积):由一切元素对),(b a 所成的集合称为A 与B 的笛卡儿积(简称为积).其中第一个位置的元素取自A,第二个位置的元素取自B.记为B A ⨯.即{}B b A a b a B A ∈∈=⨯,|),(.1.2 映 射一 教学思考 1.映射是近代数学中的一个基本概念.为使本部分内容更加系统化,可作必要的调整及层次化,按映射的概念(包括相等)及例子、映射的合成、几种特殊的映射来处理.2.概念多且成系列,注意 帮助学生弄清概念的实质(包括概念的转述、注释、否定概念的描述、以及新概念与已有概念的联系,如映射的合成是函数与函数的合成的概念的推广),注意训练从定义验证有关问题(给定一个法则是否为映射、分辨一个映射是不是单射、满射、可逆映射)的方法,语言要准确、清楚、有条理.同时初步领会怎样举例——包括正例和反例(内容与作业中皆有此问题).二 内容、重点、要求1. 内容:映射、单、满、双(可逆)映射的概念、映射的合成等.2. 重点:映射及有关概念,举例及由定义验证有关问题的方法.3. 要求:理解并记住上述概念,学会举例与用定义的条件进行验证问题的方法.三 教学过程1.概念与例子定义1. 设A 、B 是两个非空集合,A 到B 的一个映射指的是一个对应法则,通过这个法则,对于,x A y B ∀∈∃∈与它唯一对应.例子:(1)对,,Z n Z ∈∀令n n f 2)(=.(2){}2)(,.0|,x x f R x x x B R A =∈∀≥==. (3){}14,43,32,21:.,4,3,2,1ααααf B A ==. (4)*设A 是任一集合,对x x f A x =∈∀)(,. 这是A 到自身的一个映射(称为A 的变换),称为恒等映射(此为恒等变换),记为A j .定义2. 设B A g B A f →→:,:都是A 到B 的映射,若对,A x ∈∀都有)()(x g x f =,则称映射f 与g 相等,记为g f =. 如:2,:;,:x x R R g x x R R f αα→→.有g f =.2.映射的合成(1)定义3. 设C B g B A f →→:,:是两个映射,对A x ∈∀,有B x f ∈)(,从而C x f g ∈))((,这样,对,A x ∈∀就有C 中唯一的))((x f g 与之对应,就得到A 到C 的一个映射,这个映射是由:f A B →和C B g →:所决定的,称为f 与g 的合成.记作f g ο.即:))((,:x f g x C A f g αο→.例子:x x R R g x x R R f sin ,:;,:2αα→→ .则x x R R g f x x R R f g 22sin ,:;sin ,:αοαο→→.(2)映射合成满足结合律:设,:,:,:D C h C B g B A f →→→则由合成映射的定义可得D A →的两个映射:f g h f g h οοοο)(),(,则f g h f g h οοοο)()(=.3.几类特殊映射定义4. 设,:B A f →对,A x ∈∀有B x f ∈)(,则所有这样的象所作成B 的子集,用)(A f 表示,即{}A x x f A f ∈=|)()(,叫做A 在f 下的象,或叫做映射f 的象.(1)满射: 定义5. 设B A f →:是一映射,若B A f =)(,则称f 是A 到B 上的一个映射,也称f 是一个满射.(2)单射: 定义6. 设B A f →:是一个映射,若对A x x ∈∀21,,只要21x x ≠,就有)()(21x f x f ≠,则称f 是A 到B 的一个单射,简称单射.(3)双射(1-1对应):定义7. 若B A f →:既是单射又是满射,即1)若 A x x x x x f x f ∈∀=⇒=212121,,)()(;2)B A f =)(.则称f 是A 到B 的一个双射.特别若f 是A 到A 上的一个1-1对应,就称f 为A 的一个一一变换;有限集A 到自身的双射称为A 的一个置换.如:A j 是A 的一个一一变换,同样B j 是B 的一个一一变换.由映射合成及相等:若:f A B →,则有,A B f j f j f f ==o o .TH1.2.1令:f A B →是一个映射,则:下述两条等价:1)f 是双射;2)存在:g B A →使得,A B g f j f g j ==o o .且2)成立时,其中的g 由f 唯一决定.(4)可逆映射及其逆映射定义8. 设:f A B →,若存在:g B A →,使得,A B g f j f g j ==o o ,则称f 是可逆映射,且称g 为f 的逆映射.求其逆的方法由定理知::f A B →可逆⇔f 是双射.而验证双射有具体方法,所以可先证f 可逆(双射),再求其逆.而由TH1证知f 可逆时其逆唯一为:,g B A y x →a (若())f x y =(即对y B ∈,找在f 下的原象).(5)代数运算引例:我们常说整数加法是整数的一个“代数运算”.其意思是说对任一对整数(,)a b ,有确定的唯一一个整数(通过相加)与之对应,用映射的观点来说整数加法是Z Z Z ⨯→的一个映射::(,)a b a b ++a .同样实数乘法亦然.一般地:定义9. 设A 是一个非空集合,我们把A A A ⨯→的一个映射叫做集合A 的一个代数运算.若集合A 有代数运算σ,也说A 对σ封闭.1.3 数学归纳法一 教学思考1. 本节主要介绍了数学证明中的一种非常重要的方法——数学归纳法;对于该内容学生不感陌生,因在中学内容中曾会应用.问题在于数学归纳法自身的理论证明,为此需要一个原理——(自然数集的)最小数原理.2. 本节主要讲清最小数原理(给出分析证明及必要的说明),以及在此基础上的数学归纳法的证明.但更重要的是归纳法的解释——从特殊认识一般的思想方法,及数学归纳法应用中的关键(第二步)的突破.二 内容、重点、要求1. 内容:最小数原理、数学归纳法(第一、第二).2. 重点:数学归纳法的证明、应用,归纳思想的建立.3. 要求:了解最小数原理、理解数学归纳法的证明、掌握数学归纳法的应用.三 教学过程引言:现实生活中经常使用这种方法:即首先考察、研究某些个别特殊的事物,再由这些事物总结和抽象出带有一般性规律和结论.这样的方法叫归纳法.1. 数学归纳法的基础——自然数集的一个基本性质:最小数原理最小数原理:自然数集N *的任一非空子集S 必含有一个最小数,即a S ∃∈,对,c S ∀∈都有a c ≤. 2. 数学归纳法TH1.3.1(第一数学归纳法)设有一个与自然数n 有关的命题()P n ,若满足下列两条:1)当1n =时()P n 成立;2)假设n k =时成立,则当1n k =+时也成立.则命题()P n 对于一切自然数n 都成立.TH1.3.2(第二数学归纳法原理)设有一个与自然数n 有关的命题()P n ,若满足下列两条:1)当1n =时()P n 成立;2)假设命题对于一切小于k 的自然数都成立时,命题对于k 也成立.则命题()P n 对于一切自然数n 都成立.1.4 整数的一些整除性质一 教学思考1. 整数的性质是学生熟知的,本节只是将其系统化、理论化.主要从整除的定义、性质、带余除法,最大公因数及性质,互素三方面作了介绍.新的问题是有些概念较之在中学的概念有所区别,理论证明中运用最小数原理还不适应.2. 本节的目的主要为在多项式部分有与之平行的内容,助于学生对多项式类似内容的理解.作为自身的内容,需要将该部分层次化得清晰些.二 内容、重难点、要求1. 内容:整数的整除性、带余除法、最大公因数及性质、互素.2. 重难点:带余除法、最大公因数的性质定理的证明.3. 要求:掌握有关概念、证明整除的方法、反证法的运用.三 教学过程引言: 整除是研究整数性质的最基本的概念,从这个基本概念出发引进带余除法和辗转相除法,然后利用这两个工具建立了最大公因数(和最小公倍数)的理论(进一步证明了非常有用的算术基本定理),这些都是初等数论的基本内容.注意:本节所述的概念在小学、中学是熟知的事实,但未加以严格的叙述,因而不要盲目地相当然,要从中体会严格的推理论述.此与多项式相应的问题平行,到时应对照学习.1. 整除、带余除法(1)整除A )定义1. 设,a b Z ∈,若d Z ∃∈使得b ad =,则称a 整除b (或b 被a 整除).用符号|a b 表示.这时a 叫做b 的一个因数,而b 叫做a 的一个倍数.若a 不整除b (即对,d Z ad b ∀∈≠),记作|a b .B )整除的性质:1)|,||a b b c a c ⇒; (传递性)2)|,||();a b a c a b c ⇒+3)|,|a b c Z a bc ∀∈⇒;4)由2)、3)|,,1,2,3,,|i i i i a b c Z i n a b c ∀∈=⇒∑L ;5)1|,|0,|()a a a a a Z ±±∀∈;由此任意整数a 有因数1,a ±±,它们称为a 的平凡因数;6)若||a b a b ⇒±±;7)|a b 且|b a a b ⇒=或a b =-.(对称性)(2) 带余除法“整除”是整数间的一种关系,任意两个整数可能有这种关系,可能没有这种关系,一般地有: TH1.4.1(带余除法) 设,a b Z ∈,且0a ≠;那么,q r Z ∃∈使得b aq r =+ 且0r a ≤≤.满足上述条件的,q r 是唯一的.2. 最大公因数、互素(1)最大公因数A )定义2. 设,,a b Z d Z ∈∈,若d 满足:1)|d a 且|d b (即d 是a 与b 的一个公因数);2)若c Z ∈且|,||c a c b c d ⇒(即d 能被a 与b 的任一个公因数整除).则称d 为a 与b 的一个最大公因数. 最大公因数的概念可推广至有限个整数.B )最大公因数的存在性(及求法)TH1.4.2 任意n (2)n ≥个整数12,,,n a a a L 都有最大公因数;若d 为12,,,n a a a L 的一个最大公因数,则d -也是;12,,,n a a a L 的两个最大公因数至多相差一个符号.C )性质TH1.4.3 设d 为12,,,n a a a L 的一个最大公因数,那么12,,,n t t t Z ∃∈L 使得1122n n d t a t a t a =+++L .略证:若120n a a a ====L ,则0d =,从而对i t Z ∀∈都有11220n n t a t a t a =+++L ;若i a 不全为0,由证明过程知结论成立.(2)互素定义3. 设,a b Z ∈,若(,)1a b =,则称,a b 互素;一般地设12,,,n a a a Z ∈L ,若12(,,,)1n a a a =L ,则称12,,,n a a a L 互素.TH1.4.4 n 个整数12,,,n a a a L 互素12,,,n t t t Z ⇔∃∈L 使得11221n n t a t a t a +++=L .3. 素数及其性质(1)定义4. 一个正整数1p >叫做一个素数,若除1,p ±±外没有其他因数.(2)性质1)若p 是一个素数,则对a Z ∀∈有(,)a p p =或(,)1a p =.(注意转换为语言叙述,证易;略)2)a Z ∀∈且0,1a ≠±;则a 可被某一素数整除.3)TH1.4.5 设p 是一个素数,,a b Z ∈,若|p ab ,则|p a 或|p b .1.5 数环和数域一 教学思考1. 数环、数域是本章引入的两个新概念,其是鉴于很多数学问题不仅与所讨论的范围(数集)有关,而且与数集所满足的运算有关.也就是说需论及所具有的运算.为体现这个问题,引入了数环、数域的概念.2. 数环、数域简而言之是分别关于加、减、乘和加、减、乘、除封闭的非空数集,这可知之联系与区别,且由于对于不同的运算的封闭性,可讨论各自具有的简单性质.3. 本节内容简洁,不难理解,需要注意的是:一、“任意数域都包含有理数域”的证法——归谬法;二、给定一个数集验证是否是数环、数域;三、关于数环、数域的深入的问题——因数环、数域都是数集,而集合有所谓的运算:交、并,那么问题是数环、数域的交、并是否仍是之?从中体会“从定义出发加以验证”以及举例证明的方法.二 教学过程1. 概念定义1. 设S C ⊆且S ≠Φ,若对,a b S ∀∈都有,,a b a b ab S +-∈,则称S 是一个数环.定义2. 设F 是一个数环,若1)F 含有一个非0数;2)若,a b F ∈且0b ≠,则a Fb ∈.则称F 是一个数域.例子:1)整数集为数环,有理数集、实数集、复数集为数域.2)取定a Z ∈,令{}|S na n Z =∈,S 为数环.3){}2|,,1S a bi a b Z i =+∈=- 是数环.4){},F a a b Q =+∈ 是数域.2. 性质1)设S 是一个数环,则0S ∈.2)设F 是一个数域,则0,1F ∈.3)有理数域是最小的数域(在集合包含意义下)TH1.5.1 任何数域都包含有理数域Q .。

高等代数课件 第一章

高等代数课件 第一章

定理1.4.2 任意 n(n 2)个整数 a1, a2 ,, an 都有最
大公因数。如果d是a1, a2 ,, an 的一个最大公因数,那 么 - d 也是一个最大公因数;a1, a2 ,, an 的两个最大公因
数至多只相差一个符号。
证 由最大公因数的定义和整除的基本性质,最后一个论断 是明显的。
称f 是A到B 的一个单映射,简称单射.
定义3:如果f 既是满射,又是单射,即如果f 满
足下面两个条件: ① f (A) B
② f (x1) f (x2 ) x1 x2 对于一切 x1, x2 A ,那 么就称f 是A 到B 的一个双射或一一映射。
一个有限集合A到自身的双射叫做A的一个置换.
而 r1 d 。这与d是 I 中的最小数的事实矛盾。这样,
必须所有 ri 0 ,即 d | ai ,1 i n 。
另一方面,如果 c Z, c | ai ,1 i n 。那么 c | (t1a1 tnan ),即c | d 。这就证明了d 是 a1, a2 ,, an的
一个最大公因数。
那么存在一对整数q和r,使得
b aq r且0 r | a |
满足以上条件整数q和r 的唯一确定的。
证 令 S {b ax | x Z,b ax 0。因为 a 0,所以S 是N 的一个非空子集。根据最小数定理(对于N),S 含有一个最小数。也就是说,存在q Z ,使得 r=b-aq 是S 中最小数。于是b=aq+r,并且 r 0 。如果 r | a |,
这时y 叫做 x 在f 之下的象,记作 f (x) .
注意: ① A与B可以是相同的集合,也可以是不同的集
合 ② 对于A的每一个元素x,需要B中一个唯一确定
的元素与它对应. ③ 一般说来,B中的元素不一定都是A中元素的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数可以说成是统治整个量的世界,而算术的四则可 以被认为是作为数学家的完全的装备。 --麦斯韦(James Clark Maxwell 1831-1879)
1.1 集合
内容分布
1.1.1 集合的描述性定义 1.1.2 集合的表示方法 1.1.3 集合的包含和相等 1.1.4 集合的运算及其性质
教学目的
高等代数多媒体 课程
湛江教育学院数学系 李白桦
数学可以把灵活引导到真理。
――苏格拉底(Socrate,前469年—前399年)
数学是科学的大门和钥匙。
-----培根(Roger Bacon, 1214-1294)
数学,如果正确地看它,不但拥有真理,而且也具有至高的 美,是一种冷而严肃的美.
--罗素(Russel,1872-1970)
注意: ① A与B可以是相同的集合,也可以是不同的集合 ② 对于A的每一个元素x,需要B中一个唯一确定的元素与它对 应. ③ 一般说来,B中的元素不一定都是A中元素的象. ④ A中不相同的元素的象可能相同.
f :AB
1.2.2
映射的相等及像
设 f : A B , : A B 都是A到B的映射,如果对于每 g 一 ,都有 f g ,那么就说映射f与g是相等的. 记作 f g 例7 令 f : R R, x | x | , g : R R, x x 2 . 那么 f g . 设 f : A B 是一个映射. 对于 x A,x的象 f ( x) B . 一切 这样的象作成B的一个子集,用 f ( A) 表示: f (a) { f ( x) | x A} , 叫做A在f之下的象,或者叫做映射f的象.
A B A C A B C
这就证明了上述等式.
两个集的并与交的概念可以推广到任意n个集合上去, 设 A1 , A2 ,, An 是给定的集合. 由 A1 , A2 ,, An 的一切元 素所成的集合叫做 A1 , A2 ,, An 的并;由 A1 , A2 ,, An 的一切公共元素所成的集合叫做的 A1 , A2 ,, An 交. A1 , A2 ,, An 的并和交分别记为: A1 A2 An 和 A1 A2 An . 我们有
掌握集合概念、运算、证明集合相等的一般方法
重点、难点
集合概念、证明集合相等
1.1.1 集合的描述性定义
表示一定事物的集体,我们把它们称为集合或集, 如“一队”、“一班”、“一筐”. 组成集合的东西 叫这个集合的元素. 我们常用大写拉丁字母A,B,C,…表示集合, 用小写拉丁字母a,b,c,…表示元素. 如果a是集合A的元素,就说a属于A,记作 ; 或者说A包含a,记作A∋a a A 如果a不是集合A的元素,就说a不属于A,记 作 a A;或者说A不包含a,记作 a A 例如,设A是一切偶数所成的集合,那么4∈A, 而 3 A .
A B C A B A C
反之,若 x ( A B) ( A C ) ,那么 x A B或 者 x A C . 但 B B C, B C ,所以不论哪一 C 种情形都有 x A B C ,所以
交运算 由集合A与B的公共元素所组成的集合叫做A 与B的交集(简称交),记作: B ,如图2所示. A
A B
显然,A B A , A B B 例如,A={1,2,3,4},B={2,3,4,5},则
A B {2,3,4}
我们有 ( x A B) ( x A且x B)
例5 令A=B等于一切正整数的集合. f : n n 1 不是A到B的一个映射,因为 f (1) 1 1 0 B . 例6 设A是任意 一个集合,对于每一 x A ,令 f ( x) x 与它对应:f : x x 这自然是A到A的一个映射,这个映射称为集合A的恒等 映射.
A
A B
B
例如,A={1,2,3},B ={1,2,3,4},则 A B {1,2,3,4} 根据定义,我们有 又例如, A是一切有理数的集合 ,B是一切无理数的集 ( x A B) ( x A或x B) 合,则 A B 是一切实数的集合. 显然, ( x A B) ( x A且x B) A ( A B) 或 A ( A B)
到B的一个映射. 如果通过映射f,与A中元素x对应的B中元素是y,那么 就写作 f : x y 这时y 叫做 x 在f 之下的象,记作 f (x) .
f (x)
例1 令Z是一切整数的集合. 对于每一整数n,令 f (n) 2n 与它对应. 那 f 是Z到Z的一个映射, 例2 令R是一切实数的集合,B是一切非负实数的集合 , 对于每一 x R,令 f ( x) x 2 与它对应; 那么 f 是R到B的一个映射. f : x x2 , 例3 设 A B {1,2,3,4} f : 1 2,2 3,3 4,4 1 这是A到B的一个映射. 例4 设A是一切非负被减数的集合,B是一切实数的集 合. 对于每一 x A,令 f ( x) x 与它对应. f 不是A 到B的映射, 因为当 x 0 时, f (x)不能由x唯一确 定.
第一章
1.1 1.2 1.3 1.4 1.5
基本概念
集合 映射 数学归纳法 整数的一些整除性质 数环和数域
在数学的领域中,提出问题的艺术比解答问题的艺 术更为重要。 ――康托尔(Cantor,集合论的奠基人,1845-1918)
算术给予我们一个用之不竭的、充满有趣真理的宝 库。 --高斯(Gauss,1777-1855)
A {x | x R,1 x 1}表示一切大于-1且小于1的实数 的所组成的集合. 常用的数集: 全体整数的集合,表示为Z 全体有理数的集合,表示为Q 全体实数的集合,表示为R 全体复数的集合,表示为C
1.1.3 集合的包含和相等
设A,B是两个集合,如果A的每一元素都是B的元素,那 么就说A是B的子集,记作 A (读作A属于B),或 B 记作 B (读作B包含A). 根据这个定义,A是B的 A 的子集必要且只要对于每一个元素x,如果 x A,就 有xB . 例如,一切整数的集合是一切有理数的集合的子集,而 后者又是一切实数的集合的子集.
Q 注意:并没有要求B是A的子集. 例如, C Ø
积运算: 设设A,B是两个集合,令
A B {( a, b) | a A, b B}
称为A与B的笛卡儿积(简称为积). A B 是一切元素对(a, b )所成的集合,其中第一个 位置的元素a取自A,第二个位置的元素b取自B.
1.2 映射
1.1.2 集合的表示方法
枚举法: 例如,我们把一个含有n个元素的集合的有限 a 集合 a1 , a 2 ,, a n 表示成: , a ,, a . 前五个正 1 整数的集合就可以记作 ,2,3,4Байду номын сангаас5 . 枚举仅用来表示有限集合.
1 2 n
拟枚举: 自然数的集合可以记作 ,2,3,4,5....n..... , 拟枚举 1 可以用来表示能够排列出来的的集合, 像自 然数、整数… 概括原则: 如果一个集 A 是由一切具有某一性质的元 素所组成的,那么就用记号 A {x | x具有某一性质 来表示. 例如
一、 内容分布 1.2.1 映射的概念及例
1.2.2 映射的相等及像
1.2.3 映射的合成
1.2.4 单射、满射、双射 二、 教学目的 掌握映射的概念, 映射的合成,满射、单射、可逆映射 的判断。 三、 重点、难点 映射的合成,满射、单射、可逆映射的判断。
1.2.1 映射的概念及例
定义1 设A,B 是两个非空的集合,A到B 的一个映射 指的是一个对应法则,通过这个法则,对于集合A中的 每一个元素 x,有集合B中一个唯一确定的元素 y 与它 对应. 用字母f,g,…表示映射. 用记号 f : A B 表示f 是A
美是首要的标准,不美的数学在世界上找不到永久的容身地。
--哈代(H.Hardy,1877-1947)
数学家的美感犹如一个筛子,没有它的人永远成不了数学家。
--阿达玛(S.Hadamard,1865-1963)
第一章 基本概念 第二章 多项式 第三章 行列式 第四章 线性方程组 第五章 矩阵 第六章 向量空间 第七章 线性变换 第八章 欧氏空间和酉空间 第九章 二次型 附录1:代数发展简史 附录2:科学与艺术的完美结合 --数学价值的鉴赏
( x A1 A2 A) ( x至少属于某一Ai , i 1,2,, n)
( x A1 A2 A) ( x属于每一Ai , i 1,2,, n)
差运算: 设A,B是两个集合,令 A B {x | x A但x B} 也就是说,A B 是由一切属于A但不属于B 的元素所组 成的,称为A与B 的差.
A是B的子集,记作:
( A B) (对于一切x : x A x B)
如果A不是B的子集,就记作: A Ø B 或 A Ù B . 因此,A 不是B的子集,必要且只要A中至少有一个元素不属于 B, 即:
( A Ø B) (存在一个元素x : x A但x B)
例如,一节可以用被有整除的整数所成的集合,不是一 切偶数所成的集合的子集,因为3属于前者但不属于后 者. 集合{1,2,3}不是{2,3,4,5}的子集. 根据定义,一个集合A总是它自己的子集,即:A A 如果集合A与B的由完全相同之处的元素组成部分的,就 说A与B相等,记作:A=B. 我们有
一个集合可能只含有有限多个元素,这样的集合叫 做有限集合. 如,前十个正整数的集合;一个学校的 全体学生的集合;一本书里面的所有汉字的集合等 等这些都是有限集合. 如果一个集合是由无限多个元 素组成的,就叫做无限集合. 如,全体自然数的集合; 全体实数的集合;小于的全体有理数的集合等等都 是无限集合. 不含任何元素的集合叫空集. 表示为:Ø
相关文档
最新文档