电子信息工程专业毕业论文外文翻译中英文对照翻译

合集下载

电子信息工程 外文翻译 外文文献 英文文献 文献翻译

电子信息工程 外文翻译 外文文献 英文文献 文献翻译

Technology and Application of Fieldbus Control System ---------IntelligentEquipment & Measurement And Control System Based on DeviceNetPromoted by the new technological revolution that automation control technology is tending digitization and internet in the field of automation industry, Shanghai Aton Electric Co., Ltd. developed Intelligent Equipment & Measurement And Control System Based on DeviceNet as a high and new technology industrialization model project. It was a state hi-tech development project of 2000 and was approved by the State Committee of Technology. Shanghai Aton Electric Co., Ltd. constructed production line of intelligent controller of pump and valve, relying on Shanghai Electric (Group) Corporation; constructed measurement and control system FCS R&D center of intelligent controller of pump and valve and built up mass production R&D basis, cooperating with Shanghai Jiaotong University and Shanghai University; constructed FCS remote diagnosis and service center of intelligent controller of pump and valve; constructed FCS training center of intelligent controller of pump and valve; founded mass production R&D basis along with the Rockwell Laboratory of Shanghai Jiaotong University and CIMS Center.1 Summary(1)Fieldbus control system is a system applied to field of production and microcomputerized measurement control equipment to realize both-way multinode serial communications. It is also called low-level control network for open, digital and multiplespot communications.Application: Flow Control System of Manufacturing; Process Control System; Traffic Control & Management; Building Automation. Features: Fieldbus control system is low-level low-bandwidth digital communication and control network in industrial system as well as open system connecting microcomputerized appearance. Intelligent instrument and controller are equal to microcomputer. They make up network with Fieldbus control system as the links to complete digital communication and other tasks.(2)Difference between FCS and DCS,FCS is updated control system after DCS integrated with digital control system and distributing control system. It solves the problem that in traditional DCS, devices made by different manufacturers cannot be connected. They can't realize exchange and operation to organize an network system with wider range of information sharing. It conquers the defect that special closed system for network should be used for communication in DCS to realize various functions of integrated automation. It turns the distributing structure combiningconcentration with deconcentration in DCS into new-type full distributing structure. It releases the control function to the field thoroughly and makes it possible to realize basic control function by means of fieldbus equipment itself. FCS breaks the traditional structure form of control system. The traditional analog control system adopts one-to-one equipment tie-wire and puts up connections respectively according to control loop. FCS adopts intelligent field equipment to place the control module, all input/output modules that used to be in the control chamber of DCS into field equipment. Since field equipment has ability to communicate, the field measuring and transferring instruments can transfer signals to actuating mechanism such as valve directly. Its control function can be fulfilled directly on the spot independent of the computer or control meter in the control chamber, which realizes thorough decentralized control.FCS adopts digital signals to replace analog signals so that multiple signals (including multiple operating parameter values, device status and failure information) can be transferred on a pair of cables. Meanwhile, it can give power supply to several devices. No switched block for analog/digital or digital/analog is needed besides fieldbus.(3)Characteristics of FCS●Open System;●Interoperability;● replace ability of devices made by different manufacturers.● Intelligentize and Autonomy;●Field equipment completing basic functions of automatic control.●Decentralized System Structure;●Field Adaptability;●Relatively Strong Interference Killing Feature and Safety●Intelligentized local equipment can save investment and quantity of hardware●Saving installation expenses and cables●Saving daily maintenance expenses●Enhancing accuracy and reliability of system●Enhancing initiativeness of system integration for users(4)Development Background and Trend of Fieldbus Control System,With the rapid development of computer and computer network, FCS has been rapidly developed as the interlinked communication network between the field intelligentdevices in the field of process automation, building and traffic etc. Because FCS meets the needs that industrial control system is developing in the way of decentralization, network and intellectualized, it has become the focus of global industrial automation and been universally concerned by the whole world. FCS has caused great revolutions on the aspects of system structure and function system for the current production of automation instrument, distributing control system and programmable controller. It is predicted that FCS will be the general trends in a very long time in the future fore sure.2 APPLICATION OF RELAYThe product reliability generally refers to the operating reliability. It is defined as: the ability of accomplishing the specified function under prescribed conditions and in prescribed time. It consists of intrinsic reliability and application reliability. The intrinsic reliability is determined by product designing and manufacturing technique, and the application reliability is concerned with the correct application of users and the services provided by the manufacturer before and after selling. When using relay, the user should pay attention to the following items.2.1 Coil applied voltageIt is best to choose the coil applicative voltage according to the rated voltage in design, or choose the voltage according to the temperature rising curve. Using any coil voltage that is less than the rated voltage will affect the operation of the relay. The coil operating voltage refers to the voltage that is applied between the coil terminals. The voltage value between the two terminals must be guaranteed, especially when using enlargement circuit to energize the coil. Whereas, it will also affect the relay characteristics if the applied voltage exceeds the highest rated voltage. Exorbitant voltage will bring exorbitant coil temperature rising, especially in high temperature ambient. Exorbitant temperature rising will damage the insulating material and affect the working safety of relay. For magnetic latching relay, energizing (or return) pulse width should not less than 3 times of the operating (or return) time, otherwise, the relay would be left on the middle-position state. When using solid-state components to energize the coil, the components dielectric strength must be above 80V, and the leakage of current must be as little as possible to ensure the relay to release.Energizing power source: Under 110% of the rated current, the adjusting ratio of the power source is less than 10% (or the output impedance is less than 5% of the coilimpedance), the wave voltage of the DC power source is less than 5%. The AC wave is sine wave; the waviness coefficient is between 0.95~1.25; wave distortion is within ±10%; the frequency change is within±1Hz or ±1% of the specified frequency (choosing the bigger value). The output power should not less than coil power consumption.2.2 Transient suppressionAt the moment when the coil power is stopped, peak-inverse voltage that is more than 30 times of the coil rated voltage is produced on the coil, which is harmful to the electronic circuit. Generally, the peak-inverse voltage is suppressed by transient suppression(cutting-peak)diode or resistance to limit the peak-inverse voltage within 50V. But the diode in parallel connection will delay3~5 times of the release time. If the request of the release time is high, a suitable resistance in series can be putted with and at one end of the diode.The power supply to relays in parallel connection and series connection,When several relays in parallel connection are supplied, the relay that the peak-inverse voltage is higher will release power to the relays that the peak-inverse voltage is lower. The release time of the relay will delay. So the relays in parallel connection should be controlled separately to eliminate mutual influence.The relays with different coil resistance and power can’t be used in series, otherwise, t he relay that the coil current is higher in the series circuit can’t operate reliably. Only the relays of the same specification can be used in series, but the peak-inverse voltage will be increased and the peak-inverse voltage should be suppressed. Resistance in series can be used to bear the part voltage that exceeds the rated voltage of the coil according to the ratio of the divided voltage.2.2.1 Contact loadThe load applied to the contacts should be accordant to the rated load and characteristics of the contacts. A load that is not applied according to the rated value range will cause problem. The relay that is only suitable for DC load can’t be used in AC occasions. The relay that can switch 10A load can’t always reliably operate in low level load (less than 10m A×6A) or in dry circuit occasions. The relay that can switch single-phase AC power source isn’t always suitable to switch two single-phase AC loads that aren’t synchronous; the relay that is only specif ied to switch the load of AC 50Hz(or 60Hz)can’t be used to switch AC load of 400Hz.2.2.2 Parallel and series connection of contactsThe contacts used in parallel connection can’t increase the load current, because the operating times of several sets of contacts are absolutely different; that is to say, there is still only a set of contacts switching the increased load. This would damage or weld the contacts and make the contacts can’t close or open. The parallel connection of the contacts can decrease t he misplay of “break”. But the parallel connection of the contacts would increase the misplay of “freezing”. Because the misplay of “break” is the main pattern of invalidation of contacts, the parallel connection can increase the reliability and can be used on the pivotal part of equipments. But the applied voltage should not exceed the highest operating voltage of the coil and should not less than 90% of the rated voltage, otherwise, the coil life and the applicative reliability would be damaged. The series connection of the contacts can increase the load voltage. The amount of the contact sets is equal to the times that the load voltage can be increased. The series connection of contacts can decrease the misplay of “freezing”, but it would increase the mis play of “break”. Anyway, when using redundant technology to increase the operating reliability of contacts, the characteristics and size and the failure mode of load must be considered.2.2.3 Switching speedThe switching speed should not exceed the reciprocal of 10 times of the sum of operating and release time (times/s), otherwise, the contacts can’t switch on steadily. Magnetic latching should be used under the pulse width specified in the technique criterion, or the coil may be damaged.3 RVT DISTRIBUTING ELECTRICITY INTEGRATE TESTAPPARATUSBasic functionMeasure asupervision:Three mutually electric voltage/electric current/ power factor with a great achievement/ power without a great achievement/electricity with a great achiverment/electricity/homophonic-wave electric voltage/ homophonic-wave electric/ current Day electric voltage/ electric current biggest and minimum value/fire for the failure Electric voltage over top, the limit/ lack mutually of time homophonic-wave analyzes is up to 13 times.The data is stored for 2 months.The data communicateRS232/485 communicating connect,The way in communicating can adopt the spot communicating or the long range communicating.,Possible to settle invoke orthe solid hour invokes, responding to the modification and long ranges control of the parameter.Without power compensationTaking physics measures as the power factor without a great achievement,the power factor with a great achievement and the dull place without power compensation;Y+ the combination method of the △,Y+ the △connects the line method,Y+ △ , Y, the △ connects the line method.Data managementAccording to WINDOW98 operation terrace, data in communication automatically reports born statement, curve and pillar form diagrams.Circulation of the protectionWhen the charged barbed wire net of mutually electric voltage over press, owe to press, and a super limit hour fast cut off in expiation of capacitor,When the charged barbed wire net lacks mutually or super limit in the preface of zero hour fast cut off in expiation of capacitor.screen manifestationChinese operation interface,Adopt 128*64 the back light liquid crystal display.The solid hour shows the charged barbed wire net relevant parameter.view manifestation to place the parameter.现场总线控制系统的技术和应用随着新的科学技术革命的出现,在自动化工业领域中,自动控制技术的发展趋向于数字化和网络互联化。

电子信息工程专业外语对应翻译

电子信息工程专业外语对应翻译

专业外语综合阅读与翻译报告学院:信息电子技术学院专业:电子信息工程班级:一班学籍号:********姓名:******成绩:2016年5月20日英文原文:With all the exciting developments in the realm of communications technology over the last few years it would be easy to think that we are living in times of the most astounding transformations. However, the technologies that so many of us are addicted to today mobile phones, the internet, satellite TV are built on the achievements of our endeavors. The history of communication goes back thousands of years. Each new development has transformed the world we live in. An understanding of the journey we have taken to get where we are now shows that today’s techniques are refinements of what came before. Really big revolutions may be still to come.communication begins with the first conversations between people it is believed that language developed through gestures using the hands and bodies, and had evolved into spoken tongues by the time of the great migration of humans from Africa some 100,000 years ago.The first long distance communication must have arisen shortly after conversation, with the discovery that it was possible to make oneself heard from a distance by shouting, or banging objects together to make a sound that travels far. The fire and the smoke it produces may also have been used for simple communication between separated groups.Communication techniques such as shouting and smoke signals allow people to make their mark over a wider area. The recording of information allowed human beings to communicate over great expanses of time. Cave paintings up to 36,500 years old have been found people from that far back are communicating with us today although it is hard to know what they were saying. 5,500 years ago, more systematized alphabets were developed by the Phoenicians. Sumerians and Egyptians. They also developed new ways of storing their information, some of which have survived till today. Scholars have had some success in translating these alphabets and the languages they convey, giving us insight into societies long dead.The realisations that it is possible to communicate through space and time are the two most important communication leaps in history. Everything that has come since has merely improved the efficiency of these two tasks.The next leap was the combination of writing and transmitting information. This begin with people or animals acting as couriers, delivering written messages. The first postal services were in China around 900BC. Human runners and birds were used to transport messages starting in at least 776BC, when the winner of the Olympic games was reported to the Athenians via homing pigeons possible the first journalist reporting back to base from a remote location.With the discovery of electricity the speed and range of communication once again began to increase. In 1793 Claude Chappe invented the Semaphore telegraph line, which allowed reliableand fast communication over wires between distant locations. Methods such as the Heliograph which require two locations being able to see each other limited the possible distance of rapid communications. The semaphore broke through this barrier, opening the way for even more radical developments.The invention of techniques such as Morse code allowed complex messages to be transferred at very high speeds over this new medium. This had huge repercussions for many aspects of human life – transport could be better coordinated, government could transmit decisions to distant offices almost instantaneously, businesses could work with more businesses over large distances.With Joseph Henry’s invention of the telegraph in 1831 developments took on a cheetah like speed – with thirty years wires were strung around and between many countries in the world. At first these were used to transmit simple signals in the form of short and long beeps – Morse code. Shortly after this, in 1843, Alexander Bain developed the chemical telegraph –a machine that enabled messages written on paper to be copied onto another machine a long distance away – the first Fax machine! Nearly twenty years later Alexander Graham Bell patented the electric telephone. This enabled people with no training to communicate in the most natural form speaking even when separated by hundreds of miles. The first telephone conversation was between bell and his assistant, Watson-Mr. Watson, come here, I want you! These words changed the world forever.Over 45 years the limit of how fast people could communicate had gone from the speed of the fastest form of transport, to the speed that signals could travel down an electric wire –the speed of light! These developments made it possible to communicate efficiently over much larger distances, changing social lives, government, military operations, investments, agriculture, almost everything.We saw how the storage of communication in the form of writing was a leap that permitted people to communicate through time as well as space. Shortly after the invention of thetelephone, the storage of sound became possible. In 1877 Tomas Edison patented the phonograph, which used wax cylinders to record sound. Ten years later the invention of gramophone made it possible for sound recordings to last much longer – early recordings made over 100 years ago can still be listened to today.The technologies that I have discussed in these articles have all helped us store and transmit communication. All these technologies are joining together in the form of computers and the internet. A cheap computer connected to the internet gives a person access to storage and transmission of wireless words, sounds, and images both still and moving. The future will see this convergence grow, with mobile computers allowing us to take photographs and send them to our friends instantly, wherever they are.Eventually we may even combine ourselves with our mobile computers, and transmit our thoughts and experiences directly into the heads of other people. Communication is after all about sharing experience.阅读翻译:随着通信技术在过去几年中所有令人兴奋的领域中的发展,这将是很容易认为我们正生活在一个最令人震惊的时代转换。

电子信息工程本科毕业中英文翻译

电子信息工程本科毕业中英文翻译

英语原文:Life of LED-Based White Light SourcesThe interest for using light-emitting diodes (LEDs) for display and illumination applications has been growing steadily over the past few years. The potential for long life and reduced energy use are two key attributes of this rapidly evolving technology that have generated so much interest for its use in the above mentioned applications. Traditionally, the lamp life of light sources commonly used in illumination applications is determined by subjecting them to a predetermined on/off cycle until half the number of light sources cease to produce light. Unlike these sources, LEDs rarely fail catastrophically; instead, their light output slowly degrades over time. Even if an LED is technically operating and producing light, at some point the amount of light produced by the LED will be insufficient for the intended application. Therefore, the life of an LED should be based on the amount of time that the device can produce sufficient light for the intended application,rather than complete failure. Based on this argument, a recent publication from an industry group defines the life of an LED device or system for use in general lighting applications as the operating time, in hours, for the light output to reach 70% of its initial value.The most widely used white LEDs incorporate a layer of phosphor over a GaN-based, short-wavelength light emitter. Usually, the phosphor is embedded inside an epoxy resin that surrounds the LED die. Some portion of the short-wavelength radiation emitted by the LED is down-converted by the phosphor, and the combined radiation creates white light.Early white LEDs were packaged similar to the indicator-style colored LEDs, specifically 5 mm and SMD (surface mount devices). Although these products demonstrated the concept of a white light source, they did not produce sufficient light for display and illumination applications. Furthermore, these indicator-style white LEDs had a relatively short life, 5000–10 000h to reach 70% light level under normal operating conditions. To address the higher luminous flux requirements, manufacturers have started to commercialize high-power illuminator LEDs that are presently producing over one hundred times the flux compared to indicator-style white LEDs. The higher light output isachieved by using larger dies, higher drive currents,and improved heat extraction methods. In addition,some manufacturers are using better encapsulants to improve the life of white LEDs.There are several studies that have investigated the aging mechanisms of GaN-based LEDs. During the 1990s,Barton et al. investigated the degradation of GaN-based blue LEDs and showed that light output reduction over time occurred primarily due to the yellowing of the epoxy surrounding the die. In 2001, Narendran et al. observed that indicator-style white LED packages degraded very rapidly, with the LEDs reaching the 50% light output level within 6000 h. In that same study, it was shown that the chromaticity values of the white LEDs shifted toward yellow over time, and it was speculated that the yellowing of the epoxy was the main cause for light output degradation. Therefore, based on past studies,the primary reason for the degradation of indicator-style white LED packages is the yellowing of the epoxy that is caused by excessive heat at the p-n-junction of the LED. Some of the newer illuminator-style white LEDs use encapsulant materials that have lower photodegradation characteristics,and therefore have a lower degradation rate. However, there are factors such as the degradation of the die attaché epoxy, discoloration of the metal reflectors and the lead wires, and degradation of the semiconducting element that are influenced by heat, and these all contribute to the overall degradation of the white LED. Although the newer high-power white LEDs would have a lower degradation rate compared to the early indicator-style devices, it is the heat at the p-n-junction that most influences the degradation. The heat at the p-n-junction is caused by the ambient temperature and the ohmic heating at the bandgap.As stated earlier, long life is one key feature of LED technology that has attracted so many end-use communities. To benefit from the long-life feature, it is the final system that has to operate for a long time, not just the individual LED. As noted in past studies, heat at the p-n-junction is one of the key factors that determine the life of the white LED. Therefore, if systems are not properly designed with good thermal managemen techniques, even if they use long-life white LEDs the life of the final system would be short. Developing the relationship between junction temperature and life would be very usefulfor producing long-life systems.Although there are different methods available for estimating the junction temperature of LEDs, they are not very convenient,especially once the LEDs are integrated into a system . Furthermore, these methods are not direct; consequently, they are prone to erroneous results. Alternatively, it is much more convenient and direct to measure the heat at a location external to the LED package that is sufficiently close to the junction and where a temperature sensor can be directly attached. The temperature of this point should have a good relationship to the junction temperature. The point where a temperature sensor can be attached for this measurement could be the lead wire (cathode side) for the indicator-style LEDs and the board for high-power LEDs. Most manufacturers can recommend such a point,and we refer to this as the T-point in this manuscript.Since white LEDs in the marketplace are packaged differently, their ability to transfer heat from the die to the surrounding environment is different from product to product. Therefore, it is reasonable to assume that different products have different degradation rates as a function of heat. A graph that shows the life of the LED as a function of T-point temperature is extremely useful for system manufacturers to build reliable, long-lasting systems. By knowing how much impact heat has on the degradation rate or life of the LED, the system manufacturer can select components and drive parameters, including the amount of heat sink and drive current, for a product being designed for a given application.Therefore, the objective of the study presented in this manuscript was to investigate the relationship between the T-point temperature and life of a white LED. A second objective was to understand the degradation rate of different high-power white LED products presently available in the marketplace.To understand the relationship between the T-point temperature and life, one type of high-power white LED that is commonly available in the marketplace was selected. Several of these LEDs were subjected to a life test under different ambient temperatures. The details of the experimental setup are described in the following paragraphs.Because the different LED arrays have to operate at a particular ambient temperature, the arrays were placed inside specially designed, individual life-test chambers. The test chambers had two different functions: 1) to keep the ambient temperature constant for the LED arrays and 2) to act as light-integrating boxes for measuring light output. Each individual LED array was mounted at the center of the inside top surface of a life-test chamber. A photodiode attached to the center of the left panel continuously measured the light output.A small white baffle placed over the photodiode shielded it from the direct light, allowing only the reflected light to reach the photodiode. A resistance temperature detector placed on top of the baffle measured the chamber’s ambient temperature and controlled the heater that provided the necessary heat to the chamber through a temperature controller. The temperature in-side the box remained within ±1℃.The heater was attached to a raised aluminum plate with a matte-white cover that sat on the chamber floor. The temperature was estimated using a J-type thin wire thermocouple soldered to the T-point of white LED. For each chamber, an external LED driver controlled the current flow through the LEDs. All life-test were placed inside a temperature-controlled room. The life-test chambers were staggered vertically and horizontally to ensure that heat rising from the bottom chambers did not affect the chambers above them.The results of this study underscore the importance of packaging white LEDs using proper thermal management to maintain light output, and thereby extend system life. Heat at the p-n-junction is one of the main factors that affect the life of white LEDs. Therefore, knowing the relationship between life and heat would be very useful for manufacturers who are interested in developing reliable, long-lasting systems.Results from the first experiment—conducted under various ambient temperatures to understand the relationship between T-point temperature and life—indicate that life decreases with increasing temperature in an exponential manner. Results from the second experiment—conducted to understand how different commercial white LEDs perform under identical operating conditions—show a large variation in life among the different packages, indicating that the packages used different heat extraction techniques and materials.As part of ongoing research, we hope to further investigate how the different commercial LEDs are affected by heat and finally develop a family of curves that illustrate the relationship between life and T-point temperature for the different products.中文翻译:基于LED的白色光源的寿命在过去几年中利用发光二极管(led)显示和作为照明应用的技术一直在稳步增长。

电子信息工程外文翻译 外文文献 英文文献

电子信息工程外文翻译 外文文献 英文文献

电子信息工程电路编程中的AT89C51单片机译文标题电路编程中的AT89C51单片机AT89C51 In-Circuit Programming 原文标题作者Robert W.Sparks等译名国籍美国斯帕克等W.罗伯特Atmel Corporation原文出处摘要本应用说明的是ATMEL公司AT89C51的电路可编程闪存的微控制器。

为在电路可编程AT89C51的应用提出了与应用程序相关的例子,它的修改要求支持在线编程。

这种方法显示在该应用程序中的AT89C51单片机可通过商业电话线远程改编。

本应用笔记中描述的电路,仅支持5伏电压下编程,需要使用一个AT89C51-XX-5。

标准A T89C51的需要12伏电压。

该应用程序的软件可从ATMEL下载。

总论当不在进行程序设计的时候,在电路设计中的AT89C51设计将变得透明化。

在编程期间必须重视EA/VPP这一脚。

在不使用外部程序存储器的应用程序中,这脚可能会永久接到VCC。

应用程序使用的外部程序存储器要求这一脚为低电平才能正常运行。

RST在编程期间必须为高电平。

应该提供一种方法使得电路通入电源以后,使RST代替主要的复位电路起到复位的作用。

在编程过程中,PSEN必须保持低电平,在正常运行期间绝不能使用。

ALE/ PRO在编程过程中输出低电平,在正常运行期间绝不能使用在编程过程中AT89C5I / 端口是用于模式应用程序,地址和数据选择的,可能要该控制器从应用的电路隔离。

如何做到这一点取决于应用程序输入端在编程过程中,控制器必须与应用电路的信号来源隔离。

带有三个输出状态的缓冲区在应用程序之间插入电路和控制器,同时在编程时缓冲区输出三种状态。

一个多路复用器用于信号源之间进行选择,适用于任何一方的应用电路或编程控制器电路的信号输出端如果应用的电路可以允许端口在编程过程中的状态变化,则不需要改变电路。

如果应电路的状态,必须事先在编程过程中的保持不变,可能在控制器和应用电路中插入锁存。

电子信息工程作文英文翻译

电子信息工程作文英文翻译

电子信息工程作文英文翻译Studying electronic information engineering is like diving into a world of endless possibilities. It's all about understanding how things work, from the smallest microchip to the largest communication network. It's afield that requires both creativity and technical skills, and that's what makes it so exciting.In this field, you get to work with cutting-edge technology and be at the forefront of innovation. Whether it's developing new software, designing hardware, or improving communication systems, there's always something new and exciting to explore. It's a field that's constantly evolving, and that's what keeps it so interesting.One of the best things about electronic information engineering is the wide range of career opportunities it offers. You could work in telecommunications, computer networking, or even in the aerospace industry. There's also the option to work in research and development, where youcan be part of creating the next big technological breakthrough.But it's not just about the technical side of things. Electronic information engineering also requires strong problem-solving skills and the ability to think critically. You need to be able to analyze complex systems and come up with creative solutions to challenging problems. It's a field that's as much about thinking outside the box as itis about technical know-how.Of course, like any field, electronic information engineering also has its challenges. It can be fast-paced and demanding, and you need to be able to keep up with the latest developments in technology. But for those who are passionate about technology and innovation, it's a field that offers endless opportunities for growth and success.。

电子信息工程专业毕业论文外文翻译

电子信息工程专业毕业论文外文翻译

本科毕业设计(论文) 中英文对照翻译院(系部)电气工程与自动化专业名称电子信息工程年级班级 04级7班学生姓名指导老师Infrared Remote Control SystemAbstractRed outside data correspondence the technique be currently within the scope of world drive extensive usage of a kind of wireless conjunction technique,drive numerous hardware and software platform support. Red outside the transceiver product have cost low, small scaled turn,the baud rate be quick,point to point SSL,be free from electromagnetism thousand Raos etc.characteristics,can realization information at dissimilarity of the product fast, convenience, safely exchange and transmission,at short distance wireless deliver aspect to own very obvious of advantage。

Along with red outside the data deliver a technique more and more mature,the cost descend,red outside the transceiver necessarily will get at the short distance communication realm more extensive of application。

关于电子信息工程的英语作文

关于电子信息工程的英语作文English: Electronic Information Engineering is a branch of engineering that focuses on the study and application of electronic devices and communication systems in various fields. This field combines principles from electrical engineering and computer science to design, build, and maintain electronic systems that process, transmit, and store information. Electronic Information Engineering plays a crucial role in shaping the technologies we use in our daily lives, such as smartphones, computers, telecommunication networks, and more. Professionals in this field work on developing advanced technologies like artificial intelligence, Internet of Things, and 5G networks to improve communication, automation, and data processing efficiency. With the rapid development of technology, Electronic Information Engineering will continue to evolve and pave the way for innovative solutions to various societal challenges.中文翻译: 电子信息工程是一门工程学的分支,专注于研究和应用电子设备和通信系统在各个领域。

电子信息工程专业英语英译汉翻译

1 The transistor is what started the evolution of the modern computer industry in motion.晶体管开启了现代电脑工业的革命2 The storage cell only requires one capacitor and one transistor, whereas a flip-flop connected in an array requires 6 transistors.存储单元仅需要一个电容和晶体管,并而不像触发器整列那样需要6个晶体管3 There has been a never ending series of new op amps released each year since then, and their performance and reliability has improved to the point where present day op amps can be used for analog applications by anybody.从此以后每年都有新系列的运放发布,他们的性能和可靠性得到了提升,如今任何人都能用运放来设计模拟电路。

4 This is capable of very high speed conversion and thus can accommodate high sampling rates, but in its basic form is very power hungry.它具有高速转换能力,从而能适应高速采样速率,但它的基本形式非常耗电。

5 During the “on” period , energy is being stored within the core material of the inductor in the form of flux.在”on”阶段,能量以涌浪形式存储在电感的核芯材料里面6 The design goal of frequency synthesizers is to replace multiple oscillators in a system, and hence reduce board space and cost.频率合成器的设计目标是取代系统中多个振荡器,从而减小板卡面积和成本。

电子信息工程毕业设计外文翻译

xx大学毕业设计外文翻译系别职业技术教育学院专业电子信息工程班级电子Z091 学号 x姓名 x指导教师 x2013年5月16日MM420 inverter energy-saving measures in the water supply system-Nanjing Hangda Yihang Technology Co., Ltd.Because the frequency conversion velocity modulation does not need to construct the tradition for the aqueous system for the aqueous system top digit water tank, the water tank, avoided two times polluting and reducing the construction investment, moreover designed reasonably can achieve the good energy conservation effect.In gives in the aqueous system, the constant speed pump only then in its highly effective section movement can guarantee the system normal work also does not have the energy dissipation.In the design, (this time current capacity is generally biggest by the pipe network most unfavorable situation, must lift is also biggest) takes the choice water pump unit the main basis, but when the pipe network current capacity reduces, the energy waste is inevitable, when also possibly creates the low current capacity in pipeline overpressure question.The water pump basis system current capacity real-time change realization stepless speed regulation movement, is solves above problem well, achieves one of energy conservation goal ways.The water pump velocity modulation may through the very many way realization, in which frequency conversion velocity modulation be the present ideal one kind.The frequency conversion velocity modulation is through will give on the aqueous system pipe network the pressure transmitter to carry on the sampling to the pipe network hydraulic pressure, transforms the pressure signal into the electrical signal, and delivers to the PID regulator and the user establishment value of pressure it carries on the comparison and the operation, finally will transform for the frequency control signal delivers to the frequency changer.The frequency changer basis transmits frequency control signal adjustment water pump electrical machinery supply frequency, thus realizes adjusts the water pump the rotational speed.May divide into two kinds according to the customer in actual use request frequency conversion velocity modulation for the aqueous system: The live pressure variable gives the aqueous system for the aqueous system and the constant pressure variable.The live pressure variable establishes for the aqueous system pressure transmitter in the service pipe net terminal, the PID regulator setting value the service flood peakvalue which needs for the pipe network terminal user.The system causes the pipe network terminal hydraulic pressure maintenance through the automatic control to be constant, causes the pipeline characteristic curve and system static lifting is invariable, but the water pump water outlet pressure changes along with the volume of diversion change according to the pipeline characteristic curve, therefore theoretically realized “the system to need how many, the unit provided how many”, could not because the volume of diversion reduced has unnecessary static lifting, the energy conservation effect was satisfied.But this is only one kind of ideal situation, also in the system only has the frequency conversion pump alone to work.Because the frequency conversion equipment quite is expensive, large-scale often uses the frequency conversion pump and the constant speed pump parallel operation way water supply for the aqueous system.Presently establishes a frequency conversion pump and a power frequency pump and the combined transport behavior example by the system in.When the pipe network current capacity reduces, needs to lift reduces correspondingly, the frequency conversion pump may through the deceleration movement realization.But also must reduce correspondingly for guarantee parallel unit normal work power frequency pump lifting, this only can through increase the current capacity realization, thus creates the water volume the dropout, also possibly causes the power frequency pump to leave the highly effective section work, namely has not achieved the true energy conservation the goal.Meets has above situation, may take following measure to improve its energy conservation effect:①Gives the aqueous system regarding the small scale, may only suppose a frequency conversion pump, and causes the pump the highly effective area (its highly effective scope to move the time scope compared to power frequency pump to want as far as possible many including to appear the probability big operating point in a big way).②Uses the multi-Taiwan pump velocity modulation movement, certainly, quite is expensive as a result of the frequency conversion speeder price, should overall evaluation its economic agent decide.③When choice power frequency pump, should cause the system when the most disadvantageous spot work, the power frequency pump operating point approaches left side of as far as possible its highly effective area; If the most unfavorable situation appears the probability to be small, may enable it to deviate slightly the highlyeffective area, falls in the highly effective area left flank.Thus, when system lifting reduces, the power frequency pump still may in the highly effective area work.The constant pressure variable is located in the water pump unit water outlet for the aqueous system the pressure transmitter, is for the purpose of causing the water pump water outlet pressure maintenance to be constant, general hypothesis for most disadvantageous operating mode when the water pump water outlet needs the value of pressure.Still by a frequency conversion pump and a power frequency pump and combined transport behavior example.When the pipe network current capacity reduces, the frequency conversion pump through the deceleration movement, maintenance lifting invariable reduces the water discharge.Because the outlet pressure is invariable, the power frequency pumps out the water volume not to be able to change (i.e. movement operating mode invariably), still in highly effective area work, thus achieves the energy conservation goal.Needs to point out, the system needs when the current capacity changes small, the water pump water outlet pressure (still for the most unfavorable situation in system needs pressure) to be bigger than the pressure which the pipeline this time needs, thus still could cause static lifting to a certain extent the waste.Following two measures may improve its energy conservation effect:①Enlarges the pipe network suitably the caliber, causes the pipeline characteristic curve to hasten gently, but this can increase the pipe network the disposable investment, needs and the energy conservation effect makes the comprehensive economical comparison.②When choice power frequency pump causes each pump the operating point to fall as far as possible on the highly effective area.For aqueous system when water used trough (for example at night), in the system the water consumption is very small, even achieved the zero current capacity, is called “the micro current capacity”.In this case, if depends upon at the highly effective area great current capacity scope movement water pump maintains the system pressure, not only buckle water pump life, moreover the efficiency is low, cannot achieve the energy conservation the goal.Theoretically, the frequency conversion pump current capacity may approach in the highly effective scope in the zero, but in fact the water pump rotational speed not impossible unlimited to reduce, only depends on the frequency conversion pump to be competent the micro current capacity operating mode with difficulty toward the dealings.The actual project uses generally when the system additionally builds the small current capacity power frequency auxiliary pump,small current capacity facilities and so on frequency conversion auxiliary pump, barometric pressure pot maintain the micro current capacity the system pressure.To the different system micro current capacity question should the special details concrete analysis, and carries on the overall evaluation to the disposable investment and the long-term operating cost to be able to make the reasonable solution.In the frequency conversion velocity modulation for in the aqueous system design process, should choose the pump reasonably according to the service pipe net characteristic, achieved in satisfies the operation requirements under the premise, both saves the goal which the investment and conserves energy.MM420变频器在给水系统的几点节能措施-南京航大意航科技股份有限公司由于变频调速给水系统不需要建造传统给水系统的高位水箱、水塔,避免了二次污染并减少了土建投资,而且设计得合理能达到较好的节能效果。

专业英语(电子与信息工程类)翻译

1.As data networks advanced…also grew more complex.由于数据网络从面向终端的系统向分组交换、计算机与计算机连接的方向发展, 执行网络功能所必需的协议也变得愈来愈复杂。

2.An additional bit called a parity bit…during transmission.在每个字符的后面有时还包括一个称为奇偶校验位的附加位, 它们测试数据位在传输过程中是否被意外改变。

3.As already stated, with…downlink(FDD paired bands).如前所述, 在非对称通信量应用中, TD-SCDMA利用可用频谱的效率比其他3G标准高, 因为它在只利用一个频带(TDD单一频带)而不是两个独立的频带(FDD成对频带)进行上行与下行通信。

4.Although often simpler to implement, …digital modulation.虽然光纤系统的模拟调制易于实现, 但其效率较低, 且要求在接收端有比数字调制高得多的信噪比。

5.At present, the bandwidth…electronics ()is possible.目前传输100km的几吉赫兹的调制信号和传输300km的几百兆赫兹的调制信号都是可能的, 因此光纤系统的可用带宽并没有得到充分利用。

6.Both TD-SCDMA deployments-TSD…unpaired bands awarded.TD-SCDMA的两种部署——TSM和TDDCLR的数据速率、频谱利用率、覆盖率、移动性和可靠性等性能是一样的, 并基本上为所有取得非成对TDD频段牌照的运营商所采用。

7.Crossbar sw itching was carried…selection for all calls.纵横制交换由一个称为标志器的特定电路控制, 标志器提供整个号码的公共控制并选择所有呼叫的路由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业设计(论文)中英文对照翻译院(系部)电气工程与自动化专业名称电子信息工程年级班级 04级7班学生姓名指导老师Infrared Remote Control SystemAbstractRed outside data correspondence the technique be currently within the scope of world drive extensive usage of a kind of wireless conjunction technique,drive numerous hardware and software platform support. Red outside the transceiver product have cost low, small scaled turn, the baud rate be quick, point to point SSL, be free from electromagnetism thousand Raos etc.characteristics, can realization information at dissimilarity of the product fast, convenience, safely exchange and transmission, at short distance wireless deliver aspect to own very obvious of advantage.Along with red outside the data deliver a technique more and more mature, the cost descend, red outside the transceiver necessarily will get at the short distance communication realm more extensive of application.The purpose that design this system is transmit cu stomer’s operation information with infrared rays for transmit media, then demodulate original signal with receive circuit. It use coding chip to modulate signal and use decoding chip to demodulate signal. The coding chip is PT2262 and decoding chip is PT2272. Both chips are made in Taiwan. Main work principle is that we provide to input the information for the PT2262 with coding keyboard. The input information was coded by PT2262 and loading to high frequent load wave whose frequent is 38 kHz, then modulate infrared transmit dioxide and radiate space outside when it attian enough power. The receive circuit receive the signal and demodulate original information. The original signal was decoded by PT2272, so as to drive some circuit to accomplishcustomer’s o peration demand.Keywords:Infrare dray;Code;Decoding;LM386;Redoutside transceiver1 Introduction1.1 research the background and significanceInfrared Data Communication Technology is the world wide use of a wireless connection technology, by the many hardware and software platforms supported. Is a data through electrical pulses and infrared optical pulse switch between the wireless data transceiver technology.Infrared transceiver products with low cost, small, fast transmission rate, the point-to-point transmission security, not subject to electromagnetic interference and other characteristics that can be achieved between the different products, rapid, convenient and safe exchange and transmission, In short distance wireless transmission have a very distinct advantage.Infrared transceiver products in the portable product of a great role. At present, the world's 150 million piece of equipment used infrared technology in electronic products and industrial equipment. medical equipment and other fields widely used. For example, 95% of the notebook computers on the installation of infrared transceiver interface the majority of the cell phone is also the allocation of infrared transceiver interface. With the exchange of quantitative data, infrared data communications will enable cell phone data transmission more convenient. With infrareddata transmission technology matures, perfect, low costs, Infrared Transceiver in short distance communications will be more widely applied.This chapter first describes the infrared transceiver IC design issues to the background and significance. then briefed the infrared data communications technology features and applications, and infrared transceiver product characteristics, domestic and international situation and development trend of the last under infrared remote transceiver system in practical application to establish a task of design orientation.1.2 Infrared Remote ControlTransceiver SystemInfrared remote control system is divided into single-channel and multi-channel remote control. Only a command signal transmission channel, called single-channel remote control system; with more than two instructions signal transmission channel known as a multi-channel remote control system. Relatively simple single-channel remote control, in general, only a launcher directive Key receivers and only one circuit implementation. While in the receiving circuit to add more stable memory circuits that can be activated commands to launch a number of key, so that the receiver circuit multistable memory circuit repeatedly to change the state, to realize many of the functional control, But such a state of change is the order. If we are to achieve an arbitrary control, resort to the use of multi-channel remote control system. Multi-channel remote control can be realized by the object of arbitrary multi-function remote control. As for the choice of several routes and what control methods, according to the actual situation (such as object, operational requirements and costaccounting, etc.) to decide. General infrared remote transceiver system by infrared remote control transmitter signal coding, infrared remote control signal receivers and decoders (or decoder chip MCU) and the external circuit consisting of three parts. Signal transmitter remote control code used to generate pulses of infrared emission-driven output infrared remote control signal, receiver completion of the remote control signal amplification and detection, plastic and demodulation encoding pulse. Infrared remote control coded pulse is going to obtain a continuous serial binary code, and for most of the infrared transceiver system, This serial code as micro-controller of the remote control input signals from the internal CPU completion of the remote control instruction decoder, on the other infrared remote control transceivers, the designers of electronic products, The internal micro-controller of the remote control decoder directive is not accessible. Therefore, people are using infrared encoder / decoder chip and microcontroller developed various generic infrared remote transceiver system, In various equipment infrared signals between the transceiver.Remote transceiver system generally transmitters and receivers is composed of two parts. Launchers from the general direction keys, coded instructions circuit modulation circuit, driving circuit, firing circuit of several parts. When pressed a key, the directive coding circuit, in the corresponding instructions encoded signal, the encoder signal to the carrier modulation, Driven by the power amplifier circuit after circuit fired from the field after firing instructions coded modulation signals. General receiver by the receiving circuit, the amplifier circuit, demodulation circuits, instruction decoder circuit, driving circuit, circuitimplementation of several parts. Receiving Circuit will launch vehicles have been coded modulation signal receiving instructions from, and to enlarge evacuation demodulation circuit. Demodulation circuit will have the coding modulation signal demodulation, namely, reduction of signal coding. The instruction decoder to the encoder signal decoding, Driven by the final circuit to drive the implementation of various instructions circuit to control the operation.1.3 infrared remote control transceiver product profiles1.3.1 infrared remote control transceiver product structure and typeCurrently infrared transceiver in accordance with the mode of transmission rate and can be divided into four categories : Serial mode, the highest rate of 115.2 Kbps; medium-speed model : the highest rate of 0.567 Mbps and 1.152Mbps; High-speed mode : The maximum rate of 16 Mbps.Also according to the size chip power consumption can be divided into low-power consumption and standard two categories, low-power type normally used 3 V power supply, transmission distance closer to about 0 - 30cm, which is commonly used standard 5V power supply, transmission distance away at least 1m above.1.3.2 infrared remote control transmitters of the status quo at home and abroadInfrared communication technology in the development stage and there are several infrared communication standards, between different standards for infrared equipment can not infrared communication. To have all the infrared equipment to interoperability in 1993 by more than 20 large manufacturers initiated the establishment of an Infrared Data Association (IRDA)unified the infrared communication standards , which is currently widely used in infrared data communication protocols and standards, also known as the IRDA standard.Since 1993 IRDA since the establishment of the Infrared Data Association members have developed to more than 150. IRDA standards of the industry has been widely recognized and supported. Has been developed with the infrared communications equipment have been as many as 100 species. IR module, installed capacity has reached 150 million sets. Although there is also a short distance wireless Bluetooth technology, But in infrared communication technology low cost and broad compatibility advantages, Infrared data communication in the future will still be a very long time inherent short-range wireless data communications fields play an important role.1.3.3 Infrared Transceiver product development trendIn various infrared transceiver products, although the transmission rate, transmission distance and other characteristics, But infrared transceiver products has been towards improving the transmission rate, increase the transmission distance and lower power consumption, expanding launch reception angle of development. In particular, as the technology development and maturity, the means of transmission is moving in the direction of point-to-multipoint. Therefore infrared remote control transceiver products have broader prospects for development.2 Infrared communication of knowledge2.1 infrared ray foundation knowledge2.1.1 infrared outlinedInfrared is actually a kind of electromagnetic wave. From theanalysis of various natural component of the electromagnetic wave reflected spectrum is :-ray, x-ray, ultraviolet, visible, infrared, microwave and radio wave. From the viewpoint of form, and they did not seem to, but if the wavelength in descending order, and we will find him all the only visible light spectrum of the entire 0.38 μm - 0.76μm so long little area, and adjacent to the visible light and infrared (including the far infrared, mid-infrared and near infrared foreign) accounts for the spectrum of 0.76 μm - 1000μm of a major. Which micron wavelength range also includes UV, visible, near infrared, mid-infrared and far-infrared, microwave.From the above analysis shows that infrared is a very rich spectrum resources, it currently has in production, life, military, medical, and other aspects have been widely used, such as infrared heating, medical infrared, infrared communication, infrared camera, infrared remote control, and so on. Infrared remote control is the many applications of infrared part of the current household appliances widely used in TV remote control, VCR remote control, VCD remote control, high-fidelity audio remote control, are used infra-red remote control, It allows the control of these appliances have become very easy.2.1.2 infrared propertiesInfrared lies between visible light and microwave a wave, it is with certain clinical characteristics of the wave. In the near-infrared, visible light and its adjacent, it is visible in certain characteristics, such as straight-line transmission, reflection, refraction, scattering, diffraction, can be certain objects and can be absorbed through the lens of their focusing. In the far-infrared region, owing to its neighboring microwave, it hassome characteristics of microwave, If a strong penetrating power and can run through some opaque substances. Since in any object, natural profession, regardless of whether its own luminescence (referring to visible light), as long as the temperature is above absolute zero (-273 ° C), moment will be kept around to infrared radiation. Only higher temperature of objects strong infrared radiation, low-temperature objects infrared radiation weaker. Therefore infrared feature is the greatest common in nature, it is called thermal radiation called thermal radiation. Infrared cameras, infrared night market pyroelectric infrared detectors and some other missiles aiming at is the use of this characteristic of infrared work.Infrared and visible light compared to another characteristic of a variety of colors. As the longest wavelength of visible light is a wavelength of the shortest times (780 nm-380 nm), So is called an octave. And infrared wavelength is the longest shortest wavelength of a times, and the longest wavelength infrared is the shortest wavelength of 10 times, that is, 10 octave. Therefore, if visible light can be expressed as seven colors, infrared may performance 70 colors, showing the rich colors. Infrared smoke through the good performance, which is also one of its features.Because not visible to the infrared, it has little effect on the environment. By the wave infrared rays than the long wavelength radio waves, infrared remote control will not affect the nearby radio equipment. Another wavelength of less than 1.5μm near infrared light, transparent atmosphere in the visible light transmission characteristics much better than, because it close to the visible edge of the red light, linear transmission, reflection,refraction and absorption material and the physical characteristics very similar to visible light. Therefore, it can be used with similar visible focusing lens and other optical devices. Because infrared remote control is not as remote as the radio through the barrier to control the object's ability to control, so in the design of household appliances infra-red remote control, wireless remote control as unnecessary, each set (transmitters and receivers) have different frequency or remote coding (Otherwise, wall will control or interference with neighbors household appliances), all similar products in the infrared remote control, The same can control the frequency or coding, and no remote control signal "drop." This universal infrared remote control provides a great convenience. Infrared to visible light, is very subtle and confidentiality, therefore, the security, Alert and other security devices have been widely used. Infrared remote control is simple in structure and easy, low-cost, anti-interference capability, high reliability are a number of advantages, is a close-up remote control, especially in indoor remote control optimized manner. 2.1.3 infrared diode characteristicsInfrared is not visible, people here are not aware of. Electronic technology is used infrared light emitting diode (also known as the IR emission diode) to generate infrared. Infrared remote control transceiver is using near-infrared transmission control instructions 0.76μm wavelength of ~ 1. 5μm. Near-infrared remote control as a light source, because there infrared light emitting diodes and infrared receiving device (photodiode. Transistor and PV) and the luminescence peak wavelength of lightby the general 0.8μm ~ 0. 94μm. in the near-infrared band, both of the spectrum is the coincidence to a good match, access to higher transmission efficiency and higher reliability. Commonly used infrared diode, and its shape is similar LED light emitting diodes, Its basic circuit shown in figure 2 -2. The triode plans for the switch, when the base added a driving signal, Transistor saturated conduction infrared LED D is also Wizard Link, issued infrared (near infrared about 0.93 μm). D. The pressure drop of about 1.4 V and the current general for 10-20mA. To adapt to the working voltage of the D loop resistance often as a series of infrared diode current limit resistance.When the circuit diagram of the infrared emission control corresponding to the controlled device, the control of the distance and D is proportional to the transmitting power. In order to increase the distance of infrared control, infrared diode D should work on the pulse state that work is the lifeblood of current. Because pulse light (optical modulation) the effective transmission distance and pulse is proportional to the peak current, only maximize peak current Ip, will increase the infrared distance. Ip increase is a way to reduce the pulse duty cycle, that is compressed pulse width τ some TV infrared remote control, its infrared luminescence of the pulse duty cycle of about 1/4-1/3; Some electrical products infrared remote control, its duty cycle of 1 / 10. Decreasing pulse duty cycle also enable low-power infrared LED distance of the greatly increased. Common infrared light emitting diodes, power is divided into small power (1 mW - 10mW). Chinese power (20mW - 50mW) and power (50mW - 100mW more) three categories. Use different power infrared LED, the allocation shouldbe driven by the corresponding power control. Figure 2 -2 by the reflected infrared light-emitting diodes to make produce optical modulation, Drivers only need to add the control of a certain frequency pulse voltage.Infrared transmitter and receiver in the way the two kinds of straight, and the second is reflective. Luminescence pointed straight pipe and tube receiver placed in a relatively controlled and fired on the two ends, a certain distance away from the middle; Reflective means luminescent tube and pipe parallel with the receiving peacetime, without always receiving tube light, luminescence only in possession of the infrared light reflected from encountered, the receiving tube received from the reflected infrared before work.2.2 infrared communication basic tenets2.2.1 infrared communication PrincipleCommunication is the use of infrared wavelength of 900 nm-infrared waves from 1000 to serve as an information carrier, through infrared technology between the two close communication and confidentiality of information transmitted. Infrared communication system structure include : part launcher, channel, the receiver part.Launcher source letter issued after the binary signal from the high-frequency modulated infrared LED sent, receiving device regard the reception of high-frequency signals from the infrared receiver tube after receiving further demodulation photoelectric conversion of the original information of a mass communication lose way. Afterwards the former Information received after receivingpart of the drive circuit connected to the expected completion of the various functions. To which the modulation coding style pulse width modulation (by changing the pulse width modulated signal PWM) and pulse modulation time (through change the pulse train interval time between the modulation signal PPM) two.2.2.2 infrared communication system elements(1) Launches : Currently there is a infrared wireless digital communications system sources of information including voice, data, images. Its methods of work for the launch of the receiver can be divided into different layout LOS way (Light-of-Sight , intracardiac way), diffuse (diffuse) mode. LOS way directional, it has good channel characteristics such advantages, but the existence of a "shadow" effect. difficult to achieve roaming function. Roaming means the main features of non-directional, and easy to implement roaming function, but its channel quality is better sometimes LOS way. Transmission of signals required for a few of (the sampling was quantified), the general need for baseband modulation, transmission, modulation, sometimes signal source coding, the above-driven signals from photoelectric converter complete optical signal transmission. Infrared wireless digital communications system and its scope of work-for-fired power distribution, the quality of the communication. While using various methods to improve optical transmitter power, the other using spatial diversity, holographic films and so on so diffuse light for the launch of space optical power evenly distributed.(2) Channel : infrared wireless digital communication channel refers to the transmitters and receivers in the space between. Due to natural light and artificial light sources such as light signalsin the context of intervention, and the source - Electrical Equipment, The optical noise and disturbances, infrared wireless digital communications in some occasions, poor quality, At this point needed to channel coding. Infrared wireless communication system, the optical signal reflection, light scattering and background noise and interference effects, Infrared wireless digital channel presence multi-path interference and noise, This is to improve the quality and access for high-speed applications should be addressed. Infrared wireless digital communication channel often used by the major optical components, optical filter, condenser, their role is : plastic, filter, depending on the field transformation, the band division, the lens can be used as launch-ray focusing, the use of optical filters filter out stray light, the use of optical lenses to expand the field of view receiver, able to make use of optical components for the link frequency division multiplexing, etc.. Infrared wireless communication channel optical noise : the natural noise (sunlight) and anthropogenic interference (fluorescent lighting). can be modulated by the transmission technology such as filters and adding to be addressed.(3) receivers : Channel optical signal from the optical receiver partially photoelectric conversion, In order to remove noise and intersymbol interference and other functions. Infrared wireless digital communications system receiver include optical receiver parts and follow-up sampling, filtering, judgment, quantity, balanced and decoding part. Infrared wireless optical receiver often used amplifier, and called for large-bandwidth, high gain, low noise and low noise, frequency response and channelimpulse response matched. To be suppressed by low-frequency noise and human disturbance needs a band-pass filter. To obtain large optical receiver scope and instantaneous field of view, often using spherical optical lens.2.2.3 infrared communications featureWireless communications are a lot of ways, some using infrared communication with the following characteristics :• The high frequency, wave length, and fired the energy concentrated space propagation attenuation coefficient can ensure the effective signal transmission;• infrared is the invisible light, strong confidentiality and use it as an information carrier. device when there is no visual pollution, it does no harm to the human body;• dissemination without limitation, and there is no question of frequency interference with radio-wave pattern, not on the spectrum resources to the relevant authorities for the application and registration, easy to implement;• has a good point, when the transmission equipment and infrared receiver ports line up straight, deviation of not more than about 15 degrees when infrared devices running the best effect;• through infrared or not bypassed and objects, data transmission, optical path can not be blocked;• currently produce and receive infrared signals in the technology is relatively mature, components small size, low cost production of simple, easy to produce and modulation advantages.2.3 infrared communication code based on the knowledgeUsually, infrared remote control transmitters will signal (pulse binary code) modulation at 38 KHz carrier, After buffer amplified sent to the infrared light-emitting diodes, infrared signals into firing away. Pulse binary code in a variety of formats. One of the most commonly used code is PWM (pulse width modulation code) and the PPM code (Pulse Code Modulation). The former said in a pulse width, pulse indicated 0. The latter pulse width, but the width of code-not the same, the codes represent a bit - and the digits represent narrow 0.Remote coding pulse signal (PPM code as an example) are usually guided by the code, the system code, the anti-code system, a feature code, functional anti-code signal components. Guide the code name for the initial code, by the width of 9 ms and the margin width of 4.5 ms to the low-level components (different remote control systems in the low-level high width of a certain distinction), remote coding used to mark the beginning of pulsed signals. System identification code is also called code, which used to indicate the type of remote control system, in order to distinguish other remote-control system, prevent the remote control system malfunction. Functional code is also called scripts, which represents the corresponding control functions, Receiver of the micro-controller functions under the numerical code to complete the various functions operating. Anti-code system and function codes are anti-system code and the functional code against code Anti-code can be joined to the receiver synchronization transmission process leads to errors. In order to improve performance and reduce interference power consumption, The remote control will be coded pulse frequency of 38 KHz (for the cycle of 26.3 ms) of the carrier signal pulse reshuffle system (PAM), and then sent to the bufferamplified infrared LED, the remote control signal transmitter away.Address code and data codes are composed of different pulse width expressed that the two narrow pulse "0"; 2 pulse width "1";a narrow pulse width and pulse expressed an "F" is the code addresses "vacant."Is the first part of a group a group of code, each code synchronization between separated. The plan is to enlarge the second half of a group code : a code from 12 AD (the address code plus data code For example, eight address code plus four data code), each with two AD-Pulse's : Pulse said the two "0"; 2 pulse width "1"; a narrow pulse width and pulse expressed an "F" is the code addresses "vacant."Realize fired at each fired at least four groups code, PT2272 only twice in a row to detect the same address code plus data code data will be the code "1" is driven The data should be output to drive margin and VT terminal for synchronous serial.红外遥控系统摘要红外数据通信技术是目前在世界范围内被广泛使用的一种无线连接技术,被众多的硬件和软件平台所支持。

相关文档
最新文档