从算式到方程学案
七年级数学《从算式到方程》教案设计

七年级数学《从算式到方程》教案设计方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础。
接下来是小编为大家整理的七年级数学《从算式到方程》教案设计,希望大家喜欢!七年级数学《从算式到方程》教案设计一一、教材分析1.教学目标、重点、难点.教学目标:(1)了解方程的解的概念.(2)体验对方程解的估算,会检验一个数是不是某个一元方程的解.(3)渗透对应思想.重点:方程解的意义,会检验一个数是不是一个一元方程的解.难点:方程解的意义,会检验一个数是不是一个一元方程的解.2.例、习题的意图本节课重点是了解方程的解的意义. 通过实际问题中对所列方程解的估算,了解什么是方程的解以及由于估算遇到了困难,产生寻求方程解法的需求,为后面的学习做好铺垫.例1是通过实际问题列出方程,根据(1)题未知数的取值范围以及方程解的概念逐一代入方程来寻求方程的解,使学生亲身体验什么是方程的解,也为例2检验一个数值是不是方程的解做好铺垫. 对第(2)、(3)题再采用(1)题方法寻求方程的解已不容易,这又为后边学习解方程奠定了积极的心理储备.例2是根据方程的解的意义,使学生会检验一个数值是不是方程的解,这一点应切实使学生掌握.3.认知难点与突破方法难点是方程解的意义和检验一个数是不是一个一元方程的解. 例1起着承上启下的作用,在估算方程解的过程中,理解方程解的意义,学会检验一个数是不是一个一元方程的解.抓住关键字“等号左右两边相等”,检验一个数是不是一个一元方程的解,要分别计算方程的左右两边,若其值相等,则这个未知数是方程的解,若不相等,则不是方程的解.二、新课引入复习:1.什么是一元一次方程?2.练习:当,,时,求式子的值.答案:,, .通过练习2强调求式子的值的一般步骤,其中易错易混的地方,如代入的值是负数,应加上括号,数与数相乘时应恢复乘号,运算关系不能混淆等.三、例题讲解例1 教材P69 中例1分析:三个题目中的相等关系分别是:(1)计算机已使用的时间+继续使用的时间=规定的检修时间.(2)2(长+宽)=周长.(3)女生人数—男生人数= .问题:列方程是解决问题的重要方法,利用所列的方程我们可以得出未知数的值,你能估算方程中的的值吗?分析:方程中等号左边有未知数,估算的值代入方程应使等号左边的值等于等号右边的值2450,这样的值才适合方程. 由于表示月份,是正整数,不妨让,,……分别代入方程算一算.由计算结果可以看到,每一个的允许值都使代数式有一个确定的数值,为方便起见,可以列一个表格:1 2 3 4 5 6 7 … 1850 2000 2150 2300 2450 2600 2750 … 从表中发现:当时,的值是,也就是,当时,方程中等号的左边: . 等号的右边:2450. 由此得到方程的左边=右边,就说叫做方程的解,也就是方程中,未知数的值为5. 所以,方程的解就是 .教材P71中的小云朵,可以多选几个情况来说明,以加强对方程解得意义的理解.从表中你还能发现哪个方程的解?(引导学生得出)如方程的解是;方程的解是等等,使学生进一步体会方程解的概念.方程解的意义:使方程中等号左右两边相等的未知数的值,叫做方程的解.教材P71的思考:你能估算方程和方程的解吗?通过估算这两个方程的解,你有什么想法?由于这两个方程估算其解有一定的困难,数不整齐,或方程比较复杂,出现矛盾冲突,引导学生得出:学习解方程的方法十分必要.怎样检验一个数是否是方程的解呢?七年级数学《从算式到方程》教案设计二目标1.使学生初步掌握一元一次方程应用题的设未知数和列方程;2.培养学生观察能力,提高他们分析问题和解决问题的能力;3.使学生初步养成正确思考问题的良好习惯. 教重难点重点:从学生原有的认知结构提出问题在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?难点:师生共同分析、研究利用等式的性质解一元一次方程和根据实际问题设未知数和列方程。
从算式到方程—教学设计及点评

从算式到方程—教学设计及点评一、教学设计1.教学目标:(1)知识目标:了解算式和方程的概念,认识算式和方程之间的关系。
(2)能力目标:能够通过给定的算式写出相应的方程,并能够根据方程解决问题。
(3)情感目标:培养学生的数学思维能力和问题解决能力,增强他们对数学的兴趣和信心。
2.教学重点:(1)理解算式和方程的定义。
(2)掌握从算式到方程的转换方法。
(3)理解方程的意义和用途。
3.教学难点:(1)理解方程的意义和用途。
(2)掌握根据给定的算式写出方程的方法。
4.教学过程:步骤一:导入新课(1)引入问题:有一些运算式,例如:"5+2=7",你能发现其中的规律吗?(2)学生回答并解释规律:等号左边的算式和等号右边的值相等。
(3)教师引导学生总结:这种形式的式子叫做算式,其中有一个等号,左右两边相等。
步骤二:引入方程的概念(1)引导学生思考问题:如果我们把算式中的一些数用一个字母表示,如"5+x=7",这种式子叫什么?(2)学生回答并解释:这种式子叫做方程,字母代表的是一个未知数。
(3)教师解释:方程和算式的结构非常相似,只不过其中有一个未知数,我们可以通过解方程来求出未知数的值。
步骤三:从算式到方程(1)教师出示一些算式,并要求学生根据算式写出相应的方程。
(2)学生通过思考和分析,用未知数表示算式中的一些数,并写出方程。
(3)学生互相交流并对答案进行讨论。
步骤四:解决问题(1)教师给出一些实际问题,并要求学生用方程去解决问题。
(2)学生根据问题提供的信息写出方程,然后解方程求出未知数的值。
(3)学生互相交流并对答案进行讨论。
步骤五:巩固练习(1)教师出示一些练习题,让学生自己用方程来解决。
(2)学生独立完成练习,并互相交换答案进行对比。
(3)教师进行讲评,梳理学生解题思路和方法。
步骤六:总结和拓展(1)教师引导学生总结今天学习的内容:什么是方程?怎样从算式到方程?(2)教师拓展讲解方程的更复杂形式,如多项式方程、二元一次方程等。
人教版七年级数学上册一元一次方程《从算式到方程(第1课时)》示范教学设计

从算式到方程(第1课时)教学目标1.感受运用代数法解决问题的必要性,体会“方程”是解决实际问题的有效工具.2.理解方程的定义,会设未知数,列方程.3.感受用方程解决实际问题的优越性,体会从算式到方程是数学的进步.教学重点会设未知数,列方程.教学难点分析实际问题中的相等关系,并利用相等关系正确列出方程.教学过程新课导入【思考】小明向小蓝询问年龄,小蓝说:“我的年龄乘2减5得21”.小明立刻说出了小蓝的年龄,你会吗?【师生活动】学生回答:年龄=(21+5)÷2=13.教师提问:问题中蕴含的数量关系是什么?学生回答:年龄×2-5=21.【设计意图】从学生熟知的问题入手,引出用算式解决问题的本质是找出问题中的数量关系,为进一步根据具体问题列方程做好铺垫.新知探究一、探究学习【问题】一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?你会用算术方法解决这个问题吗?列算式试试.【师生活动】教师提问1:如何表示客车和卡车“同时同向行驶”?教师提问2:如何表示“客车比卡车早1 h经过B地”?教师提问3:如何用算术方法求“A,B两地间的路程”?学生思考并回答:行驶1 km 的路程,客车所用时间是170h ;行驶1 km 的路程,卡车所用时间是160h ; 行驶1 km 的路程,客车比卡车少用170160⎛⎫- ⎪⎝⎭h ;行驶1170160⎛⎫÷- ⎪⎝⎭km 的路程,客车比卡车少用1 h .教师总结:可见,列算式比较困难,不容易想.教师追问4:如果设A ,B 两地相距x km ,你能分别列式表示客车和卡车从A 地到B 地的行驶时间吗?教师分析,学生回答. (1)列表:(2)在上面的表格中,有一些未知的量,根据设A ,B 两地相距x km ,分别列式表示客车和卡车从A 地到B 地的行驶时间,完成表格.教师提问5:如何用式子表示两车的行驶时间之间的关系? 学生分作讨论并回答,教师总结:寻找相等关系,列方程. 卡车行驶时间-客车行驶时间=1,列方程:16070x x -=. 教师总结:我们已经知道,方程是含有未知数的等式,上面的等式中的x 是未知数,这个等式是一个方程.【新知】方程必须满足两个条件: (1)是等式;(2)化简后含有未知数.注意:方程是等式,但等式不一定是方程,如3+1=4是等式,但不含未知数,所以不是方程.教师提问6:用算术方法和用列方程法解决这个问题,各有什么特点?学生回答:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只包含已知数.用列方程法解题时,方程中既含有已知数,又含有用字母表示的未知数.教师提问7:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?学生回答:设卡车从A地到B地的行驶时间为t h,则客车从A地到B地的行驶时间为(t-1) h,依据路程相等可得:70(t-1)=60t.求出t之后,60t就是路程.【归纳】列方程的一般步骤如下:(1)设未知数,一般求什么就设什么为x.(2)分析题意,找相等关系.(3)根据相等关系列方程.【设计意图】教师引导学生采用不同设未知数的方法列方程,让学生体会解题策略的多样性.二、典例精讲【例1】根据下列问题,设未知数并列出方程:(1)用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1 700 h,预计每个月再使用150 h,经过多少个月这台计算机的使用时间达到规定的检修时间2 450 h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?【答案】解:(1)设正方形的边长为x cm.列方程为4x=24.(2)设x个月后这台计算机的使用时间达到2 450 h,那么在x个月里这台计算机使用了150x h.列方程为1 700+150x=2 450.(3)设这个学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x.列方程为0.52x-(1-0.52)x=80.【设计意图】将简单的列方程题目大胆地放给学生自主、合作学习,学生通过展示自己的学习成果,进一步激发学习兴趣.通过例题1的练习与讲解,让学生学会如何列方程解决实际问题.课堂小结板书设计一、方程的定义二、列方程的一般步骤课后任务完成教材第80页练习1~4题.。
5.1.1从算式到方程教学设计2024-2025学年人教版(2024版)初中数学七年级上册

4. 小明的年龄比小红大3岁,两人年龄之和为35岁。请问小明和小红各几岁?
5. 甲、乙两地相距120公里,一辆汽车从甲地出发,以每小时60公里的速度行驶,同时一辆自行车从乙地出发,以每小时20公里的速度相向而行。问多少时间后两车相遇?
解答题:
6. 解方程4x - 9 = 3x + 5。
7. 小华买了3本书和2支笔花了54元,如果一支笔5元,求一本书的价格。
- 教学视频:收集一些专业的数学教学视频,如“方程的起源”、“一元一次方程的解法”等,帮助学生更直观地理解方程。
- 数学游戏:设计或推荐一些包含方程元素的数学游戏,如“方程求解大挑战”、“数学侦探”等,提高学生的学习兴趣。
- 网络资源:选取一些教育网站上的高质量教学资源,如方程相关课件、习题库等,丰富学生的学习材料。
1. 课前自主探索
- 教师活动:
发布预习任务:通过学校教学管理系统,发布预习资料(PPT、视频、文档),明确预习目标和要求。
设计预习问题:围绕“从算式到方程”课题,设计问题,如“算式和方程有什么区别?”、“方程是如何表示未知数的?”等,引导学生自主思考。
监控预习进度:通过系统跟踪和学生的反馈,确保预习效果。
针对以上问题,我制定了以下改进措施:
1. 在课前自主探索环节,我将明确预习任务的要求,并提供具体的指导,以提高学生的预习效果。
2. 在课中强化技能环节,我将设计更有趣的小组讨论题目,并加强对小组讨论的引导和监督,以提高学生的参与度。
3. 在课后拓展应用环节,我将更加重视拓展资源的提供,并鼓励学生充分利用这些资源进行深入学习。
2. 拓展建议:
- 鼓励学生阅读数学故事书和期刊文章,了解方程的背景知识,增强数学学习的兴趣和动力。
3.1从算式到方程教学设计教案

3.1从算式到方程教学设计教案第一篇:3.1 从算式到方程教学设计教案教学准备1.教学目标知识与技能:①体验从算术方法到代数方法是一种进步;②初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;③理解一元一次方程、方程的解等概念;④掌握检验某个值是不是方程的解的方法。
过程与方法:①通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。
②培养学生根据问题寻找等量关系,根据相等关系列出方程。
情感态度与价值观:①培养学生热爱数学,热爱生活的乐观人生态度。
②体验用估算方法寻求方程的解的过程,培养学生求实的态度。
2.教学重点/难点教学重点①了解一元一次方程及相关概念。
②寻找相等关系,列出方程。
教学难点①寻找问题中的相等关系,列出方程。
②对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力。
3.教学用具4.标签教学过程问题引入及方程概念问题一:汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米.王家庄到翠湖的路程有多远?怎样用算术方法解决这个问题?怎样用方程的方法解决这个问题?【教师说明】总结学生的回答,得出算术方法为:,如果用方程解答,设王家庄到翠湖的路程为x千米,用含有x的式子表示下列路程,王家庄距青山 x-50 千米,王家庄距秀水 x+70 千米.根据时间表得知,从王家庄到青山行车 3 小时,王家庄到秀水行车 5 小时.而整个行驶过程中车是匀速的,所以可列方程为:。
说明什么是方程。
=【板书】3.1.1一元一次方程含有未知数的等式叫做方程。
【问题】从题目中可以得到什么等量关系?根据等量关系列出怎样的方程?【教师说明】=等式中,的意义是从王家庄到青山的车速;的意义是从王家庄到秀水的车速。
汽车是匀速前进的,所以两段路程的速度相等,从而得到方程。
2如何用方程解决问题1.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?2.想一想列方程的过程?【教师说明】首先要设字母表示数------->然后找出问题中的等量关系------>最后写出含有未知数的等式(方程)3 一元一次方程练习1 根据下列问题,设未知数并列方程:(1)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机使用时间达到规定的检修时间2450小时?(2)用一根长600px的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长、宽各应是多少?(3)某校女学生占全体学生数的52%,比男生多80人,这个学校有多少学生?【教师说明】观察上述所得方程(1)1700+150x=2450(2)2(x+1.5x)=24(3)0.52x-(1-0.52)x=80 像这样只含有一个未知数(元)x,未知数x的次数是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
从算式到方程教学设计教案

从算式到方程教学设计教案
一、教学目标
1、基本掌握从算式到方程的概念,能够把算式转化为方程,能解决
一元一次方程组;
2、能够灵活运用适当的算法解决算式转化为方程的问题,熟练掌握
解一元一次方程的方法。
二、教学重点
1、掌握从算式到方程的概念;
2、掌握从算式转化为方程的算法;
3、掌握解一元一次方程的方法。
三、教学过程
1.交流提问:本节课将学习从算式到方程的概念,在开始本节课前,
大家交流一下以前对方程的了解情况。
让学生说出他们之前对方程的认知,让孩子们了解方程的概念,让他们更加熟悉方程的概念。
2.精讲从算式到方程的概念:老师结合部分例题,举一反三,讲解从
算式到方程的概念。
让学生熟悉从算式到方程的概念,通过演示好例子,
让学生更好地理解从算式到方程的概念,以促使他们更好地记住和使用概念。
3.练习练习:结合老师讲课的知识点,让学生认真完成练习题,让学
生运用所学知识,便于他们更好地理解从算式到方程的概念,以及从算式
转化为方程的方法,有效帮助学生学习从算式到方程。
4.要点梳理:把学生练习完后,老师需要复习答案,结合学生的实际情况,把重要的考点和重点再次仔细梳理。
初中七年级上册数学《从算式到方程》教案

初中七年级上册数学《从算式到方程》教案五篇初中七年级上册数学《从算式到方程》教案一1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;2、了解什么是方程,什么是一元一次方程及什么是方程的解。
1、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法2、结合从实际问题中得出的方程,学会用“去分母”解一元一次方程,进一步体会化归的思想。
体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。
建立一元一次方程的概念。
问题与情境师生活动设计意图一、创设情境,展示问题:问题1:世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2:章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名时间王家庄10:00 青山13:00 秀水15:00 教师展示问题,要求用算术解法,让学生充分发表意见。
算术方法:(124+1)25=5(吨)方程方法:可设大象重为`吨,则124=25`-1 学生独立思考,小组交流,代表发言,解释说明。
问题1的算术解法:(50+70)2=60(千米/时) 605-70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。
示意图有助于分析问题。
二、寻找关系,列出方程1、对于问题1,如果设王家庄到翠湖的路程是`千米,则:路程时间速度王家庄-青山王家庄-秀水根据汽车匀速前进,可知各路段汽车速度相等,列方程。
2、比一比:列算式与列方程有什么不同?哪一个更简便?3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。
学生思考回答:1、王家庄-青山(`50)千米,王家庄-秀水(`+70)千米。
人教版七年级数学上第3章:3.1.1从算式到方程(教案)

-系数化为1时,学生可能会对分数的运算处理不当,导致解题失误。
举例:难点在于让学生理解为何在解方程时可以同时加减或乘除等式两边,可以通过具体示例,如3x + 5 = 14,演示如何将等式性质应用于方程求解。对于将实际问题抽象为方程的难点,可以设计一些贴近生活的题目,如“小华买了3本书和5支笔,一共花了14元,求每本书的价格”,帮助学生找到等量关系并建立方程。
3.发展学生的数据分析素养,通过分析方程的解,对数据进行比较和判断,提高数据分析和处理能力。
4.激发学生的数学抽象思维,掌握用字母表示数的代数表达方法,培养从具体到抽象的数学思维能力。
5.增强学生的数学应用意识,将所学方程知识应用于解决实际问题,体会数学与现实生活的联系,提高数学应用能力。核心素养目标与新教材要求相符,注重培养学生的综合能力和实际应用能力。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天我们在课堂上一起探讨了《从算式到方程》这一章节的内容。回顾整个教学过程,我觉得有几个地方值得反思和总结。
人教版七年级数学上第3章:3.1.1从算式到方程(教案)
一、教学内容
人教版七年级数学上第3章:3.1.1从算式到方程。本节课主要内容包括:
1.理解等式和方程的概念,掌握等式的性质和方程的解法。
2.学习用字母表示数,掌握代数式的书写和简化。
3.掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等基本步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从算式到方程
《一元一次方程》教学学案
知识目标:1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;
2、了解什么是方程,什么是一元一次方程。
情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。
数学思考:1、会将实际问题抽象为数学问题,通过列方程解决问题;
2、认识列方程解决问题的思想以及用字母表示未知数,用方程表
示相等关系的符号化的方法。
解决问题:能结合具体例子认识一元一次方程的含义,体会设未知数列方程的过程,会用方程表示简单实际问题的相等关系。
教学重点:建立一元一次方程的概念
教学难点:根据具体问题中的等量关系,列出一元一次方程,感受方程作为刻画现实世界有效模型的意义。
课前复习:1. 用代数式表示
(1)比a的倒数与b的倒数的和大1的数
(2)被3整除得n的数
(3)被5除商a余3的数
(4)比x与y的积的倒数的4倍小3的数
(5)a,b两数的平方和除以a,b两数的和的平方
课前预习:一、内容:预习课本79页至80页例1完
二、方程的定义
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题.
某数的3倍减2等于某数与4的和,求某数.
解法1:用算术方法解,
解法2:用代数方法来解,
设某数为x,则有3x-2=x+4,,所以x=
比较:纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出等式并通过解这个等式求得应用题的解的方法,有一种化难为易之感,我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系用含有字母(或未知数)的等式表示出来。
概括:象3x-2=x+4,这种叫方程。
理解:方程必须是,方程必须含有。
三、根据实际问题列方程的方法
例2:5位教师和一群学生一起去公园,教师按全票的票价是每人7元,学生只收半价.如果买门票共花费206.50元,那么学生有多少人?
分析:1、已知条件告诉了我们,(1)位教师,(2)教师的票价,(3)学生的票价,(4)总共花钱元。
2、求,设为未知数,设为,
3、学生的门票花钱,教师的门票花钱,总共花钱,这三者的关系是
4、等式(方程)为
解:
练习:根据下列问题,设未知数并列出方程,且说出方程的两边的涵义是什么。
1、某数的三分之一与这个数的一半的和是35,求这个数。
2、王涛买了6千克香蕉和3千克苹果,共花了19元,已知苹果1.8元/kg,
则香蕉多少元/kg?
3、一种小麦磨成面粉后质量减少了20%,为了得到4500kg面粉,至少需要多
少千克这种小麦?
总结:根据实际问题列方程的方法:
四、方程的分类
练习:(1)(2)(3)(4)
(5
)(6
)(7
);(8
)
;(9);(10)填序号
这些方程一样吗?有什么差别?
方程有未知数,未知数的次数分别是
方程有未知数,未知数的次数分别是
方程有未知数,未知数的次数分别是
方程=0有未知数,未知数的次数分别是
所以:方程的分类是以未知数的个数和未知数的最高次共同来定义的。
例如,
是一元二次方程,是二元二次方程,是元次方程。
总结,叫做一元一次方程
练习:判断下列方程哪些是一元一次方程?
(1)3
4
x=
1
2
(2)3x-2 (3)
1
3
x-
1
5
=
2x
3
-l
(4) 5x2-3x+1=0 (5)2x+y=l-3y (6)
1
x-1
=5
五、求方程的解
例:求出满足下列等式的x的值(1)(2)
= 0
解:(1)0.5x= ,所以,x= ,(2)要使2x+1=0,x= 象这种,求出使叫解方程。
满足方程的未知数的值叫做
练习:1、检验下列各括号内的数哪个是它前面方程的解。
(1)x-3(x+2)=6+x (x=3,x=-4)
(2)2y(y-1)=3 (y=-1,y=3
2 )
(3)5(x-1)(x-2)=0 (x=0,x=1,x=2) 2、解下列方程
(1)-5x=2 (2) 3
2
x=
1
3
巩固练习:一、选择题
1.下列语句:
①含有未知数的代数式叫方程;
②方程中的未知数只有用方程的解去代替它时,该方程所表示的等式才成立;
③等式两边都除以同一个数,所得结果仍是等式; ④x=-1是方程
1
2
x+
-1=x+1的解. 其中错误的语句的个数为().
A.4个 B.3个 C.2个 D.1个
2.已知下列方程:① x-2=
x
2
;② 0.3x =1;③
2
x
= 5x -1;④x2-4x=3;
⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()
A.2 B.3 C.4 D.5
3.等式m=3不是方程()的解
A.2m=6 B.m-3 =0 C.m(m-3)=4 D.m+3=0
4.p=3是方程()的解()
A.3p=6 B.p-3=0 C.p(p-2)=4 D.p+3=0
5.某校师生共328人,准备乘车参加奥运会,已有一辆校车可乘64人,如果
租用客车,每辆可乘44人,那么还要租用多少辆客车?如果设还要租x 辆客车,可列方程为()
A.44x-328=64 B.44x+64=328 C.328+44x=64 D.328+64=44x 二、填空题
6.下列说法:①等式是方程;②x=-4是方程5x+20=0的解;③x=-4和x=4都是方程12-x=16的解.其中说法不正确的是_______.(填序号)
7.若x=0是关于x的方程2x-3n=1的根,则n=_______.
8.已知方程(a-2)x=1是一元一次方程,则a满足.
9.某班学生为四川抗震救灾捐款1310元,以平均每人20元,还多350元,设
这个班的学生有x人,根据题意列方程为________.
三、解答题
10.在下列各式中,哪些是等式?哪些是方程?哪些是代数式?
①1+2=3 ②S=πR2③a+b=b+1 ④2x-3 ⑤3x-2y=4 ⑥a-b ⑦x2+2x+1 ⑧
m
a。
等式:方程:
代数式:
11.根据下列条件列出方程:
(1)x的5倍比x的相反数大10; (2)某数的
3
4
比它的倒数小4.。