《数学建模》实验指导_03_Lingo求解线性规划问题

《数学建模》实验指导_03_Lingo求解线性规划问题
《数学建模》实验指导_03_Lingo求解线性规划问题

实验二:Lingo求解线性规划问题

学时:4学时

实验目的:掌握用Lingo求解线性规划问题的方法,能够阅读Lingo结果报告。

实验内容:

1、求解书本上P130的习题1:

某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表1所示,按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税,此外还有以下限制:

1)政府及代办机构的证券总共至少要购进400万元;

2)所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程序越高);

3)所购证券的平均到期年限不超过5年。

表 1

(1)若该经理有1000万元资金,应如何投资?

(2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?

(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?

列出线性规划模型,然后用Lingo求解,根据结果报告得出解决方案。

2、指派问题:6个人计划做6项工作,其效益如下表(”-”表示某人无法完成某项工作),

3、有限制的运输问题:6个发点6个收点,其供应量、接收量和运费如下表1(”-”表示某个发电无法向某个收点运输货物),如果某个发点向某个收点运输货物,则运输量不得低

使用Lingo 的一些注意事项

1. “>”与“>=”功能相同。

2. 变量与系数间相乘必须用”*”号,每行用”;”结束。

3. 变量以字母开头,不能超过8个字符。

4. 变量名不区分大小写(包括关键字)。

5. 目标函数用min=3*x1+2*x2或max=3*x1+2*x2的格式表示。

6. “!”后为注释。

7. 变量界定函数实现对变量取值范围的附加限制,共4种:

@bin(x) 限制x 为0或1 @bnd(L,x,U) 限制L≤x≤U

@free(x) 取消对变量x 的默认下界为0的限制,即x 可以取任意实数 @gin(x) 限制x 为整数 其他可见“Lingo 教程.doc ”

如书上85页的Lindo 代码可改为如下Lingo 代码: max =72*x1+64*x2; x1+x2<50;

12*x1+8*x2<480; 3*x1<100;

例1.1 如何在LINGO 中求解如下的LP 问题:

,6002100

350.

.32min 21211

212

1≥≤+≥≥++x x x x x x x t s x x

在模型窗口中输入如下代码:

min =2*x1+3*x2; x1+x2>=350; x1>=100;

2*x1+x2<=600;

然后点击工具条上的按钮 即可。

例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。产销单位运价如

6

8

,,1

1

6

,18

,1

m in * 1,,8 1,,6

i j

i j

i j i j

j i i j

i j cost

volum e volum e

dem and j volum e

capacity i ========∑

∑∑∑ 使用LINGO 软件,编制程序如下:

model :

!6发点8收点运输问题; sets :

warehouses/wh1..wh6/: capacity; vendors/v1..v8/: demand;

links(warehouses,vendors): cost, volume; endsets !目标函数;

min =@sum (links: cost*volume); !需求约束;

@for (vendors(J):

@sum (warehouses(I): volume(I,J))=demand(J)); !产量约束;

@for (warehouses(I):

@sum (vendors(J): volume(I,J))<=capacity(I));

!这里是数据; data :

capacity=60 55 51 43 41 52;

demand=35 37 22 32 41 32 43 38; cost=6 2 6 7 4 2 9 5 4 9 5 3 8 5 8 2 5 2 1 9 7 4 3 3 7 6 7 3 9 2 7 1 2 3 9 5 7 2 6 5 5 5 2 2 8 1 4 3; enddata end

运筹学线性规划实验报告

《管理运筹学》实验报告 实验日期: 2016年 04月 21日—— 2016 年 05 月 18 日 班级2014级04班姓名杨艺玲学号56 实验 管理运筹学问题的计算机求解 名称 实验目的: 通过实验学生应该熟练掌握“管理运筹学”软件的使用,并能利用“管理运筹学”对具体问题进行问题处理,且能对软件处理结果进行解释和说明。 实验所用软件及版本: 管理运筹学 实验过程:(含基本步骤及异常情况记录等) 一、实验步骤(以P31页习题1 为例) 1.打开软件“管理运筹学” 2.在主菜单中选择线性规划模型,屏幕中会出现线性规划页面

3.在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“≤”、“≥”或“=”,如图二所示,最后点击解决 4.注意事项: (1)输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。(2)输入前要合并同类项。 当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果,如图所示

5.输出结果如下

5.课后习题: 一、P31习题1 某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元. 约束条件: 问题: (1)甲、乙两种柜的日产量是多少这时最大利润是多少 答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。 (2)图中的对偶价格的含义是什么 答: 对偶价格的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加元。 (3)对图中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息。 答:当约束条件1的常数项在48~192范围内变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为;当约束条件2的常数项在40~180范围内变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为。 (4)若甲组合柜的利润变为300,最优解不变为什么 . 0,0,6448,120126; 240200 z max ≥≥≤+≤++=y x y x y x y x

运筹学线性规划实验报告

《管理运筹学》实验报告 实验日期:2016年04月21日——2016年05月18日 实验目的: 通过实验学生应该熟练掌握“管理运筹学 3.0”软件的使用,并能利用“管理运筹学 3.0” 对具体问题进行问题处理,且能对软件处理结果进行解释和说明。实验所用软件及版本:管理运筹学3.0 实验过程:(含基本步骤及异常情况记录等―) 一、实验步骤(以P31页习题1为例) 1?打开软件“管理运筹学3.0” 2?在主菜单中选择线性规划模型,屏幕中会出现线性规划页面 3?在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“w”、“》”或“二”, 如图二所示,最后点击解决 班级2014级04班姓名杨艺玲学号2014190456实验 名称 管理运筹学问题的计算机求解 n 幵 目标的数 娈童个数约束条件个数 芙 遇出 保存解决关于

X 4?注意事项: (1)输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。 (2)输入前要合并同类项。 当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果, 如 图所示 D tiff 0% 关于遇出 变童个数约朿条件个数F目标的数3V 标淮北结杲: 上一曲

5.输出结果如下 me車最优解如下***#尊1林*祜除目标函数最优值知2?20 变1 最优解相差値 XI 4.00 0.00 X2 8.00 0100 釣束松弛颅11余变量对偶价格 01. 00 16. 5€ 0.00 13.33 目标函数系数范園: 娈1下限当前值上限 XI 120. 30 200.00430. 00 X2 100. 0D 240.00400.00 常数【页范園; 的束T眼当前值上限 143.00120 00152.00 240.00 64.00 160.00 5.课后习题: 一、P31习题1 某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240 元. max z = 200x 240y; 约束条件:6x,12心2°, 8x +4y 兰64, x 一0, y -0. 问题: (1)甲、乙两种柜的日产量是多少?这时最大利润是多少? 答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个

数学建模线性规划与非线性规划

实验7:线性规划与非线性规划 班级:2015级电科班,学号:222015333210187,姓名:吴京宣,第1组 ====================================================================== 一、实验目的: 1. 了解线性规划的基本内容。 2. 直观了解非线性规划的基本内容。 3. 掌握用数学软件求解优化问题。 二、实验内容 1. 两个引例. 2. 用数学软件包MATLAB求解线性规划与非线性规划问题. 3. 用数学软件包LINDO、LINGO求解线性规划问题. 4. 建模案例:投资的收益与风险. 5. 非线性规划的基本理论 6. 钢管订购及运输优化模型. 三、实验步骤 对以下问题,编写M文件: 1.某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过800箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每100箱甲饮料获利可增加1万元,问应否改变生产计划. 2.某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60 台、80台.每季度的生产费用为(单位:元), 其中x 是该季度生产的台数.若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c元.已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问:工厂应如何安排生产计划,才能既满足合同又使总费用最低.讨论a、b、c变化对计划的影响,并作出合理的解释.

数学建模实验报告3 线性规划与整数规划、

数学建模与实验课程实验报告 实验名称三、线性规划与整数规划实验地点日期2014-10-28 姓名班级学号成绩 【实验目的及意义】 [1] 学习最优化技术和基本原理,了解最优化问题的分类; [2] 掌握规划的建模技巧和求解方法; [3] 学习灵敏度分析问题的思维方法; [4] 熟悉MATLAB软件求解规划模型的基本命令; [5] 通过范例学习,熟悉建立规划模型的基本要素和求解方法。 通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和 建立优化模型,并且使学生学会使用MATLAB、Lingo软件进行规划模型求解的基本命令, 并进行灵敏度分析。解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因 此,本实验对学生的学习尤为重要。 【实验要求与任务】 根据实验内容和步骤,完成以下实验,要求写出实验报告(符号说明—模型的建立—模型 的求解(程序)—结论) A组 高校资金投资问题 高校现有一笔资金100万元,现有4个投资项目可供投资。 项目A:从第一年到底四年年初需要投资,并于次年年末回收本利115%。 项目B:从第三年年初需要投资,并于第5年末才回收本利135%,但是规定最大投资总 额不超过40万元。 项目C:从第二年年初需要投资,并于第5年末才回收本利M%,但是规定最大投资总 额不超过30万元。(其中M为你学号的后三位+10) 项目D:五年内每年年初可以买公债,并于当年年末归还,并可获得6%的利息。 试为该校确定投资方案,使得第5年末他拥有的资金本利总额最大。 该校在第3年有个校庆,学校准备拿出8万元来筹办,又应该如何安排投资方案,使得 第5年末他拥有的资金本利总额最大。 B组题 1)最短路问题, 图1中弧上的数字为相邻2点之间的路程,求从1到7的最短路。 图1 图 2 r为你的学号后2位+10 其中 1 2)最大车流量, 图1中弧上的数字为相邻2点之间每小时的最大车流量。求每小时1到7最大

清华大学数学实验_实验8 线性规划1

实验8 线性规划 实验目的: 1)掌握用matlab优化工具箱解线性规划的方法 2)练习建立实际问题的线性规划模型 实验内容: 6,信息如下表所示。市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。此 (1)政府及代办机构的证券总共至少要购进400万元; (2)所购证券的平均信用等级不超过1.4 (3)所购证券的平均到期年限不超过5年。 ①若该经理有1000万元资金,应该如何投资? ②如果能够以2.75%的李律借到不超过100万元资金,该经理应如何操作? ③在1000万元资金的情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变? 解: ① 问题的建模: 令总收益为z,每项投资各为x1,x2,x3,x4,x5 则有: z=0.043x1+0.054*0.5x2+0.050*0.5x3+0.044*0.5x4+0.045x5 约束为: x2+x3+x4≥400 0.6x1+0.6x2-0.4x3-0.4x4+3.6x5≤0 (平均信用等级不超过1.4) 4x1+10x2-x3-2x4-3x5≤0 (平均到期年限不超过5年) x1+x2+x3+x4+x5=1000 x1,x2,x3,x4,x5≥0 模型的求解: matlab代码如下: c=[0.043 0.054*0.5 0.050*0.5 0.044*0.5 0.045]; A1=[0 -1 -1 -1 0;0.6 0.6 -0.4 -0.4 3.6;4 10 -1 -2 -3]; b1=[-400 0 0] A2=[1 1 1 1 1]; b2=[1000]; v1=[0 0 0 0 0];

运筹学线性规划实验报告

《管理运筹学》实验报告实验日期: 2016年 04月 21日—— 2016 年 05 月 18 日

3.在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“≤”、“≥”或“=”,如图二所示,最后点击解决

4.注意事项: (1)输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。(2)输入前要合并同类项。 当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果,如图所示

5.输出结果如下

5.课后习题: 一、P31习题1 某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元. 约束条件: 问题: (1)甲、乙两种柜的日产量是多少?这时最大利润是多少? 答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。 . 0,0,6448,120126;240200 z max ≥≥≤+≤++=y x y x y x y x

(2)图中的对偶价格13.333的含义是什么? 答: 对偶价格13.333的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加13.33元。 (3)对图中的常数项围的上、下限的含义给予具体说明,并阐述如何使用这些信息。 答:当约束条件1的常数项在48~192围变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为15.56;当约束条件2的常数项在40~180围变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为13.333。 (4)若甲组合柜的利润变为300,最优解不变?为什么? 答:目标函数的最优值会变,因为甲组合柜的利润增加,所以总利润和对偶价格增加;甲、乙的工艺耗时不变,所以甲、乙的生产安排不变。 二、学号题 约束条件: 无约束条件 (学号)学号43214321432143214321 0 0,30 9991285376)(53432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-+≥-+-+=-++-+++=??????????????-≥?-?-?-?-?-7606165060~5154050~414 )30(40~313)20(30~21210 20~11 10~1)(学号)(学号)(学号学号学号)(学号不变学号规则

1-3.线性规划综合性实验参考选题

线性规划综合性实验参考选题 1.某工厂生产A、B两种产品,均需经过两道工序,每生产一吨产品A需要经第一道工序加工2小时,第二道工序加工3小时;每生产一吨产品B需要经第一道工序加工3小时,第二道工序加工4小时。可供利用的第一道工序为12小时,第二道工序为24小时。生产产品B的同时产出副产品C,每生产一吨产品B,可同时得到2吨产品C而毋需外加任何费用;副产品C一部分可以盈利,剩下的只能报废。出售产品A每吨能盈利400元、产品B每吨能盈利1000元,每销售一吨副产品C能盈利300元,而剩余要报废的则每吨损失200元。经市场预测,在计划期内产品C最大销量为5吨。 根据以上资料该工厂应如何制定生产方案,使工厂总的利润最大。 2.某厂接受了一批加工定货,客户要求加工100套钢架,每套由长2.9米、2.1米和1.5米的圆钢各一根组成。现在仅有一批长7.4米的棒料毛坯,问应如何下料,使所用的棒料根数最少? 3.某公司在5年内考虑下列投资,已知:项目A可从第一年至第四年的年初投资,并于次年末收回本利共115%;项目B在第三年的年初投资,到第五年的年末收回本利135%,但规定投资额不能超过4万元;项目C在第二年的年初投资,到第五年的年末收回本利145%,但规定投资额不能超过3万元;项目D每年年初购买债券,年底归还,利息是0.06。公司现有资金10万元,问如何投资,才能使第五年年末拥有的资金最多? 4.某企业在今后三年内有四种投资机会。第一种是在三年内每年年初投资,年底可回收本利和120%;第二种是在第一年年初投资,第二年年底可回收本利和150%,但该项投资不得超过2万元;第三种是在第二年年初投资,第三年年底回收本利和160%,但该项投资不得超过1.5万元;第四种是在第三年年初投资,该年年底可回收本利和140%,该项投资不得超过1万元。现在该企业准备拿出3万元资金,问如何制订投资计划,使到第三年年末本利和最大? 5. D&D Corporation是一家专门从事艺术品买卖业务的公司。最近,D&D以低价收购了AT&T,Bell,Cisco,Dell,Epson公司的一些艺术品。这些艺术品可分为五类,不妨称其为A类,B类,C类,D类和E类。在D&D的广告宣传下,很多顾客来D&D购买这些艺术品,每个顾客都给D&D留下了要求购买的艺术品的数量,并提供了愿意出的价格。有关数据资料如下:设A类,B类,C类,D类和E类艺术品数量分别为3 件、3件、3件、1件和1件;设有5个顾客分别为Alan、Betty、Carl、David和Elton,他们需要艺术品的最多数量分别为5件、5件、2件、1件和1件。顾客Alan对五类艺术品愿意出的价格分别为10,10,10,30,50;顾客Betty对五类艺术品愿意出的价格分别为20,5,18,40,20;顾客Carl对五类艺术品愿意出的价格分别为15,20,20,20,20;顾客David对五类艺术品愿意出的价格分别为40,40,40,60,60;顾客Elton 对五类艺术品愿意出的价格分别为25,25,25,55,55. 现在任命你为D&D的销售部经理,要求你制定一个艺术品销售方案(即向上述五位顾客如何销售艺术品),将所有艺术品全部售出,并使D&D的收入最大。 6.某公司有钢材、铝材、铜材1200吨,800吨和650吨,拟调往物资紧张的地区甲、乙、丙。已知甲、乙、丙对上述物资的总需求为:900吨,800吨和1000吨,各种物资在各地销售每吨的获利如下表所示。

实验二___线性规划灵敏度分析

实验二___线性规划灵敏度分析

实验二线性规划模型及灵敏度分析 (一)实验目的:掌握使用Excel软件进行灵敏度分析的操作方法。 (二)实验内容和要求:用Excel软件完成案例。 (三)实例操作: (1)建立电子表格模型; (2)使用Excel规划求解功能求解问题并生成“敏感性报告”; (3)结果分析:哪些问题可以直接利用“敏感性报告”中的信息求解,哪些问题需要重新规划求解,并对结果提出你的看法; (4)在Word文档中书写实验报告,包括线性规划模型、电子表格模型、敏感性报告和结果分析等。 案例1 市场调查问题 某市场调查公司受某厂的委托,调查消费者对某种新产品的了解和反应情况。该厂对市场调查公司提出了以下要求: (1)共对500个家庭进行调查;

(2)在被调查家庭中,至少有200个是没有孩子的家庭,同时至少有200个是有孩子的家庭; (3)至少对300个被调查家庭采用问卷式书面调查,对其余家庭可采用口头调查; (4)在有孩子的被调查家庭中,至少对50%的家庭采用问卷式书面调查; (5)在没有孩子的被调查家庭中,至少对60%的家庭采用问卷式书面调查。 对不同家庭采用不同调查方式的费用如下表所示: 市场调查费用表 家庭类型调查费用(元) 问卷式书面调查口头调查 有孩子的家庭50 30 没有孩子的家庭40 25 问:市场调查公司应如何进行调查,使得在

满足厂方要求的条件下,使得总调查费用最少? 案例2 经理会议建议的分析 某公司生产三种产品A1,A2,A3,它们在B1,B2两种设备上加工,并耗用C1,C2两种原材料,已知生产单位产品耗用的工时和原材料以及设备和原材料的每天最多可使用量如下表所示: 生产三种产品的有关数据 资源产品A1 产品A2 产品A3 每天最多可使用量 设备B1(min) 1 2 1 430 设备B2(min) 3 0 2 460 原料C1(kg) 1 4 0 420 原料C2(kg) 1 1 1 300 每件利润(元) 30 20 50

数学建模 matlab求解线性规划实验报告

实验三 线性规划 程序: linprog c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6]; A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[]; vlb=[0;0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) Exam5: function f=fun3(x); f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^2 实验目的 2、掌握用数学软件包求解线性规划问题。 1、了解线性规划的基本内容。 例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++= 85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s 70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 6,2,10 =≥j x j

x0=[1;1]; A=[2 3 ;1 4]; b=[6;5]; Aeq=[];beq=[]; VLB=[0;0]; VUB=[]; [x,fval]=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB) 书 求下列非线性规划 2221232212322 1232 12223123min 8020 ..2023,,0x x x x x x x x x s t x x x x x x x +++?-+≥?++≤??--+=??+=? ?≥? 在Matlab 2013软件中输入如下程序: (i )编写M 文件fun1.m 定义目标函数 function f=fun1(x); f=sum(x.^2)+8; (ii )编写M 文件fun2.m 定义非线性约束条件 function [g,h]=fun2(x); g=[-x(1)^2+x(2)-x(3)^2 x(1)+x(2)^2+x(3)^3-20]; %非线性不等式约束 h=[-x(1)-x(2)^2+2 x(2)+2*x(3)^2-3]; %非线性等式约束 (iii )编写主程序文件example2.m 如下: options=optimset('largescale','off'); [x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[], ... 'fun2', options) 就可以求得当1230.5522 1.2033,,0.9478x x x ===时,最小值y =10.6511。 4. 选修课的策略 决策目标为选修的课程总数最少,即 921min x x x +++ 约束条件: (1) 满足课程要求:(至少2门数学课程,3门运筹学课程和2门计算机课程)

线性规划实验举例

最优化算法实验指导书 1.线性规划求解 1.1 生产销售计划 问题 一奶制品加工厂用牛奶生产A 1、A 2两种普通奶制品,以及B 1、B 2两种高级奶制品,分别是由A 1、A 2深加工开发得到的,已知每1桶牛奶可以在甲类设备上用12h 加工成3kg A 1,或者在乙类设备上用8h 加工成4kg A 2;深加工时,用2h 并花1.5元加工费,可将1kg A 1加工成0.8kg B 1,也可将1kg A 2加工成0.75kg B 2,根据市场需求,生产的4种奶制品全部能售出,且每公斤A 1、A 2、 B 1、B 2获利分别为12元、8元、22元、16元。 现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间最多为480h ,并且乙类设备和深加工设备的加工能力没有限制,但甲类设备的数量相对较少,每天至多能加工100kg A 1,试为该厂制定一个生产销售计划,使每天的净利润最大,并讨论以下问题: (1)若投资15元可以增加供应1桶牛奶,应否作这项投资; (2)若可以聘用临时工人以增加劳动时间,支付给临时工人的工资最多是每小时几 元? (3)如果B 1、B 2的获利经常有10%的波动,波动后是否需要制定新的生产销售计划? 模型 这是一个有约束的优化问题,其模型应包含决策变量、目标函数和约束条件。 决策变量用以表述生产销售计划,它并不是唯一的,设A 1、A 2、 B 1、B 2每天的销售量分别为1234,,,x x x x (kg ),34,x x 也是B 1、B 2的产量,设工厂用5x (kg )A 1加工B 1,6x (kg )A 2加工B 2(增设决策变量5x 、6x 可以使模型表达更清晰)。 目标函数是工厂每天的净利润z ,即A 1、A 2、 B 1、B 2的获利之和扣除深加工费,容易写出1234561282216 1.5 1.5z x x x x x x =+++--(元)。 约束条件 原料供应:A 1每天的产量为15x x +(kg ),用牛奶13()/3x x +(桶),A 2的每天产量为26x x +(kg ),用牛奶26()/4x x +(桶),二者之和不得超过每天的供应量50(桶)。 劳动时间:每天生产A 1、A 2的时间分别为154()x x +和262()x x +,加工B 1、B 2的时间分别为52x 和62x ,二者之和不得超过总的劳动时间480h 。 设备能力:A 1每天的产量15x x +,不得超过甲类设备的加工能力100(kg )。 加工约束:1(kg )A 1加工成0.8(kg )B 1,故350.8x x =;类似的460.75x x =。 非负约束:123456,,,,,x x x x x x 均为非负。 由此得如下基本模型: 123456max 1282216 1.5 1.5z x x x x x x =+++--

数学实验——线性规划

实验5 线性规划 分1 黄浩 43 一、实验目的 1.掌握用MATLAB工具箱求解线性规划的方法 2.练习建立实际问题的线性规划模型 二、实验内容 1.《数学实验》第二版(问题6) 问题叙述: 某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示。按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。此外还有如下限制: (1).政府及代办机构的证券总共至少要购进400万元; (2).所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高); (3).所购证券的平均到期年限不超过5年 I.若该经理有1000万元资金,该如何投资? II.如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作? III.在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变? 模型转换及实验过程: I. 设经理对于上述五种证券A、B、C、D、E的投资额分别为:、、、、(万

元),全部到期后的总收益为z万元。 由题目中的已知条件,可以列出约束条件为: 而决策变量的上下界约束为: 目标函数 将上述条件转变为matlab的要求形式: 使用matlab解上述的线性规划问题(程序见四.1),并整理成表格: 得出结论: 当经理对A、B、C、D、E五种证券分别投资218.18、0、736.36、0、45.45万元时,在全部收回时可得到29.836万元的税后收益,而且这种投资方式所得收益是最大的。 讨论: 尝试输出该约束条件下的拉格朗日乘子: 该乘子表示,第一个约束条件对目标函数的取值不起作用,而剩余三个约束条件取严格等号的时候,目标函数达到最优解。下面验证之: 由解得的x值,代入四个约束条件中,得:

清华大学数学实验-实验9-非线性规划1资料

清华大学数学实验-实验9-非线性规划1

实验9 非线性规划 实验目的: 1)掌握用matlab优化工具箱解非线性规划的方法 2)练习建立实际问题的非线性规划模型 实验内容: 4.某公司将3种不同含硫量的液体原料(分别记为甲、乙、丙)混合生产两种产品(分别记为A,B).按照生产工艺的要求,原料甲、乙必须首先倒入混合池中混合,混合后的液体再分别于原料丙生产A,B.已知原料甲、乙、丙的含硫量分别是3%,1%,2%,进货价格分别为6千元/t,16千元/t,10千元/t;产品A,B的含硫量分别不能超过2.5%,1.5%,售价分别为9千元/t,15千元/t.根据市场信息,原料甲、乙、丙的供应量都不能超过500t;产品A,B的最大市场需求量分别为100t,200t. (1)应如何安排生产? (2)如果产品A的最大市场需求量增长为600t,应如何安排生产? (3)如果乙的进货价格下降为13千元/t,应如何安排生产?分别对(1)、(2)两种情况进行讨论. 解:(1) 问题的建模 设利用x1吨甲,x2吨乙,x3吨丙制造y1吨A;利用x2吨甲,x4吨乙,x6吨丙制造y2吨B;总收益是z千元。 则有以下方程与不等式: 质量守恒: y1=x1+x3+x5 y2=x2+x4+x6 总收益: z=9y1+15y2-6(x1+x2)-16(x3+x4)-10(x5+x6) 化简得: z=3x1+9x2+3x3+9x4-x5+5x6 含硫量约束: 3%x1+1%x3+2%x5≤2.5%y1 3%x2+1%x4+2%x6≤1.5%y2 化简得: 0.5 x1-1.5x3-0.5x5≤0 1.5x2-0.5x4+0.5x6≤0 供应量约束: (x1+x2),(x3+x4),(x5+x6)≤500 需求量约束: y1≤100;y2≤200

模糊线性规划实验报告

姓名: 学号: 实验二 求解模糊线性规划 实验目的: 掌握将模糊线性规划转化为一般线性规划的方法,会使用数学软件Matlab 工具箱求解一般线性规划. 实验学时:2学时 实验内容: 将已知模糊线性规划问题标准化后,再用Matlab 工具箱求解相应的各个线性归化问题,最后得到模糊最优解。 实验日期:2017年12月02日 实验步骤: 1 问题描述: 某种药物主要成分为A 1、A 2、A 3,含量分别为585±-1mg 盒?、5100±-1mg 盒?、 10100±-1mg 盒?。这三种成分主要来自五种原材料B 1、B 2、B 3、B 4、B 5,各种原 表一 2 解决步骤 设成本为)(b f ,买入原材料B 1、B 2、B 3、B 4、B 5分别为54321b b b b b 、、、、千克。为使成本最小,建立如下模糊线性规划模型: ??? ??? ?≥=++++=++++=++++++++=0,,,,]10,100[200120150120001]5,010[601609015008]5,85[120801206085.8.17.16.15.11.3)(min 543215432154321543215 4321b b b b b b b b b b b b b b b b b b b b t s b b b b b b f (1)求解没有伸缩率经典线性规划:

??? ??? ?≥=++++=++++=++++0,,,,10020012015012000110060160901500885120801206085.54321543215432154321b b b b b b b b b b b b b b b b b b b b t s 使用Matlab 实现代码如下: 实验结果: 图一 没有伸缩率经典线性规划求解结果 因此我们可以得知: 0000.0b 3021.00.00000000.01.014454321=====、、、、b b b b 从而得到最优解: 1.8322)(=b f (2)求解有伸缩率的普通线性规划:

线性规划建模实验题

线性规划建模实验题 一、李四企业的生产经营规划问题 李四经营着一个小企业,这个企业最近出现了一些问题,资金周转出现困难。该企业一共生产经营着三种产品,当前有两种产品赔钱,一种产品赚钱。其中,第一种产品是每生产一件赔100元,第二种产品每生产一件赚300元,第三种产品每生产一件赔400元。 三种产品分别消耗(或附带产出)三种原料,其中第一种产品每生产一件附带产生100千克原料A,需要消耗100千克原料B和200千克原料C;第二种产品每生产一件需要消耗100千克原料A和100千克原料C,附带产生100千克原料B;第三种产品每生产一件需要消耗原料A、B、C各100千克。由于生产第一种产品的设备已经损坏,且企业也无能力筹集资金修复之,所以该企业现已无法组织生产第一种产品。 现在仓库里还存有A原料40000千克,后续货源供应难以得到保证;库存B原料20000千克,如果需要,后续容易从市场采购得到;库存C原料30000千克,如果需要,后续容易从市场采购得到。 李四想转行经营其他业务,但苦于仓库里还积压着90000千克原料,如果直接出售原料,则比生产后出售成品赔得更多。没有办法,李四只好向运筹学专家咨询,看看如何组织生产才能将损失降到最低。 请对李四企业的生产经营情况进行考查和分析,建立该问题的线性规划模型,并使用Excel软件和LINDO软件求解该问题(要求附带结果分析报告)。

二、王五管理的科研课题的经费使用规划问题 王五管理着一个科研课题,根据课题进展情况看,不久就要结题了。由于课题的管理采用经费与任务包干制,所以可以通过节约开支来预留课题完成后的产业推广经费。现王五需要制订出这样的一个方案:既按期完成科研任务,又要尽可能多地节省费用,人员的收入还不能减少。同时他还想知道这笔可节省的费用究竟是多少? 课题组的费用构成有两个部分:一是人员经费开支,二是试验消耗与器材采购费用开支。其中,由于出台了增收节支激励政策,所以人员经费开支与原计划相比每月可节省1万元,试验消耗与器材采购费用开支每月可节省4万元。 该课题由两个子课题构成。其中第一个子课题的开支情况为:每月人员经费为1万元,每月试验与器材经费的开支为10万元;第二个子课题的开支情况为:人员经费计划为1万元,实际上该子课题每月可通过边研制边推广应用的方式获得净收入1万元,这样就可以保证每月正常的人员经费开支,所节余的1万元可向课题组上缴,同时该子课题的试验与器材经费开支需求是每月8万元。 第一个子课题的总经费还剩20万元,但如果申请,还可以增加;第二个子课题的经费还有40万元,但即使申请也不可能再增加。 课题组研究后一致决定采用如下原则进行决策: (1)所节余的人员经费用于奖励,不计入节省费用的总额当中。 (2)在保证圆满完成课题任务的前提下,最大限度地积累课题应用性推广经费。 请建立该问题的线性规划模型,帮助王五制订最合理的科研结题周期以及可节省的费用(要求使用Excel软件和LINDO软件求解该问题,并附带结果分析报告)。

数学实验报告——利用MALTAB进行线性规划

数学实验报告——利用MALTAB 进行线性规划

实验六线性规划 一、债券投资 ㈠问题描述 给定可供购进的证券以及其信用等级、到期年限、收益。市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。此外还有以下限制: (1) 政府及代办机构的证券总共至少要购进400万元; (2) 所购证券的平均信用等级不超过1.4; (3) 所购证券的平均到期年限不超过5年。 1、若经理有1000万元资金,应如何进行投资? 2、如果能以2.75%的利率借到不超过100万元资金,该经理应如何操作? 3、在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应够改变?若证券C的税前收益减少为4.8%,投资应否改变? ㈡简要分析 本题是一个比较简单的线性规划+扰动分析问题,对所谓问题进行建模,可以得到线性规划如下: 设分别购入A、B、C、D、E五种证券a、b、c、d、e万元。 于是对第1问有 对第2问,增设a1,b1,c1,d1,e1分别表示用借来的资金购买证券的金额,于是规划变为

对第三问,仅需将第一问中的规划做一点修改即可。 ㈢方法与公式 线性规划方法: (1)内点算法 opt1=optimset(’largescale’,’on’); [x,f,exitflag,output,lag]= linprog(c,A,b,[],[],[],[],[],opt1); (2)有效集方法 opt2=optimset(’largescale’,’off’); [x,f,exitflag,output,lag]= linprog(c,A,b,[],[],[],[],[],opt2); (3)单纯形算法 opt3=optimset(’largescale’,’off’,’simplex’,’on’); [x,f,exitflag,output,lag]= linprog(c,A,b,[],[],[],[],[],opt3); ㈣结果与分析 1、第一问:

数学建模实验报告第三章线性规划

实验名称:第三章线性规划 一、实验内容与要求 用linprog语句求解各种线性规划问题,对生产实际中的问题,进行预测。 二、实验软件 三、实验内容: 1、某鸡场有1000只鸡,用动物饲料和谷物混合喂养。每天每只 鸡平均食混合饲料,其中动物饲料所占比例不能少于20%。动 物饲料每千克元,谷物饲料每千克元,饲料公司每周仅保证供 应谷物饲料6000KG,问饲料怎样混合,才能使成本最低? 程序: C=[150 90]; A=[1 1]; B=[12/7]; Aeq=[0 1]; beq=[0,8]; vlb=[ 0]; vub=[];

[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 实验结果: 2、某工厂用A1、A2两台机床加工B1、B2、B3三种不同零件。已 知在一个生产周期内A1只能工作80机时;A2只能工作100机 时。一个生产周期内计划加工B1为70件、B2为50件、把为 20件。两台机床加工每个零件的时间和加工每个零件的成本,分别如下列各表所示: 加工每个零件时间表(单位:机时/个)

加工每个零件成本表(单位:元/个) 问怎样安排两台机床一个周期的加工任务,才能使加工成本最低?程序: C=[2;3;5;3;3;6]; A=[1 2 3 0 0 0 0 0 0 1 1 3 -1 0 0 -1 0 0 0 -2 0 0 -1 0 0 0 -2 0 0 -3]; B=[80;100;-70;-50;-20]; Aeq=[]; beq=[]; vlb=[0;0;0;0;0;7]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)

线性规划实验

实验一:线性规划实验 1. 求解线性规划问题 123451234512345min 23523..2342330,1,2,,5 j f x x x x x s t x x x x x x x x x x x j =++++??++++≥??-+++≥??≥=? 2. 农场种植计划问题 某农场Ⅰ、Ⅱ、Ⅲ等耕地的面积分别为100km 2、300 km 2和200 km 2,计划种植水稻、大豆和玉米,要求三种作物的最低收获量分别为190000kg 、130000kg 和350000kg 。Ⅰ、Ⅱ、Ⅲ等耕地种植三种作物的单产如表1所示。若三种作物的售价分别为水稻1.20元/kg ,大豆1.50元/kg ,玉米0.80元/kg 。那么: (1)如何制定种植计划,才能使总产量最大? (2)如何制定种植计划,才能使总产值最大? 23. 厂址选择问题 考虑A 、B 、C 三地,每地都出产一定数量的原料,也消耗一定数量的产品,如表2所示。已知制成每吨产品需3吨原料,各地之间的距离为:A-B ,150km ;A-C ,100km ;B-C ,200km 。假定每万吨原料运输1km 的运价是5000元,每万吨产品运输1km 的运价是6000元。由于地区条件的差异,在不同地点设厂的生产费用也不同。 问究竟在哪些地方设厂,规模多大,才能使总费用最小? 另外,由于其他条件限制,在B 处建厂的规模(生产的产品数量)不能超过5万吨。 表2 A 、B 、C 三地出产原料、消耗产品情况表 4. 生产计划问题 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用A 、B 机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用A 、B 、C 三种机器加工,加工时间为每台各1小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时。 问该厂应生产甲、乙机床各几台,才能使总利润最大?

学生用-实验指导书-excel线性规划实验

实验指导书 《管理决策模型与方法》 学院(部)管理学院 指导教师金玉兰

实验1 EXCEL 线性规划实验 一、实验目的 1、掌握应用Excel软件求解线性规划问题; 2、掌握应用Excel软件对线性规划问题进行灵敏度分析; 3、掌握应用Excel软件求解整数规划问题; 4、掌握应用Excel软件求解0-1整数规划问题。 二、实验设备、仪器及所需材料 配置在Pentium Ⅲ,内存128M以上的电脑;装有Microsoft Windows操作系统及Microsoft Office 2003工作软件。 三、实验原理 “规划求解”是Microsoft Excel 中的一个加载宏,借助它可以求解许多运筹学中的数学规划问题。 安装Office 2003 的时候,系统默认的安装方式不会安装该宏程序,需要用户自己选择安装。安装方法为:从Excel 菜单中选择“工具”→“加载宏”,打开如下对话框: 选择其中的“规划求解”后单击“确定”按钮,会出现提示:“这项功能目前尚未安装,是否现在安装?”,选择“是”,系统要你插入Office 的安装光盘,准备好后单击确定,很快就会安装完毕。于是,你会发现在“工具”菜单下多出一个名为“规划求解”的子菜单,说明“规划求解”功能已经成功安装。 在EXCEl2007版本中,通过点击“office按钮”,“EXCEL选项”→“加载项”→转到“EXCEL加载

项”,然后加载【规划求解加载项】便可以加载规划求解的宏。 在EXCEl2010版本中,通过点击“文件”选项卡打开“Excel 选项”对话框,单击左侧 “加载项”标签,在右侧单击“转到”按钮,打开“加载宏”对话框,勾选“规划求解加载项”复选框,单击“确定”按钮,即可在工具栏的“数据”选项卡中出现 “分析”选项组,上面就有了“规划求解”按钮。 利用“规划求解”功能,就可以进行线性规划问题的求解。 例如:用EXCEL 求解数学规划问题 12121 212maxZ 2328416..4120, 0 x x x x x s t x x x =++≤??≤??≤??≥≥? 步骤: 1. 将模型中的目标函数和约束条件的系数输入到单元格中;为了使我们在操作过程中看得 更清楚,可以附带输入相应的标识符,并给表格加上边框。如下图所示:

人教版 高中数学必修5 简单的线性规划问题教案

简单的线性规划问题 一、教学内容分析 普通高中课程标准教科书数学5(必修)第三章第3课时 这是一堂关于简单的线性规划的“问题教学”. 线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科 学研究、工程设计、经济管理等许多方面的实际问题. 简单的线性规划(涉及两个变量)关心的是两类问题:一是在人力、物力、资金等资源 一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以 最少的人力、物力、资金等资源来完成.突出体现了优化的思想. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等的概 念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用. 二、学生学习情况分析 本节课学生在学习了不等式、直线方程的基础上,又通过实例,理解了平面区域的意义, 并会画出平面区域,还能初步用数学关系式表示简单的二元线性规划的限制条件,将实际问 题转化为数学问题. 从数学知识上看,问题涉及多个已知数据、多个字母变量,多个不等关 系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日, 这都成了学生学习的困难. 三、设计思想 本课以问题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,以几何画 板作为平台,激发他们动手操作、观察思考、猜想探究的兴趣。注重引导帮助学生充分体验 “从实际问题到数学问题”的建构过程,“从具体到一般”的抽象思维过程,应用“数形结 合”的思想方法,培养学生的学会分析问题、解决问题的能力。 四、教学目标 1.了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最优解. 2.在实验探究的过程中,让学生体验数学活动充满着探索与创造,培养学生的数据分析能力、探索能力、合情推理能力及动手操作、勇于探索的精神; 3、在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力和化归能力,体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用. 五、教学重点和难点 求线性目标函数的最值问题是重点;从数学思想上看,学生对为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?以及如何想到要这样转化?存在一定疑虑及困难;教学应紧扣问题实际,通过突出知识的形成发展过程,引入数学实验来突破这一难点.

相关文档
最新文档