大学毕业论文---软件专业外文文献中英文翻译

合集下载

软件开发概念和设计方法大学毕业论文外文文献翻译及原文

软件开发概念和设计方法大学毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译文献、资料中文题目:软件开发概念和设计方法文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14外文资料原文Software Development Concepts and DesignMethodologiesDuring the 1960s, ma inframes and higher level programming languages were applied to man y problems including human resource s yste ms,reservation s yste ms, and manufacturing s yste ms. Computers and software were seen as the cure all for man y bu siness issues were some times applied blindly. S yste ms sometimes failed to solve the problem for which the y were designed for man y reasons including:•Inability to sufficiently understand complex problems•Not sufficiently taking into account end-u ser needs, the organizational environ ment, and performance tradeoffs•Inability to accurately estimate development time and operational costs •Lack of framework for consistent and regular customer communications At this time, the concept of structured programming, top-down design, stepwise refinement,and modularity e merged. Structured programming is still the most dominant approach to software engineering and is still evo lving. These failures led to the concept of "software engineering" based upon the idea that an engineering-like discipl ine could be applied to software design and develop ment.Software design is a process where the software designer applies techniques and principles to produce a conceptual model that de scribes and defines a solution to a problem. In the beginning, this des ign process has not been well structured and the model does not alwa ys accurately represent the problem of software development. However,design methodologies have been evolving to accommo date changes in technolog y coupled with our increased understanding of development processes.Whereas early desig n methods addressed specific aspects of thedevelop ment process, current methods atte mpt to address the entire scope of software development. Software design methods are often classified in reference to the peri od in which the y were introduced and the problems at that time. Driven b y coding and testing problems, tools and methods were developed. Early methods focused on modularity a nd top-down development, and information hiding through abstraction. This led to t he development of structured languages, structured analysis, and data flow analysis.In the last decade or so, the expense involved in automation has shifted from hardware to people. Therefore, the software engineering community has been focused on object oriented (O-O) design and the concept of re-usable code in order to reduce the human cost component. Inefficient designs and develop ment methodologies have been addressed with Computer Aided Software Engineering (CASE) tools, and fourth generation design l anguages. This has been done in an attempt replace the traditional waterf all life c ycle process model under which most existing software has been developed.一、Software Design FundamentalsSoftware design meth ods all aim to provide the software designer wi th a s yste m blueprint. This blueprint usually has three aspects: data, architectural, and procedural.•Data design refers to the data's organization, relationships, access and processing methods.•Architectural design defines the components of the sys tem a nd their relationships.•Procedural design builds on the data and architectural design phases to describe the processing details of the s yste m.Even though there are numerous design methodologies, their basic concepts are ver y similar-All software design methods partition the problem and software into smaller pieces in order to reduce complexity. They all strive to identif y data structures and functions, and provide measur ements for software quality. Some of the common principles in software design include: stepwise refinement, s oftware architecture, program structure, data structure,software procedures, mo d u la r i t y,a b s tr a c t io n,a n d in f o r ma t io n h i d i n g.二、M o d e r n D e s i g n M e t h o d o l o g i e sC o n ve n t io n a l s o f t wa r e d e ve l o p me n t p r a c t ic e s c a n g e n e r a l l y b ema p p e d o n to t h e tr a d i t io n a l l i f e-c y c l e p h a s e s o f a n a l ys i s,f u n c t i o n a ls p e c i f i c a t i o n,d e s i g n,i mp l e me n t a t i o n,t e s t i n g,a n d m a i n t e n a n c e.T h i st h o u g h t p r o c e s s i s i n a d e q u a t e f o r t o d a y's c o m p l e x i n f o r m a t i o n s y s t e m s.As the demand for software is growing much faster than the number of developers, adhering to conventional techniques such as the waterfall method requires too much time, too many people, and is difficult to ma nage. Hence, many new software development technologies have arisen. N e wl y d e ve lo p e d p r a c tic e s a n d mo d e ls d o n o t a tte mp t to s e p a r a te p h a s e s o f s o f twa r e development, such as specification and implementation, but instead focus on the concept of program transformation through stepwise refinement and iteration.1、O b j e c t-O r i e n t e d Te c h n o l o g yObject-Oriented (O-O) software design technology is fundamentally different from the traditional methods described above. With traditional methods, each module is recognized a major step in the overall process and the process goes from one step to the next. On the other hand, O-O design is structured around a model of objects and the functions they perform.O-O programming can be traced to the simulation language SIMULA, a hig h level language developed in the late 60's that introduced object classes as a method to encapsulate data. Later, in the 1970s, Smalltalk was introduced as a complete grapgh design and coding as detail is added to the design. This provides a common language throughout each stage in development. O-O is best applied with specifically designed O-O development tools, but it is important to remember that as a methodology is it not specific to any programming language. Many different programming languages can be used to implement 0-0 technology and design methodologies.Instead of procedures and functions passing data back and forth, in object oriented design, the system is viewed as a collection of objects with messages passed from object to object. Each object has its own set of associated operations.Object-oriented design is based on the idea of information hiding and modularization of both data and processing. It is best used when neither data structure nor processing operations are well defined ahead of time. This is quite useful in today's business environment where requirements are always changing and not very well defined. Thus, it has become quite popular! The concept of objects performing services is a natural way of thinking for both developers and customers. This facilitates understanding the problem domain and a more natural design. In addition, there are many benefits of object-oriented development. These include:•I n h e r i t a n c e c a p i t a l i z e s o n t h e c o m m o n a l t y o f a t t r i b u t e s a n d s e r v i c e s a l l o w i n g c o d e a n d objects to be re-used..I n f o r m a t i o n h i d i n g m a k e s s y s t e m s m o r e s t a b l e b y l o c a l i z i n g c h a n g e s t o o b j e c t s a n d t h e r e b y m a k i n g t h e m r e u s a b l e..T h e o b j e c t-o r i e n t e d d e v e l o p m e n t p r o c e s s i s c o n s i s t e n t f r o m a n a l y s i s,t h r o u g h d e s i g n, t o c o d i n g.More information on Object Oriented Programming principles can be found in Chapter 4-Organization of Programming Languages and Programming Concepts.2、P r o t o t y p i n gPrototyping was invented because end users participating in the development phase found it difficult to understand requirement specifications and conceptual models. However, when it first began being used in the 1980s, most conventional life c ycle developers considered it expensive and time consuming.S i n c e t h a t t i m e,u s e r s a n d d e v e l o p e r s h a v e u s e d p r o t o t y p e s s u c c e s s f u l l y a s a communications tool to demonstrate system requirements. After several prototype iterations, developers have a better understanding of user requirements and users have a better idea of how the system will eventually work, look, and l.T h e n u mb e r o f t i me s th e p r o to t yp e is in c r e me n t a l l y r e f in e d d e p e n d s o n h o w we l l th e u s e r r e q u i r e me n ts a n d u n d e r s t o o d.I t a ls o d e p e n d s o n th e u s e r s n e e d to a d d r e q u ir e me n ts o r c h a n g e p r e v i o u s l y s t a t e d r e q u i r e m e n t s.A f t e re s t a b l i s h i n g a n o v e r a l l a r c h i t e c t u r e a n df r a me w o r k, t h e s ys t e m i s d e v e l o p e d a n d d e l i v e r e d in in c r e me n ts.U s e r s ma y e x p e r i me n t w i t h a n d u s e d e l i v e r e d i n c r e me n t s w h i l e o t h e r s a r e b e i ng d e v e l o p e d.Fo r i n s t a n c e,th e fi r s t p r o t o t yp e ma y b e d e l i v e r e d t h a t i m p l e m e n t s a c e r t a i n s c r e e n w i t h o n l y s o m e a c t i v e m e n u i t e m s.W h i l e u s e r s a r e e x p e r i me n t i n g w i t h t h i s s c r e e n a n d me n u i t e ms,o t h e r s c r e e n s a n d me n u i t e ms a r e c o n c u r r e n t l y b e in gd e v e l o p e d wh i c h la t e r w il l b e c o mb in e d w i th th e e x is t in g p r o to t yp e a s ite vo l v e s.O n c e t h e u s e r i s s a t i s f i e d t h a t t h e p r o t o t y p e m e e t s r e q u i r e m e n t s,t h e p r o t o t y p e i s t r a n s f o r me d i n to th e"s ys t e m".T h i s e ff o r t d e p e n d s o n s e v e r a l f a c to r s. I t ma y i n c lu d e a d d i n g f u n c t i o n a l i t y t h a t w a s n't i n i t i a l l y r e c o g n i z e d a s r e q u i r e d,r e p l a c i n g i n e f f i c i e n t p a r t s o f t h e p r o t o t yp e t o me e t p e r f o r ma n c e c r i t e r i a,o r a d a p t i n g t h e p r o t o t yp e t o f i t t h e u s e r's h a r d w a r e e n vi r o n me n t.P r o t o t y p i n g c a n b e g i n v e r y e a r l y, a f t e r s o m e p r e l i m i n a r y r e q u i r e m e n t s a n a l y s i s h a s d e t e r m i n e d t h e b a s i c f u n c t i o n a l i t y,s c o p e,a n d e n v i r o n m e n t o f t h e p r o p o s e d s o f t w a r e.C o n t r a r y t o t h e t r a d i t i o n a l w a t e r f a l l me t h o d,i n t h e p r o t o t yp i n g,f u n c t i o n a l s p e c i f i c a t i o n s a r e n o t f i x e d.R a t h e r,u s e r s a r e e n c o u r a g e d t o m o d i f y t h e i r r e q u i r e m e n t s a s t h e y t h e m s e l v e s b e g i n t o u n d e r s t a n d t h e m b e t t e r.T h i s i s b e c a u s e u s e r s o f t e n d o n't r e a l l y k n o w w h a t t h e y w a n t u n t i l t h e y s e e i t o n t h e s c r e e n.T h e p r o t o t yp i n g p r o c e s s o f d e mo n s t r a t i o n,r e v i e w,a n d r e f i n e me n t g e t s t h e u s e r m o r e i n v o l v e d i n t h e d e v e l o p m e n t p r o c e s s,g i v i n g t h e m a s e n s e o f o w n e r s h i p d u r i n g t h e p r o c e s s a n d a t f i n a l s y s t e m d e l i v e r y.H o w e v e r,d u e t o t h e m i n d s e t o f"p r o t o t y p e", u s e r s o f t e n f in d i t d iff ic u l t to ve r if y t h a t th e p r o to t yp e s a tis f ie s th e ir r e q u ir e me n ts. T h e r e f o r e, g u id e l in e s mu s t b e e s t a b l i s h e d t o d e te r m in e wh e n t o s to p i te r a t in g a n d th e p r o to t yp e to f in a l p r o d u c t.。

软件工程(外文翻译文献)

软件工程(外文翻译文献)

外文文献资料1、Software EngineeringSoftware is the sequences of instructions in one or more programming languages that comprise a computer application to automate some business function. Engineering is the use of tools and techniques in problem solving. Putting the two words together, software engineering is the systemtic application of tools and techniques in the development of computer-based applications.The software engineering process describes the steps it takes to deelop the system. We begin a development project with the notion that there is a problem to be solved via automation. The process is how you get from problem recognition to a working solution. A quality process is desirable because it is more likely to lead to a quality product. The process followed by a project team during the development life cycle of an application should be orderly, goal-oriented, enjoyable, and a learning experience.Object-oriented methodology is an approach to system lifecycle development that takes a top-down view of data objects, their allowable actions, and the underlying communication requirement to define a system architecture. The data and action components are encapsulated, that is , they are combined together, to form abstract data types Encapsulation means that if I know what data I want ,I also know the allowable processes against that data. Data are designed as lattice hierarchies of relationships to ensure that top-down, hierarchic inheritance and side ways relationships are accommodated. Encapsulated objects are constrained only to communicate via messages. At a minimum, messages indicate the receiver and action requested. Messages may be more elaborate, including the sender and data to be acted upon.That we try to apply engineering discipline to software development does not mean that we have all the answers about how to build applications. On the contrary, we still build systems that are not useful and thus are not used. Part of the reason for continuing problems in application development, is that we are constantly trying to hita moving target. Both the technology and the type of applications needed by businesses are constantly changing and becoming more complex. Our ability to develop and disseminate knowledge about how to successfully build systems for new technologies and new application types seriously lags behind technological and business changes.Another reason for continuing problems in application development is that we aren’t always free to do what we like and it is hard to change habits and cultures from the old way of doing things, as well as get users to agree with a new sequence of events or an unfamiliar format for documentation.You might ask then, if many organizations don’t use good software engineering practices, why should I bother learning them? There are two good answers to this question. First, if you never know the right thing to do, you have no chance of ever using it. Second, organizations will frequently accept evolutionary, small steps of change instead of revolutionary, massive change. You can learn individual techniques that can be applied without complete devotion to one way of developing systems. In this way, software engineering can speed changee in their organizations by demonstrating how the tools and techniques enhance th quality of both the product and the process of building a system.2、Data Base System1、IntroductionThe development of corporate databases will be one of the most important data-processing activities for the rest of the 1970s. Date will be increasingly regarded as a vital corporate resource, which must be organized so as to maximize their value. In addition to the databases within an organization, a vast new demand is growing for database services, which will collect, organize, and sell data.The files of data which computers can use are growing at a staggering rate. The growth rate in the size of computer storage is greater than the growth in the size or power of any other component in the exploding data processing industry. The more data the computers have access to, the greater is their potential power. In all walks of life and in all areas of industry, data banks will change the areas of what it is possiblefor man to do. In the end of this century, historians will look back to the coming of computer data banks and their associated facilities as a step which changed the nature of the evolution of society, perhaps eventually having a greater effect on the human condition than even the invention of the printing press.Some most impressive corporate growth stories of the generation are largely attributable to the explosive growth in the need of information.The vast majority of this information is not yet computerized. However, the cost of data storage hardware is dropping more rapidly than other costs in data processing. It will become cheaper to store data on computer files than to store them on paper. Not only printed information will be stored. The computer industry is improving its capability to store line drawing, data in facsimile form, photo-graphs, human speech, etc. In fact, any form of information other than the most intimate communications between humans can be transmitted and stored digitally.There are two main technology developments likely to become available in the near future. First, there are electromagnetic devices that will hold much more data than disks but have much longer access time. Second, there are solid-state technologies that will give microsecond access time but capacities are smaller than disks.Disks themselves may be increased in capacity somewhat. For the longer term future there are a number of new technologies which are currently working in research labs which may replace disks and may provide very large microsecond-access-time devices. A steady stream of new storage devices is thus likely to reach the marketplace over the next 5 years, rapidly lowering the cost of storing data.Given the available technologies, it is likely that on-line data bases will use two or three levels of storage. One solid-state with microsecond access time, one electromagnetic with access time of a fraction of a second. If two ,three ,or four levels of storage are used, physical storage organization will become more complex ,probably with paging mechanisms to move data between the levels; solid-state storage offers the possibility of parallel search operation and associativememory.Both the quantity of data stored and the complexity of their organization are going up by leaps and bounds. The first trillion bit on-line stores are now in use . in a few year’s time ,stores of this size may be common.A particularly important consideration in data base design is to store the data so that the can be used for a wide variety of applications and so that the way they can be changed quickly and easily. On computer installation prior to the data base era it has been remarkably difficult to change the way data are used. Different programmers view the data in different ways and constantly want to modify them as new needs arise modification , however ,can set off a chain reaction of changes to existing programs and hence can be exceedingly expensive to accomplish .Consequently , data processing has tended to become frozen into its old data structures .To achieve flexibility of data usage that is essential in most commercial situations . Two aspects of data base design are important. First, it should be possible to interrogate and search the data base without the lengthy operation of writing programs in conventional programming languages. Second ,the data should be independent of the programs which use them so that they can be added to or restructured without the programs being changed .The work of designing a data base is becoming increasing difficult , especially if it is to perform in an optimal fashion . There are many different ways in which data can be structured ,and they have different types of data need to be organized in different ways. Different data have different characteristics , which ought to effect the data organization ,and different users have fundamentally different requirements. So we need a kind of data base management system(DBMS)to manage data.Data base design using the entity-relationship model begins with a list of the entity types involved and the relationships among them. The philosophy of assuming that the designer knows what the entity types are at the outset is significantly different from the philosophy behind the normalization-based approach.The entity-relationship(E-R)approach uses entity-relationship diagrams. The E-Rapproach requires several steps to produre a structure that is acceptable by the particular DBMS. These steps are:(1) Data analysis(2) Producing and optimizing the entity model.(3) Logical schema development(4) Physical data base design process.Developing a data base structure from user requirements is called data bases design. Most practitioners agree that there are two separate phases to the data base design process. The design of a logical database structure that is processable by the data base management system(DBMS)d escribes the user’s view of data, and is the selection of a physical structure such as the indexed sequential or direct access method of the intended DBMS.Current data base design technology shows many residual effects of its outgrowth from single-record file design methods. File design is primarily application program dependent since the data has been defined and structured in terms of individual applications to use them. The advent of DBMS revised the emphasis in data and program design approaches.There are many interlocking questions in the design of data-base systems and many types of technique that one can use is answer to the question so many; in fact, that one often sees valuable approaches being overlooked in the design and vital questions not being asked.There will soon be new storage devices, new software techniques, and new types of data bases. The details will change, but most of the principles will remain. Therefore, the reader should concentrate on the principles.2、Data base systemThe conception used for describing files and data bases has varied substantially in the same organization.A data base may be defined as a collection of interrelated data stored together with as little redundancy as possible to serve on or more applications in an optimal fashion; the data are stored so that they are independent of programs which use thedata; a common and controlled approach is used in adding new data and in modifying and retrieving existing data within the data base. One system is said to contain a collection of data bases if they are entirely separate in structure.A data base may be designed for batch processing, real-time processing, or in-line processing. A data base system involve application program, DBMS, and data base.One of the most important characteristics of most data bases is that they will constantly need to change and grow. Easy restructuring of the data base must be possible as new data types and new applications are added. The restructuring should be possible without having to rewrite the application program and in general should cause as little upheaval as possible. The ease with which a data base can be changed will have a major effect on the rate at which data-processing application can be developed in a corporation.The term data independence is often quoted as being one of the main attributes of a data base. It implies that the data and the application programs which use them are independent so that either may be changed without changing the other. When a single set of data items serves a variety of applications, different application programs perceive different relationships between the data items. To a large extent, data-base organization is concerned with the representation of relationship between data items and records as well as how and where the data are stored. A data base used for many applications can have multiple interconnections between the data item about which we may wish to record. It can describes the real world. The data item represents an attribute, and the attribute must be associated with the relevant entity. We design values to the attributes, one attribute has a special significance in that it identifies the entity.An attribute or set of attribute which the computer uses to identify a record or tuple is referred to as a key. The primary key is defined as that key used to uniquely identify one record or tuple. The primary key is of great importance because it is used by the computer in locating the record or tuple by means of an index or addressing algorithm.If the function of a data base were merely to store data, its organization would be simple. Most of the complexities arise from the fact that is must also show the relationships between the various items of data that are stored. It is different to describe the data in logical or physical.The logical data base description is referred to as a schema .A schema is a chart of the types of data that one used. It gives the names of the entities and attributes, and specifics the relations between them. It is a framework into which the values of the data-items can be fitted.We must distinguish between a record type and a instance of the record. When we talk about a “personnel record”,this is really a record type.There are no data values associated with it.The term schema is used to mean an overall chart of all of the dataitem types and record types stored in a data he uses. Many different subschema can be derived from one schema.The schema and the subschema are both used by the data-base management system, the primary function of which is to serve the application programs by executing their data operations.A DBMS will usually be handing multiple data calls concurrently. It must organize its system buffers so that different data operations can be in process together. It provides a data definition language to specify the conceptual schema and most likely, some of the details regarding the implementation of the conceptual schema by the physical schema. The data definition language is a high-level language, enabling one to describe the conceptual schema in terms of a “data model” .The choice of a data model is a difficult one, since it must be rich enough in structure to describe significant aspects of the real world, yet it must be possible to determine fairly automatically an efficient implementation of the conceptual schema by a physical schema. It should be emphasized that while a DBMS might be used to build small data bases, many data bases involve millions of bytes, and an inefficient implementation can be disastrous.We will discuss the data model in the following.3、Three Data ModelsLogical schemas are defined as data models with the underlying structure of particular database management systems superimposed on them. At the present time, there are three main underlying structures for database management systems. These are :RelationalHierarchicalNetworkThe hierarchical and network structures have been used for DBMS since the 1960s. The relational structure was introduced in the early 1970s.In the relational model, the entities and their relationships are represented by two-dimensional tables. Every table represents an entity and is made up of rows and columns. Relationships between entities are represented by common columns containing identical values from a domain or range of possible values.The last user is presented with a simple data model. His and her request are formulated in terms of the information content and do not reflect any complexities due to system-oriented aspects. A relational data model is what the user sees, but it is not necessarily what will be implemented physically.The relational data model removes the details of storage structure and access strategy from the user interface. The model provides a relatively higher degree of data. To be able to make use of this property of the relational data model however, the design of the relations must be complete and accurate.Although some DBMS based on the relational data model are commercially available today, it is difficult to provide a complete set of operational capabilities with required efficiency on a large scale. It appears today that technological improvements in providing faster and more reliable hardware may answer the question positively.The hierarchical data model is based on a tree-like structure made up of nodes and branches. A node is a collection of data attributes describing the entity at that point.The highest node of the hierarchical tree structure is called a root. The nodes at succeeding lower levels are called children .A hierarchical data model always starts with a root node. Every node consists of one or more attributes describing the entity at that node. Dependent nodes can follow the succeeding levels. The node in the preceding level becomes the parent node of the new dependent nodes. A parent node can have one child node as a dependent or many children nodes. The major advantage of the hierarchical data model is the existence of proven database management systems that use the hierarchical data model as the basic structure. There is a reduction of data dependency but any child node is accessible only through its parent node, the many-to –many relationship can be implemented only in a clumsy way. This often results in a redundancy in stored data.The network data model interconnects the entities of an enterprise into a network. In the network data model a data base consists of a number of areas. An area contains records. In turn, a record may consist of fields. A set which is a grouping of records, may reside in an area or span a number of areas. A set type is based on the owner record type and the member record type. The many-to many relation-ship, which occurs quite frequently in real life can be implemented easily. The network data model is very complex, the application programmer must be familiar with the logical structure of the data base.4、Logical Design and Physical DesignLogical design of databases is mainly concerned with superimposing the constructs of the data base management system on the logical data model. There are three mainly models: hierarchical, relational, network we have mentioned above.The physical model is a framework of the database to be stored on physical devices. The model must be constructed with every regard given to the performance of the resulting database. One should carry out an analysis of the physical model with average frequencies of occurrences of the grou pings of the data elements, with expected space estimates, and with respect to time estimates for retrieving and maintaining the data.The database designer may find it necessary to have multiple entry points into a database, or to access a particular segment type with more than one key. To provide this type of access; it may be necessary to invert the segment on the keys. Thephysical designer must have expertise in knowledge of the DBMS functions and understanding of the characteristics of direct access devices and knowledge of the applications.Many data bases have links between one record and another, called pointers. A pointer is a field in one record which indicates where a second record is located on the storage devices.Records that exist on storage devices is a given physical sequence. This sequencing may be employed for some purpose. The most common pupose is that records are needed in a given sequence by certain data-processing operations and so they are stored in that sequences.Different applications may need records in different sequences.The most common method of ordering records is to have them in sequence by a key —that key which is most commonly used for addressing them. An index is required to find any record without a lengthy search of the file.If the data records are laid out sequentially by key, the index for that key can be much smaller than they are nonsequential.Hashing has been used for addressing random-access storages since they first came into existence in the mid-1950s. But nobody had the temerity to use the word hashing until 1968.Many systems analysis has avoided the use of hashing in the suspicion that it is complicated. In fact, it is simple to use and has two important advantages over indexing. First, it finds most records with only one seek and second, insertion and deletions can be handled without added complexity. Indexing, however, can be used with a file which is sequential by prime key and this is an overriding advantage, for some batch-pro-cessing applications.Many data-base systems use chains to interconnect records also. A chain refers to a group of records scatters within the files and interconnected by a sequence of pointers. The software that is used to retrive the chained records will make them appear to the application programmer as a contiguous logical file.The primary disadvantage of chained records is that many read operations areneeded in order to follow lengthy chains. Sometimes this does not matter because the records have to be read anyway. In most search operations, however, the chains have to be followed through records which would not otherwise to read. In some file organizations the chains can be contained within blocked physical records so that excessive reads do not occur.Rings have been used in many file organizations. They are used to eliminate redundancy. When a ring or a chain is entered at a point some distance from its head, it may be desirable to obtain the information at the head quickly without stepping through all the intervening links.5、Data Description LanguagesIt is necessary for both the programmers and the data administrator to be able to describe their data precisely; they do so by means of data description languages. A data description language is the means of declaring to data-base management system what data structures will be used.A data description languages giving a logical data description should perform the folloeing functions:It should give a unique name to each data-item type, file type, data base and other data subdivision.It should identify the types of data subdivision such as data item segment , record and base file.It may define the type of encoding the program uses in the data items (binary , character ,bit string , etc.)It may define the length of the data items and the range of the values that a data item can assume .It may specify the sequence of records in a file or the sequence of groups of record in the data base .It may specify means of checking for errors in the data .It may specify privacy locks for preventing unauthorized reading or modification of the data .These may operate at the data-item ,segment ,record, file or data-base level and if necessary may be extended to the contents(value) of individual data items .The authorization may , on the other hand, be separate defined .It is more subject to change than the data structures, and changes in authorization proceduresshould not force changes in application programs.A logical data description should not specify addressing ,indexing ,or searching techniques or specify the placement of data on the storage units ,because these topics are in the domain of physical ,not logical organization .It may give an indication of how the data will be used or of searching requirement .So that the physical technique can be selected optimally but such indications should not be logically limiting.Most DBMS have their own languages for defining the schemas that are used . In most cases these data description languages are different to other programmer language, because other programmer do not have the capability to define to variety of relationship that may exit in the schemas.附录 B 外文译文1、软件工程软件是指令的序列,该指令序列由一种或者多种程序语言编写,它能使计算机应用于某些事物的运用自动化。

软件工程毕业论文文献翻译中英文对照

软件工程毕业论文文献翻译中英文对照

软件工程毕业论文文献翻译中英文对照学生毕业设计(论文)外文译文学生姓名: 学号专业名称:软件工程译文标题(中英文):Qt Creator白皮书(Qt Creator Whitepaper)译文出处:Qt network 指导教师审阅签名: 外文译文正文:Qt Creator白皮书Qt Creator是一个完整的集成开发环境(IDE),用于创建Qt应用程序框架的应用。

Qt是专为应用程序和用户界面,一次开发和部署跨多个桌面和移动操作系统。

本文提供了一个推出的Qt Creator和提供Qt开发人员在应用开发生命周期的特点。

Qt Creator的简介Qt Creator的主要优点之一是它允许一个开发团队共享一个项目不同的开发平台(微软Windows?的Mac OS X?和Linux?)共同为开发和调试工具。

Qt Creator的主要目标是满足Qt开发人员正在寻找简单,易用性,生产力,可扩展性和开放的发展需要,而旨在降低进入新来乍到Qt的屏障。

Qt Creator 的主要功能,让开发商完成以下任务: , 快速,轻松地开始使用Qt应用开发项目向导,快速访问最近的项目和会议。

, 设计Qt物件为基础的应用与集成的编辑器的用户界面,Qt Designer中。

, 开发与应用的先进的C + +代码编辑器,提供新的强大的功能完成的代码片段,重构代码,查看文件的轮廓(即,象征着一个文件层次)。

, 建立,运行和部署Qt项目,目标多个桌面和移动平台,如微软Windows,Mac OS X中,Linux的,诺基亚的MeeGo,和Maemo。

, GNU和CDB使用Qt类结构的认识,增加了图形用户界面的调试器的调试。

, 使用代码分析工具,以检查你的应用程序中的内存管理问题。

, 应用程序部署到移动设备的MeeGo,为Symbian和Maemo设备创建应用程序安装包,可以在Ovi商店和其他渠道发布的。

, 轻松地访问信息集成的上下文敏感的Qt帮助系统。

软件工程中英文对照外文翻译文献

软件工程中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)Application FundamentalsAndroid applications are written in the Java programming language. The compiled Java code — along with any data and resource files required by the application — is bundled by the aapt tool into an Android package, an archive file marked by an .apk suffix. This file is the vehicle for distributing the application and installing it on mobile devices; it's the file users download to their devices. All the code in a single .apk file is considered to be one application.In many ways, each Android application lives in its own world:1. By default, every application runs in its own Linux process. Android starts the process when any of the application's code needs to be executed, and shuts down the process when it's no longer needed and system resources are required by other applications.2. Each process has its own virtual machine (VM), so application code runs in isolation from the code of all other applications.3. By default, each application is assigned a unique Linux user ID. Permissions are set so that the application's files are visible only to that user and only to the application itself — although there are ways to export them to other applications as well.It's possible to arrange for two applications to share the same user ID, in which case they will be able to see each other's files. To conserve system resources, applications with the same ID can also arrange to run in the same Linux process, sharing the sameVM.Application ComponentsA central feature of Android is that one application can make use of elements of other applications (provided those applications permit it). For example, if your application needs to display a scrolling list of images and another application has developed a suitable scroller and made it available to others, you can call upon that scroller to do the work, rather than develop your own. Your application doesn't incorporate the code of the other application or link to it. Rather, it simply starts up that piece of the other application when the need arises.For this to work, the system must be able to start an application process when any part of it is needed, and instantiate the Java objects for that part. Therefore, unlike applications on most other systems, Android applications don't have a single entry point for everything in the application (no main() function, for example). Rather, they have essential components that the system can instantiate and run as needed. There are four types of components:ActivitiesAn activity presents a visual user interface for one focused endeavor the user can undertake. For example, an activity might present a list of menu items users can choose from or it might display photographs along with their captions. A text messaging application might have one activity that shows a list of contacts to send messages to, a second activity to write the message to the chosen contact, and other activities to review old messages or change settings. Though they work together to form a cohesive user interface, each activity is independent of the others. Each one is implemented as a subclass of the Activity base class.An application might consist of just one activity or, like the text messaging application just mentioned, it may contain several. What the activities are, and how many there are depends, of course, on the application and its design. Typically, one of the activities is marked as the first one that should be presented to the user when the application is launched. Moving from one activity to another is accomplished by having the current activity start the next one.Each activity is given a default window to draw in. Typically, the window fills the screen, but it might be smaller than the screen and float on top of other windows. An activity can also make use of additional windows — for example, a pop-up dialog that calls for a user response in the midst of the activity, or a window that presents users with vital information when they select a particular item on-screen.The visual content of the window is provided by a hierarchy of views — objects derived from the base View class. Each view controls a particular rectangular space within the window. Parent views contain and organize the layout of their children. Leaf views (those at the bottom of the hierarchy) draw in the rectangles they control and respond to user actions directed at that space. Thus, views are where the activity's interaction with the user takes place.For example, a view might display a small image and initiate an action when the user taps that image. Android has a number of ready-made views that you can use —including buttons, text fields, scroll bars, menu items, check boxes, and more.A view hierarchy is placed within an activity's window by theActivity.setContentView() method. The content view is the View object at the root of the hierarchy. (See the separate User Interface document for more information on views and the hierarchy.)ServicesA service doesn't have a visual user interface, but rather runs in the background for an indefinite period of time. For example, a service might play background music as the user attends to other matters, or it might fetch data over the network or calculate something and provide the result to activities that need it. Each service extends the Service base class.A prime example is a media player playing songs from a play list. The player application would probably have one or more activities that allow the user to choose songs and start playing them. However, the music playback itself would not be handled by an activity because users will expect the music to keep playing even after they leave the player and begin something different. To keep the music going, the media player activity could start a service to run in the background. The system would then keep the music playback service running even after the activity that started it leaves the screen.It's possible to connect to (bind to) an ongoing service (and start the service if it's not already running). While connected, you can communicate with the service through an interface that the service exposes. For the music service, this interface might allow users to pause, rewind, stop, and restart the playback.Like activities and the other components, services run in the main thread of the application process. So that they won't block other components or the user interface, they often spawn another thread for time-consuming tasks (like music playback). See Processes and Threads, later.Broadcast receiversA broadcast receiver is a component that does nothing but receive and react to broadcast announcements. Many broadcasts originate in system code — for example, announcements that the timezone has changed, that the battery is low, that a picture has been taken, or that the user changed a language preference. Applications can also initiate broadcasts — for example, to let other applications know that some data has been downloaded to the device and is available for them to use.An application can have any number of broadcast receivers to respond to any announcements it considers important. All receivers extend the BroadcastReceiver base class.Broadcast receivers do not display a user interface. However, they may start an activity in response to the information they receive, or they may use the NotificationManager to alert the user. Notifications can get the user's attention in various ways — flashing the backlight, vibrating the device, playing a sound, and so on. They typically place a persistent icon in the status bar, which users can open to get the message.Content providersA content provider makes a specific set of the application's data available to other applications. The data can be stored in the file system, in an SQLite database, or in anyother manner that makes sense. The content provider extends the ContentProvider base class to implement a standard set of methods that enable other applications to retrieve and store data of the type it controls. However, applications do not call these methods directly. Rather they use a ContentResolver object and call its methods instead. A ContentResolver can talk to any content provider; it cooperates with the provider to manage any interprocess communication that's involved.See the separate Content Providers document for more information on using content providers.Whenever there's a request that should be handled by a particular component, Android makes sure that the application process of the component is running, starting it if necessary, and that an appropriate instance of the component is available, creating the instance if necessary.Activating components: intentsContent providers are activated when they're targeted by a request from a ContentResolver. The other three components — activities, services, and broadcast receivers — are activated by asynchronous messages called intents. An intent is an Intent object that holds the content of the message. For activities and services, it names the action being requested and specifies the URI of the data to act on, among other things. For example, it might convey a request for an activity to present an image to the user or let the user edit some text. For broadcast receivers, theIntent object names the action being announced. For example, it might announce to interested parties that the camera button has been pressed.There are separate methods for activating each type of component:1. An activity is launched (or given something new to do) by passing an Intent object toContext.startActivity() or Activity.startActivityForResult(). The responding activity can look at the initial intent that caused it to be launched by calling its getIntent() method. Android calls the activity's onNewIntent() method to pass it any subsequent intents. One activity often starts the next one. If it expects a result back from the activity it's starting, it calls startActivityForResult() instead of startActivity(). For example, if it starts an activity that lets the user pick a photo, it might expect to be returned the chosen photo. The result is returned in an Intent object that's passed to the calling activity's onActivityResult() method.2. A service is started (or new instructions are given to an ongoing service) by passing an Intent object to Context.startService(). Android calls the service's onStart() method and passes it the Intent object. Similarly, an intent can be passed to Context.bindService() to establish an ongoing connection between the calling component and a target service. The service receives the Intent object in an onBind() call. (If the service is not already running, bindService() can optionally start it.) For example, an activity might establish a connection with the music playback service mentioned earlier so that it can provide the user with the means (a user interface) for controlling the playback. The activity would call bindService() to set up that connection, and then call methods defined by the service to affect the playback.A later section, Remote procedure calls, has more details about binding to a service.3. An application can initiate a broadcast by passing an Intent object to methods like Context.sendBroadcast(), Context.sendOrderedBroadcast(), andContext.sendStickyBroadcast() in any of their variations.Android delivers the intent to all interested broadcast receivers by calling their onReceive() methods. For more on intent messages, see the separate article, Intents and Intent Filters.Shutting down componentsA content provider is active only while it's responding to a request from a ContentResolver. And a broadcast receiver is active only while it's responding to a broadcast message. So there's no need to explicitly shut down these components. Activities, on the other hand, provide the user interface. They're in a long-running conversation with the user and may remain active, even when idle, as long as the conversation continues. Similarly, services may also remain running for a long time. So Android has methods to shut down activities and services in an orderly way:1. An activity can be shut down by calling its finish() method. One activity can shut down another activity (one it started with startActivityForResult()) by calling finishActivity().2. A service can be stopped by calling its stopSelf() method, or by calling Context.stopService().Components might also be shut down by the system when they are no longer being used or when Android must reclaim memory for more active components. A later section, Component Lifecycles, discusses this possibility and its ramifications in more detail.The manifest fileBefore Android can start an application component, it must learn that the component exists. Therefore, applications declare their components in a manifest file that's bundled into the Android package, the .apk file that also holds the application's code, files, and resources.The manifest is a structured XML file and is always named AndroidManifest.xml for all applications. It does a number of things in addition to declaring the application's components, such as naming any libraries the application needs to be linked against (besides the default Android library) and identifying any permissions the application expects to be granted.But the principal task of the manifest is to inform Android about the application's components. For example, an activity might be declared as follows:The name attribute of the <activity> element names the Activity subclass that implements the activity. The icon and label attributes point to resource files containing an icon and label that can be displayed to users to represent the activity.The other components are declared in a similar way — <service> elements for services, <receiver> elements for broadcast receivers, and <provider> elements for content providers. Activities, services, and content providers that are not declared in the manifest are not visible to the system and are consequently never run. However, broadcast receivers can either be declared in the manifest, or they can be created dynamically in code (as BroadcastReceiver objects) and registered with the system by calling Context.registerReceiver().For more on how to structure a manifest file for your application, see The Android Manifest.xml File.Intent filtersAn Intent object can explicitly name a target component. If it does, Android finds that component (based on the declarations in the manifest file) and activates it. But if a target is not explicitly named, Android must locate the best component to respond to the intent. It does so by comparing the Intent object to the intent filters of potential targets. A component's intent filters inform Android of the kinds of intents the component is able to handle. Like other essential information about the component, they're declared in the manifest file. Here's an extension of the previous example that adds two intent filters to the activity:The first filter in the example — the combination of the action"android.intent.action.MAIN" and the category"UNCHER" — is a common one. It marks the activity as one that should be represented in the application launcher, the screen listing applications users can launch on the device. In other words, the activity is the entry point for the application, the initial one users would see when they choose the application in the launcher.The second filter declares an action that the activity can perform on a particular type of data.A component can have any number of intent filters, each one declaring a different set of capabilities. If it doesn't have any filters, it can be activated only by intents that explicitly name the component as the target.For a broadcast receiver that's created and registered in code, the intent filter is instantiated directly as an IntentFilter object. All other filters are set up in the manifest. For more on intent filters, see a separate document, Intents and Intent Filters.应用程序基础Android DevelopersAndroid应用程序使用Java编程语言开发。

外文译文

外文译文

成都理工大学
学生毕业设计(论文)外文译文
图表1展示了FriendTracker和FriendViewer应用所包含的不同类型的组件。

体化了组件。

关于应用中每个类型的组件的数量是没有限制的,但是作为惯例,一个组件与应用有相同的名字。

常见的情况是,这里有个activity,就像在FriendViewer
图表2展示了应用FriendTracker和FriendViewer
android分配的一部分。

在每个案例中,一个组件启动与另一个的通信。

简单来说,我们调用这个内部组件通信(ICC)。

在许多时候,在Unix基础系统中,
ICC的功能除了安全规则以外,同样的是不考虑目标是否在同一个应用或者是不同的应用中。

可用的ICCaction取决于目标组件。

每个类型的组件只特定支持他的类型的交互——举个例子,当
如图表3所示,android通过两个强制机制的共同工作来保护应用和数据,
ICC层面上。

ICC的仲裁定义了核心安全架构,这也是这篇文章的核心,但是他依赖于下层的
系统提供的保障。

(正文页面不够可加页,并在正文后附外文原文,统一用A4纸张打印或手工誊写)。

软件工程外文文献翻译

软件工程外文文献翻译

西安邮电学院毕业设计(论文)外文文献翻译院系:计算机学院专业:软件工程班级:软件0601学生姓名:导师姓名:职称:副教授起止时间:2010年3月8日至2010年6月11日ClassesOne of the most compelling features about Java is code reuse. But to be revolutionary, you’ve got to be able to do a lot more than copy code and change it.That’s the approach used in procedural languages like C, and it hasn’t worked very well. Like everything in Java, the solution revolves around the class. You reuse code by creating new classes, but instead of creating them from scratch, you use existing classes that someone has already built and debugged.The trick is to use the classes without soiling the existing code.➢Initializing the base classSince there are now two classes involved—the base class and the derived class—instead of just one, it can be a bit confusing to try to imagine the resulting object produced by a derived class. From the outside, it looks like the new class has the same interface as the base class and maybe some additional methods and fields. But inheritance doesn’t just copy the interface of the base class. When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the same as if you had created an object of the base class by itself. It’s just that from the outside, the subobject of the base class is wrapped within the derived-class object.Of course, it’s essential that th e base-class subobject be initialized correctly, and there’s only one way to guarantee this: perform the initialization in the constructor by calling the base-class constructor, which has all the appropriate knowledge and privileges to perform the base-class initialization. Java automatically inserts calls to the base-class constructor in the derived-class constructor.➢Guaranteeing proper cleanupJava doesn’t have the C++ concept of a destructor, a method that is automatically called when an object is destroyed. The reason is probably that in Java, the practice is simply to forget about objects rather than to destroy them, allowing the garbage collector to reclaim the memory as necessary.Often this is fine, but there are times when your class might perform some activities during its lifetime that require cleanup. As mentioned in Chapter 4, you can’t know when the garbage collector will be called, or if it will be called. So if you want something cleaned up for a class, you must explicitly write a special method to do it, and make sure that the client programmer knows that they must call this method.Note that in your cleanup method, you must also pay attention to the calling order for the base-class and member-object cleanup methods in case one subobject depends on another. In general, you should follow the same form that is imposed by a C++ compiler on its destructors: first perform all of the cleanup work specific to your class, in the reverse order of creation. (In general, this requires that base-class elements still be viable.) Then call the base-class cleanup method, as demonstrated here➢Name hidingIf a Java base class has a method name that’s overloaded several times, redefining that method name in the derived class will not hide any of the base-class versions (unlike C++). Thus overloading works regardless of whether the method was defined at this level or in a base class,it’s far more common to override methods of the same name, using exactly the same signature and return type as in the base class. It can be confusing otherwise (which is why C++ disallows it—to prevent you from making what is probably a mistake).➢Choosing composition vs. inheritanceBoth composition and inheritance allow you to place subobjects inside your new class (composition explicitly does this—with inheritance it’s implicit). You might wonder about the difference between the two, and when to choose one over the other.Composition is generally used when you want the features of an existing class inside your new class, but not its interface. That is, you embed an object so that you can use it to implement functionality in your new class, but the user of your new class sees the interface you’ve defined for the new class rather than the interface from theembedded object. For this effect, you embed private objects of existing classes inside your new class.Sometimes it makes sense to allow the class user to directly access the composition of your new class; that is, to make the member objects public. The member objects use implementation hiding themselves, so this is a safe thing to do. When the user knows you’re assembling a bunch of parts, it makes the interface easier to understand.When you inherit, you take an existing class and make a special version of it. In general, this mea ns that you’re taking a general-purpose class and specializing it for a particular need➢The final keywordJava’s final keyword has slightly different meanings depending on the context, but in general it says “This cannot be changed.” You might want to prev ent changes for two reasons: design or efficiency. Because these two reasons are quite different, it’s possible to misuse the final keywordThe following sections discuss the three places where final can be used: for data, methods, and classes.➢Final dataMany programming languages have a way to tell the compiler that a piece of data is “constant.” A constant is useful for two reasons:It can be a compile-time constant that won’t ever change.It can be a value initialized at run time that you don’t want ch anged.In the case of a compile-time constant, the compiler is allowed to “fold” the constant value into any calculations in which it’s used; that is, the calculation can be performed at compile time, eliminating some run-time overhead. In Java, these sorts of constants must be primitives and are expressed with the final keyword. A value must be given at the time of definition of such a constant.A field that is both static and final has only one piece of storage that cannot be changed.When using final with object references rather than primitives, the meaning gets a bit confusing. With a primitive, final makes the value a constant, but with an object reference, final makes the reference a constant. Once the reference is initialized to an object, it can never be changed to point to another object. However, the object itself can be modified; Java does not provide a way to make any arbitrary object a constant. (You can, however, write your class so that objects have the effect of being constant.) This restriction includes arrays, which are also objects.➢Final methodsThere are two reasons for final methods. The first is to put a “lock” on the method to prevent any inheriting class from changing its meaning. This is done for design reasons when you want to mak e sure that a method’s behavior is retained during inheritance and cannot be overridden.The second reason for final methods is efficiency. If you make a method final, you are allowing the compiler to turn any calls to that method into inline calls. When the compiler sees a final method call, it can (at its discretion) skip the normal approach of inserting code to perform the method call mechanism (push arguments on the stack, hop over to the method code and execute it, hop back and clean off the stack arguments, and deal with the return value) and instead replace the method call with a copy of the actual code in the method body. This eliminates the overhead of the method call. Of course, if a method is big, then your code begins to bloat, and you probably won’t see any performance gains from inlining, since any improvements will be dwarfed by the amount of time spent inside the method. It is implied that the Java compiler is able to detect these situations and choose wisely whether to inline a final method. However, it’s best to let the compiler and JVM handle efficiency issues and make a method final only if you want to explicitly prevent overriding➢Final classesWhen you say that an entire class is final (by preceding its definition with the final keyword), you state that you don’t want to inherit from this class or allow anyone else to do so. In other words, for some reason the design of your class is suchthat there is never a need to make any changes, or for safety or security reasons you don’t want subc lassingNote that the fields of a final class can be final or not, as you choose. The same rules apply to final for fields regardless of whet However, because it prevents inheritance, all methods in a final class are implicitly final, since there’s no way to override them. You can add the final specifier to a method in a final class, but it doesn’t add any meaning.her the class is defined as final.➢SummaryBoth inheritance and composition allow you to create a new type from existing types. Typically, however, composition reuses existing types as part of the underlying implementation of the new type, and inheritance reuses the interface. Since the derived class has the base-class interface, it can be upcast to the base, which is critical for polymorphism, as you’ll see in the next chapter.Despite the strong emphasis on inheritance in object-oriented programming, when you start a design you should generally prefer composition during the first cut and use inheritance only when it is clearly necessary. Composition tends to be more flexible. In addition, by using the added artifice of inheritance with your member type, you can change the exact type, and thus the behavior, of those member objects at run time. Therefore, you can change the behavior of the composed object at run time.When designing a system, your goal is to find or create a set of classes in which each class has a specific use and is neither too big (encompassing so much functionality that it’s unwieldy to reuse) nor annoyingly small (you can’t use it by itself or without adding functionality).类“Java引人注目的一项特性是代码的重复使用或者再生。

软件工程本科毕业外文文献翻译资料

软件工程本科毕业外文文献翻译资料

软件工程本科毕业外文文献翻译学校代码:10128本科毕业设计外文文献翻译二〇一五年一月The Test Library Management System ofFramework Based on SSHThe application system features in small or medium-sized enterprise lie in the greater flexibility and safety high performance-price ratio. Traditional J2EE framework can not adapt to these needs, but the system a pplication based on SSH(Struts+Spring+Hibernate) technology can better satisfy such needs. This paper analyses some integration theory and key technologies about SSH, and according to the integration constructs a lightweight WEB framework, which has integrated the three kinds of technology ,forming the lightweight WEB framework bas ed on SSH and gaining good effects in practical applications.IntroductionGenerally the J2EE platform[27] used in large enterprise applications, can well s olve the application of reliability, safety and stability, but its weakness is the price hig h and the constructing cycle is long. Corresponding to the small or medium enterprise applications, the replace approach is the system framework of lightweight WEB, inclu ding the more commonly used methods which are based on the Struts and Hibernate. With the wide application of Spring, the three technology combination may be a bette r choice as a lightweight WEB framework. It uses layered structure and provides a go od integrated framework for Web applications at all levels in minimizing the Interlaye r coupling and increasing the efficiency of development. This framework can solve a l ot of problems, with good maintainability and scalability. It can solve the separation o f user interface and business logic separation, the separation of business logic and data base operation and the correct procedure control logic, etc. This paper studies the tech nology and principle of Struts and Spring and Hibernate, presenting a proved lightwei ght WEB application framework for enterprise.Hierarchical Web MechanismHierarchical Web framework including the user presentation layer, business logi clayer, data persistence layer ,expansion layer etc, each layer for different function, re spectively to finish the whole application. The whole system are divided into differentlogic module with relatively independent and mutual, and each module can be imple mented according to different design. It can realize the system parallel development, r apid integration, good maintainability, scalability.Struts MVC FrameworkTo ensure the reuse and efficiency of development process, adopting J2EE techn ology to build the Web application must select a system framework which has a good performance . Only in this way can we ensure not wasting lots of time because of adju sting configuration and achieve application development efficiently and quickly. So, p rogrammers in the course of practice got some successful development pattern which proved practical, such as MVC and O/R mapping, etc; many technologies, including S truts and Hibernate frameworks, realized these pattern. However, Struts framework on ly settled the separation problem between view layer and business logic layer, control layer, did not provide a flexible support for complex data saving process. On the contr ary, Hibernate framework offered the powerful and flexible support for complex data saving process. Therefore, how to integrate two frameworks and get a flexible, low-coupling solutions project which is easy to maintain for information system, is a resea rch task which the engineering staff is studying constantly.Model-View-Controller (MVC) is a popular design pattern. It divides the interactive system in three components and each of them specializes in one task. The model contains the applica tion data and manages the core functionality. The visual display of the model and the f eedback to the users are managed by the view. The controller not only interprets the in puts from the user, but also dominates the model and the view to change appropriately . MVC separates the system functionality from the system interface so as to enhance t he system scalability and maintainability. Struts is a typical MVC frame[32], and it also contains the three aforementioned components. The model level is composed of J avaBean and EJB components. The controller is realized by action and ActionServlet, and the view layer consists of JSP files. The central controller controls the action exec ution that receives a request and redirects this request to the appropriate module contr oller. Subsequently, the module controller processes the request and returns results tothe central controller using a JavaBean object, which stores any object to be presented in the view layer by including an indication to module views that must be presented. The central controller redirects the returned JavaBean object to the main view that dis plays its information.Spring Framework technologySpring is a lightweight J2EE application development framework, which uses the model of Inversion of Control(IoC) to separate the actual application from the Config uration and dependent regulations of the application. Committed to J2EE application a t all levels of the solution, Spring is not attempting to replace the existing framework, but rather “welding” the object of J2EE application at all levels together through the P OJO management. In addition, developers are free to choose Spring framework for so me or all, since Spring modules are not totally dependent.As a major business-level detail, Spring employs the idea of delay injection to assemble code for the sake o f improving the scalability and flexibility of built systems. Thus, the systems achieve a centralized business processing and reduction of code reuse through the Spring AOP module.Hibernate Persistent FrameworkHibernate is a kind of open source framework with DAO design patterns to achie ve mapping(O/R Mapping) between object and relational database.During the Web system development, the tradition approach directly interacts wi th the database by JDBC .However, this method has not only heavy workload but also complex SQL codes of JDBC which need to revise because the business logic sli ghtly changes. So, whatever development or maintain system are inconvenient. Consi dering the large difference between the object-oriented relation of java and the structure of relational database, it is necessary to intro duce a direct mapping mechanism between the object and database, which this kind of mapping should use configuration files as soon as possibility, so that mapping files w ill need modifying rather than java source codes when the business logic changes in the future. Therefore, O/R mapping pattern emerges, which hibernate is one of the most outstanding realization of architecture.It encapsulates JDBC with lightweight , making Java programmer operate a relati onal database with the object oriented programming thinking. It is a a implementation technology in the lasting layer. Compared to other lasting layer technology such as JD BC, EJB, JDO, Hibernate is easy to grasp and more in line with the object-oriented programming thinking. Hibernate own a query language (HQL), which is full y object-oriented. The basic structure in its application as shown in figure6.1.Hibernate is a data persistence framework, and the core technology is the object / relational database mapping(ORM). Hibernate is generally considered as a bridge bet ween Java applications and the relational database, owing to providing durable data se rvices for applications and allowing developers to use an object-oriented approach to the management and manipulation of relational database. Further more, it furnishes an object-oriented query language-HQL.Responsible for the mapping between the major categories of Java and the relatio nal database, Hibernate is essentially a middle ware providing database services. It su pplies durable data services for applications by utilizing databases and several profiles , such as hibernate properties and XML Mapping etc..Web services technologiesThe introduction of annotations into Java EE 5 makes it simple to create sophisticated Web service endpoints and clients with less code and a shorter learning curve than was possible with earlier Java EE versions. Annotations — first introduced in Java SE 5 — are modifiers you can add to your code as metadata. They don't affect program semantics directly, but the compiler, development tools, and runtime libraries can process them to produce additional Java language source files, XML documents, or other artifacts and behavior that augment the code containing the annotations (see Resources). Later in the article, you'll see how you can easily turn a regular Java class into a Web service by adding simple annotations.Web application technologiesJava EE 5 welcomes two major pieces of front-end technology — JSF and JSTL — into the specification to join the existing JavaServer Pages and Servlet specifications. JSF is a set of APIs that enable a component-based approach to user-interface development. JSTL is a set of tag libraries that support embedding procedural logic, access to JavaBeans, SQL commands, localized formatting instructions, and XML processing in JSPs. The most recent releases of JSF, JSTL, and JSP support a unified expression language (EL) that allows these technologies to integrate more easily (see Resources).The cornerstone of Web services support in Java EE 5 is JAX-WS 2.0, which is a follow-on to JAX-RPC 1.1. Both of these technologies let you create RESTful and SOAP-based Web services without dealing directly with the tedium of XML processing and data binding inherent to Web services. Developers are free to continue using JAX-RPC (which is still required of Java EE 5 containers), but migrating to JAX-WS is strongly recommended. Newcomers to Java Web services might as well skip JAX-RPC and head right for JAX-WS. That said, it's good to know that both of them support SOAP 1.1 over HTTP 1.1 and so are fully compatible: a JAX-WS Web services client can access a JAX-RPC Web services endpoint, and vice versa.The advantages of JAX-WS over JAX-RPC are compelling. JAX-WS:•Supports the SOAP 1.2 standard (in addition to SOAP 1.1).•Supports XML over HTTP. You can bypass SOAP if you wish. (See the article "Use XML directly over HTTP for Web services (where appropriate)"for more information.)•Uses the Java Architecture for XML Binding (JAXB) for its data-mapping model. JAXB has complete support for XML schema and betterperformance (more on that in a moment).•Introduces a dynamic programming model for both server and client.The client model supports both a message-oriented and an asynchronous approach.•Supports Message Transmission Optimization Mechanism (MTOM), a W3C recommendation for optimizing the transmission and format of a SOAP message.•Upgrades Web services interoperability (WS-I) support. (It supports Basic Profile 1.1; JAX-WS supports only Basic Profile 1.0.)•Upgrades SOAP attachment support. (It uses the SOAP with Attachments API for Java [SAAJ] 1.3; JAX-WS supports only SAAJ 1.2.)•You can learn more about the differences by reading the article "JAX-RPC versus JAX-WS."The wsimport tool in JAX-WS automatically handles many of the mundane details of Web service development and integrates easily into a build processes in a cross-platform manner, freeing you to focus on the application logic that implements or uses a service. It generates artifacts such as services, service endpoint interfaces (SEIs), asynchronous response code, exceptions based on WSDL faults, and Java classes bound to schema types by JAXB.JAX-WS also enables high-performing Web services. See Resources for a link to an article ("Implementing High Performance Web Services Using JAX-WS 2.0") presenting a benchmark study of equivalent Web service implementations based on the new JAX-WS stack (which uses two other Web services features in Java EE 5 —JAXB and StAX) and a JAX-RPC stack available in J2EE 1.4. The study found 40% to 1000% performance increases with JAX-WS in various functional areas under different loads.ConclusionEach framework has its advantages and disadvantages .Lightweight J2EE struct ure integrates Struts and Hibernate and Spring technology, making full use the powerf ul data processing function of Struts and the management flexible of Spring and the m ature of Hibernate. According to the practice, putting forward an open-source solutions suitable for small or medium-sized enterprise application of. The application system based on this architecture tech nology development has interlayer loose coupling ,structure distinctly, short develop ment cycle, maintainability. In addition, combined with commercial project developm ent, the solution has achieved good effect. The lightweight framework makes the paral lel development and maintenance for commercial system convenience, and can push f orward become other industry business system development.Through research and practice, we can easily find that Struts / Spring / Hiberna te framework utilizes Struts maturity in the presentation layer, flexibility of Spring bu siness management and convenience of Hibernate in the serialization layer, three kind s of framework integrated into a whole so that the development and maintenance beca me more convenient and handy. This kind of approach also will play a key role if appl ying other business system. Of course ,how to optimize system performance, enhance the user's access speed, improve security ability of system framework ,all of these wor ks, are need to do for author in the further.基于SSH框架实现的试题库管理系统小型或者中型企业的应用系统具有非常好的灵活性、安全性以及高性价比,传统的J2EE架构满足不了这些需求,但是基于SSH框架实现的应用系统更好的满足了这样的需求,这篇文章分析了关于SSH的一体化理论和关键技术,通过这些集成形成了轻量级Web框架,在已经集成三种技术的基础上,伴随形成了基于SSH的轻量级Web 框架,并且在实际应用中有着重要作用。

(完整版)软件工程专业_毕业设计外文文献翻译_

(完整版)软件工程专业_毕业设计外文文献翻译_

(二〇一三年六月A HISTORICAL PERSPECTIVEFrom the earliest days of computers, storing and manipulating data a major application focus. The first general-purpose DBMS was designed by Charles Bachman at General Electric in the early 1960s and was called the Integrated Data Store. It formed the basis for the network data model, which was standardized by the Conference on Data Systems Languages (CODASYL) and strongly influenced database systems through the 1960s. Bachman was the fi rst recipient of ACM’s Turing Award (the computer science equivalent of a Nobel prize) for work in the database area; 1973. In the late 1960s, IBM developed the Information Management System (IMS) DBMS, used even today in many major installations. IMS formed the basis for an alternative data representation framework called the Airlines and IBM around the same time, and it allowed several people to access the same data through computer network. Interestingly, today the same SABRE system is used to power popular Web-based travel services such as Travelocity!In 1970, Edgar Codd, at IBM’s San Jose Research Laboratory, proposed a new data representation framework called the relational data model. This proved to be a watershed in the development of database systems: it sparked rapid development of several DBMSs based on the relational model, along with a rich body of theoretical results that placed the field on a firm foundation. Codd won the 1981 Turing Award for academic discipline, and the popularity of relational DBMSs changed thecommercial landscape. Their benefits were widely recognized, and the use of DBMSs for managing corporate data became standard practice.In the 1980s, the relational model consolidated its position as the dominant DBMS paradigm, and database systems continued to gain widespread use. The SQL query language for relational databases, developed as part of IBM’s System R project, is now the standard query language. SQL was standardized in the late 1980s, and the current standard, SQL-92, was adopted by the American National Standards Institute (ANSI) and International Standards Organization (ISO). Arguably, the most widely used form of concurrent programming is the concurrent execution of database programs (called transactions). Users write programs as if they are to be run by themselves, and the responsibility for running them concurrently is given to the DBMS. James Gray won the 1999 Turing award for management in a DBMS.In the late 1980s and the 1990s, advances made in many areas of database systems. Considerable research carried out into more powerful query languages and richer data models, and there a big emphasis on supporting complex analysis of data from all parts of an enterprise. Several vendors (e.g., IBM’s DB2, Oracle 8, Informix UDS) developed by numerous vendors for creating data warehouses, consolidating data from several databases, and for carrying out specialized analysis.An interesting phenomenon is the emergence of several enterprise resource planning(ERP) and management resource planning (MRP) packages, which add a substantial layer of application-oriented features on top of a DBMS. Widely used packages include systems from Baan, Oracle,PeopleSoft, SAP, and Siebel. These packages identify a set of common tasks (e.g., inventory management, resources planning, financial analysis) encountered by a large number of organizations and provide a general application layer to carry out these tasks. The data is stored in a relational DBMS, and the application layer can be customized to different companies, leading to lower Introduction to Database Systems overall costs for the companies, compared to the cost of building the application layer from scratch. Most significantly, perhaps, DBMSs of Web sites stored their data exclusively in operating systems files, the use of a DBMS to store data that is accessed through a Web browser is becoming widespread. Queries are generated through Web-accessible forms and answers are formatted using a markup language such as HTML, in order to be easily displayed in a browser. All the database vendors are adding features to their DBMS aimed at making it more suitable for deployment over the Internet. Database management continues to gain importance as more and more data is brought on-line, and made ever more accessible through computer networking. Today the field is being driven by exciting visions such as multimedia databases, interactive video, digital libraries, a genome mapping effort and NASA’s Earth Observation System project,and the desire of companies to consolidate their decision-making processes and mine their data repositories for useful information about their businesses. Commercially, database manage- ment systems represent one of the largest and most vigorous market segments. Thusthes- tudy of database systems could prove to be richly rewarding in more ways than one!INTRODUCTION TO PHYSICAL DATABASEDESIGNLike all other aspects of database design, physical design must be guided by the nature of the data and its intended use. In particular, it is important to understand the typical workload that the database must support; the workload consists of a mix of queries and updates. Users also requirements about queries or updates must run or and users’ performance requirements are the basis on which a number of decisions .To create a good physical database design and to tune the system for performance in response to evolving user requirements, the designer needs to understand the workings of a DBMS, especially the indexing and query processing techniques supported by the DBMS. If the database is expected to be accessed concurrently by many users, or is a distributed database, the task becomes more complicated, and other features of a DBMS come into play.DATABASE WORKLOADSThe key to good physical design is arriving at an accurate description of the expected workload. A workload description includes the following elements:1. A list of queries and their frequencies, as a fraction of all queries and updates.2. A list of updates and their frequencies.3. Performance goals for each type of query and update.For each query in the workload, we must identify:Which relations are accessed.Which attributes are retained (in the SELECT clause).Which attributes or join conditions expressed on them (in the WHERE clause) and the workload, we must identify:Which attributes or join conditions expressed on them (in the WHERE clause) and .For UPDATE commands, the fields that are modified by the update.Remember that queries and updates typically involves a particular account number. The values of these parameters determine selectivity of selection and join conditions.Updates benefit from a good physical design and the presence of indexes. On the other indexes on the attributes that they modify. Thus, while queries can only benefit from the presence of an index, an index may either speed up or slow down a given update. Designers should keep this trade-offer in mind when creating indexes.NEED FOR DATABASE TUNINGAccurate, detailed workload information may be of the system. Consequently, tuning a database after it designed and deployed is important—we must refine the initial design in the light of actual usage patterns to obtain the best possible performance.The distinction between database design and database tuning is somewhat arbitrary.We could consider the design process to be over once an initial conceptual schema is designed and a set of indexing and clustering decisions is made. Any subsequent changes to the conceptual schema or the indexes, say, would then be regarded as a tuning activity. Alternatively, we could consider some refinement of the conceptual schema (and physical design decisions affected by this refinement) to be part of the physical design process.Where we draw the line between design and tuning is not very important.OVERVIEW OF DATABASE TUNINGAfter the initial phase of database design, actual use of the database provides a valuable source of detailed information that can be used to refine the initial design. Many of the original assumptions about the expected workload can be replaced by observed usage patterns; in general, some of the initial workload specification will be validated, and some of it will turn out to be wrong. Initial guesses about the size of data can be replaced with actual statistics from the system catalogs (although this information will keep changing as the system evolves). Careful monitoring of queries can reveal unexpected problems; for example, the optimizer may not be using some indexes as intended to produce good plans.Continued database tuning is important to get the best possibleperformance.TUNING THE CONCEPTUAL SCHEMAIn the course of database design, we may realize that our current choice of relation schemas does not enable us meet our performance objectives for the given workload with any (feasible) set of physical design choices. If so, we may our conceptual schema (and re-examine physical design decisions that are affected by the changes that we make).We may realize that a redesign is necessary during the initial design process or later, after the system in use for a while. Once a database designed and populated with data, changing the conceptual schema requires a significant effort in terms of mapping the contents of relations that are affected. Nonetheless, it may sometimes be necessary to revise the conceptual schema in light of experience with the system. We now consider the issues involved in conceptual schema (re)design from the point of view of performance.Several options must be considered while tuning the conceptual schema:We may decide to settle for a 3NF design instead of a BCNF design.If there are two ways to decompose a given schema into 3NF or BCNF, our choice should be guided by the workload.Sometimes we might decide to further decompose a relation that is already in BCNF.In other situations we might denormalize. That is, we might choose toreplace a collection of relations obtained by a decomposition from a larger relation with the original (larger) relation, even though it suffers from some redundancy problems. Alternatively, we might choose to add some fields to certain relations to speed up some important queries, even if this leads to a redundant storage of some information (and consequently, a schema that is in neither 3NF nor BCNF).This discussion of normalization the technique of decomposition, which amounts to vertical partitioning of a relation. Another technique to consider is , which would lead to our ; rather, we want to create two distinct relations (possibly with different constraints and indexes on each).Incidentally, when we redesign the conceptual schema, especially if we are tuning an existing database schema, it is worth considering whether we should create views to mask these changes from users for whom the original schema is more natural.TUNING QUERIES AND VIEWSIf we notice that a query is running much slower than we expected, we conjunction with some index tuning, can often ?x the problem. Similar tuning may be called for if queries on some view run slower than expected.When tuning a query, the first thing to verify is that the system is using the plan that you expect it to use. It may be that the system is not finding the best plan for a variety of reasons. Some common situations that are not condition involving null values.Selection conditions involving arithmetic or string expressions orconditions using the or connective. For example, if we E.age = 2*D.age in the WHERE clause, the optimizer may correctly utilize an available index on E.age but fail to utilize an available index on D.age. Replacing the condition by E.age2=D.age would reverse the situation.Inability to recognize a sophisticated plan such as an index-only scan for an aggregation query involving a GROUP BY clause.If the optimizer is not smart enough to and the best plan (using access methods and evaluation strategies supported by the DBMS), some systems allow users to guide the choice of a plan by providing order and join method. A user who wishes to guide optimization in this manner should and the capabilities of the given DBMS.(8)OTHER TOPICSMOBILE DATABASESThe availability of portable computers and wireless communications many components of a DBMS, including the query engine, transaction manager, and recovery manager.Users are connected through a wireless link whose bandwidth is ten times less than Ethernet and 100 times less than ATM networks. Communication costs are therefore significantly proportion to IO and CPU costs.Users’ locati ons are constantly changing, and mobile computers costs is connection time and battery usage in addition to bytes transferred, and change constantly depending on location. Data is frequently replicated to minimize the cost of accessing it from different locations.As a user moves around, data could be accessed from multipledatabase servers within a single transaction. The likelihood of losing connections is also much greater than in a traditional network. Centralized transaction management may therefore be impractical, especially if some data is resident at the mobile computers. We may in fact ACID transactions and develop alternative notions of consistency for user programs.MAIN MEMORY DATABASESThe price of main memory is now low enough that we can buy enough main memory to CPUs also memory. This shift prompts a reexamination of some basic DBMS design decisions, since disk accesses no longer dominate processing time for a memory-resident database: Main memory does not survive system crashes, and so we still atomicity and durability. Log records must be written to stable storage at commit time, and this process could become a bottleneck. To minimize this problem, rather than commit each transaction as it completes, we can collect completed transactions and commit them in batches; this is called group commit. Recovery algorithms can also be optimized since pages rarely out to make room for other pages.The implementation of in-memory operations must be considered while optimizing queries, namely the amount of space required to execute a plan. It is important to minimize the space overhead because exceeding available physical memory would lead to swapping pages to disk (through the operating system’s virtual memory mechanisms), greatly slowing down execution.Page-oriented data structures become less important (since pages areno longer the unit of data retrieval), and clustering is not important (since the cost of accessing any region of main memory is uniform).(一)从历史的角度回顾从数据库的早期开始,存储和操纵数据就一直是主要的应用焦点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

软件专业毕业论文外文文献中英文翻译Object landscapes and lifetimesTech nically, OOP is just about abstract data typing, in herita nee, and polymorphism, but other issues can be at least as importa nt. The rema in der of this sect ion will cover these issues.One of the most importa nt factors is the way objects are created and destroyed. Where is the data for an object and how is the lifetime of the object con trolled? There are differe nt philosophies at work here. C++ takes the approach that con trol of efficie ncy is the most importa nt issue, so it gives the programmer a choice. For maximum run-time speed, the storage and lifetime can be determined while the program is being written, by placing the objects on the stack (these are sometimes called automatic or scoped variables) or in the static storage area. This places a priority on the speed of storage allocatio n and release, and con trol of these can be very valuable in some situati ons. However, you sacrifice flexibility because you must know the exact qua ntity, lifetime, and type of objects while you're writing the program. If you are trying to solve a more general problem such as computer-aided desig n, warehouse man ageme nt, or air-traffic con trol, this is too restrictive.The sec ond approach is to create objects dyn amically in a pool of memory called the heap. In this approach, you don't know un til run-time how many objects you n eed, what their lifetime is, or what their exact type is. Those are determined at the spur of the moment while the program is runnin g. If you n eed a new object, you simply make it on the heap at the point that you n eed it. Because the storage is man aged dyn amically, at run-time, the amount of time required to allocate storage on the heap is sig ni fica ntly Ion ger tha n the time to create storage on the stack. (Creat ing storage on the stack is ofte n a si ngle assembly in structio n to move the stack poin ter dow n, and ano ther to move it back up.) The dyn amic approach makes the gen erally logical assumpti on that objects tend to be complicated, so the extra overhead of finding storage and releas ing that storage will not have an importa nt impact on the creati on of an object .In additi on, the greater flexibility is esse ntial to solve the gen eral program ming problem.Java uses the sec ond approach, exclusive". Every time you want to create an object, you use the new keyword to build a dyn amic in sta nee of that object.There's ano ther issue, however, and that's the lifetime of an object. With Ian guages that allow objects to be created on the stack, the compiler determines how long the object lasts and can automatically destroy it. However, if you create it on the heap the compiler has no kno wledge of its lifetime. In a Ianguage like C++, you must determine programmatically when to destroy theobject, which can lead to memory leaks if you don ' t do it correctly (and this is a com mon problemin C++ programs). Java provides a feature called a garbage collector that automatically discovers whe n an object is no Ion ger in use and destroys it. A garbage collector is much more convenient because it reduces the nu mber of issues that you must track and the code you must write. More importa nt, the garbage collector provides a much higher level of in sura nee aga inst the in sidious problem of memory leaks (which has brought many a C++ project to its kn ees).The rest of this secti on looks at additi onal factors concerning object lifetimes and Ian dscapes.1. The si ngly rooted hierarchyOne of the issues in OOP that has become especially prominent since the in troduct ion of C++ is whether all classes should ultimately be inherited from a single base class. In Java (as with virtually all other OOP Ianguages) th e answer is “ yes ” and the name of this ultimate base class is simply Object. It turns out that the ben efits of the sin gly rooted hierarchy are many.All objects in a sin gly rooted hierarchy have an in terface in com mon, so they are all ultimately the same type. The alter native (provided by C++) is that you don' know that everyth ing is the same fun dame ntal type. From a backward-compatibility sta ndpo int this fits the model of C better and can be thought of as less restrictive, but when you want to do full-on object-oriented programming you must then build your own hierarchy to provide the same convenience that ' s built into other OOP Ianguages. And in any new ctasBy you acquire, some other in compatible in terface will be used. It requires effort (and possibly multiple in herita nee) to work the new in terface into your desig n. Is the extra “ flexibility ” of C++ worth it? If you n eecit—if you have a large investment in C —it ' s quite valuable. If you ' re starting from scratch, otheralter natives such as Java can ofte n be more productive.All objects in a sin gly rooted hierarchy (such as Java provides) can be guara nteed to have certa in function ality. You know you can perform certa in basic operati ons on every object in your system. A sin gly rooted hierarchy, along with creat ing all objects on the heap, greatly simplifiesargume nt pass ing (one of the more complex topics in C++).A sin gly rooted hierarchy makes it much easier to impleme nt a garbage collector (which is convenien tly built into Java). The n ecessary support can be in stalled in the base class, and the garbage collector can thus send the appropriate messages to every object in the system. Without a singly rooted hierarchy and a system to manipulate an object via a reference, it is difficult to impleme nt a garbage collector.Since run-time type information is guaranteed to be in all objects, you ' ll never end up withobject whose type you cannot determ ine. This is especially importa nt with system level operati ons, such as exceptio n han dli ng, and to allow greater flexibility in program ming.2 .Collectio n libraries and support for easy collecti on useBecause a container is a tool that you ' ll use frequently, it makes sense to have a library of containers that are built in a reusable fashion, so you can take one off the shelf Because a container is a tool that you ' ll use frequently, it makes sense to have a library of containers that arebuilt in a reusable fashi on, so you can take one off the shelf and plug it i nto your program. Java provides such a library, which should satisfy most n eeds.Down cast ing vs. templates/ge nericsTo make these containers reusable, they hold the one universal type in Java that was previously men ti on ed: Object. The si ngly rooted hierarchy means that everyth ing is an Object, so a container that holds Objects can hold anything. This makes containers easy to reuse.To use such a container, you simply add object references to it, and later ask for them back.But, since the container holds only Objects, whe n you add your object reference into the containerit is upcast to Object, thus los ing its ide ntity. When you fetch it back, you get an Object referen ce, and not a reference to the type that you put in. So how do you turn it back into someth ing that has the useful in terface of the object that you put into the container?Here, the cast is used again, but this time you ' re not casting up the inheritanee hierarchy to a more gen eral type, you cast dow n the hierarchy to a more specific type. This manner of cast ing is called downcasting. With upcasting, you know, for example, that a Circle is a type of Shape so it ' s safe to upcast, but you don ' t knoObjeat annecessarily a Circle or a Shape so it ' s hardlysafe to dow ncast uni ess you know that s what you ' re dealing with.It ' s not completely dangerous, however, because if you downcast to the wrong thing you get a run-time error called an excepti on, which will be described shortly. When you fetch object references from a container, though, you must have some way to remember exactly what they are so you can perform a proper dow ncast.Down cast ing and the run-time checks require extra time for the running program, and extraeffort from the programmer. Would n make sense to somehow create the container so that itknows the types that it holds, elim in at ing the n eed for the dow ncast and a possible mistake? The soluti on is parameterized types, which are classes that the compiler can automatically customize to work with particular types. For example, with a parameterized container, the compiler could customize that container so that it would accept only Shapes and fetch only Shapes.Parameterized types are an importa nt part of C++, partly because C++ has no sin gly rooted hierarchy .In C++, theJava cu keyword that impleme nts parameterized types is “ template.has no parameterized types since it is possible for it to get by —however awkwardly —using the sin gly rooted hierarchy. However, a curre nt proposal for parameterized types uses a syn tax that is strik in gly similar to C++ templates.对象的创建和存在时间从技术角度说,00P(面向对象程序设计)只是涉及抽象的数据类型、继承以及多形性,但另一些问题也可能显得非常重要。

相关文档
最新文档