用大数据技术挖掘视频监控数据的价值

合集下载

视频监控系统的集成

视频监控系统的集成

视频监控系统的集成第一点:视频监控系统集成的意义与现状在现代社会,安全问题已经成为人们关注的焦点之一。

随着科技的不断发展,视频监控系统已经成为了保障公共安全、预防和打击犯罪的重要手段。

视频监控系统的集成,不仅仅是对各个监控设备的管理和控制,更是在技术、管理和应用等多个层面上的深度融合。

视频监控系统集成的意义在于,它能够将分散的监控设备通过网络连接起来,形成一个统一的、高效的监控体系。

这不仅可以提高监控的覆盖面和监控效率,还可以通过智能分析等技术,实现对监控数据的深度挖掘和利用,从而提高监控系统的智能化水平。

在当前的视频监控系统集成中,主要的技术手段包括网络视频传输技术、视频存储技术、视频智能分析技术等。

同时,随着物联网、大数据等技术的发展,视频监控系统集成也在向着更智能、更高效的方向发展。

第二点:视频监控系统集成的关键技术与应用视频监控系统集成的关键技术主要包括网络视频传输技术、视频存储技术、视频智能分析技术等。

网络视频传输技术是视频监控系统集成的核心技术之一。

它通过网络将监控摄像头的视频数据传输到监控中心,为监控中心提供实时的视频数据。

目前,主要的网络视频传输技术包括模拟传输和数字传输两种。

模拟传输技术成熟,但传输距离有限,且图像质量受传输线路的影响较大。

数字传输技术则可以解决这个问题,同时还可以实现更高的图像质量和更远的传输距离。

视频存储技术是视频监控系统集成中的另一个关键技术。

由于监控摄像头产生的视频数据量极大,因此如何高效地存储这些数据,是一个很大的挑战。

目前,主要的视频存储技术包括硬盘存储和网络存储两种。

硬盘存储技术成熟,但扩展性较差;网络存储技术则可以解决这个问题,同时还可以实现数据的远程访问和共享。

视频智能分析技术是视频监控系统集成中的一个重要技术。

通过对监控视频的智能分析,可以实现对监控数据的深度挖掘和利用,从而提高监控系统的智能化水平。

目前,主要的视频智能分析技术包括人脸识别、车牌识别、行为分析等。

大数据技术在安防行业中的应用

大数据技术在安防行业中的应用

大数据技术在安防行业中的应用随着科技的不断发展,大数据技术在各个行业中都起到了至关重要的作用。

尤其是在安防行业中,大数据技术的应用给整个行业带来了巨大的变革。

本文将探讨大数据技术在安防行业中的应用,从数据采集、分析和决策支持三个方面进行论述。

1. 数据采集在传统的安防行业中,通常采用人工监控、视频监控等手段进行安全监控。

然而,这种方式往往效果有限,很难实时获取准确的信息。

而大数据技术的应用能够实现对海量数据的实时采集和处理,从而提高了安防监控的效果。

首先,大数据技术可以通过传感器、摄像头等设备实时采集各类数据。

这些数据包括人员出入记录、视频监控、温度湿度等环境信息等。

通过这些数据的采集,可以对安防系统进行实时监测和分析,及时发现异常情况。

其次,大数据技术可以将采集到的多源数据进行整合和关联分析。

传统的安防系统往往只能对某一种数据进行处理,无法综合考虑多种因素。

而大数据技术能够将多源数据进行集成,通过关联分析,发现潜在的安全隐患,提前采取措施进行预警。

2. 数据分析大数据技术的另一个重要应用领域是数据分析。

通过对采集到的大量数据进行分析,可以提供更准确的情报,为安防决策提供科学依据。

首先,大数据技术可以通过数据挖掘和机器学习算法,对海量数据进行挖掘和分析。

通过对历史数据的分析,可以建立模型,预测未来可能发生的安全事件。

同时,通过对数据的关联和分析,可以发现隐藏在大数据中的潜在关联规律,为安防决策提供更精准的依据。

其次,大数据技术可以通过实时数据分析,提供更高效的安全监控和预警。

通过对实时数据的实时分析,可以迅速发现潜在的安全风险,并通过预警系统通知相关人员进行处理。

这种实时的数据分析方式大大提高了安防系统的反应速度和准确性。

3. 决策支持大数据技术在安防行业中的另一个重要应用是决策支持。

通过对数据的分析和挖掘,可以为安防决策提供科学依据,提高决策的准确性和有效性。

首先,大数据技术可以通过数据可视化的方式呈现数据分析结果。

DCS与大数据分析挖掘潜在价值与优化决策

DCS与大数据分析挖掘潜在价值与优化决策

DCS与大数据分析挖掘潜在价值与优化决策随着信息技术的迅速发展,数据采集和处理能力的提升,数据中心系统(DCS)与大数据分析技术之间形成了一种紧密的联系。

DCS通过管理和监控数据中心的运营情况,而大数据分析则可以挖掘数据中蕴含的潜在价值并优化决策。

本文将探讨DCS与大数据分析在挖掘潜在价值和优化决策中的应用。

一、潜在价值的挖掘1. 数据采集与储存DCS作为数据中心的核心系统,负责采集和储存大量的数据。

数据中心中的各个设备和系统都会产生海量的数据,如服务器运行状态、网络流量、能耗数据等。

通过DCS采集这些数据,并对其进行储存和管理,可以为后续的数据分析提供基础。

2. 数据清洗与整理大数据分析需要对数据进行清洗和整理,以确保数据的准确性和一致性。

DCS可以对采集到的数据进行预处理,如去除异常值、纠正数据格式等,使得后续的数据分析工作更加准确和高效。

3. 数据关联与分析通过大数据分析技术,可以将DCS采集到的数据进行关联分析,发现数据中存在的潜在关联关系。

以数据中心的能耗数据为例,通过对能耗数据与服务器运行状况、温度、湿度等数据进行关联分析,可以找到影响能耗的关键因素,进而挖掘出优化能耗的潜在价值。

二、决策的优化1. 实时监控与预测DCS可以实时监控数据中心的各种指标,如温度、湿度、设备运行状态等。

通过大数据分析,可以利用历史数据和算法模型来对未来的情况进行预测。

例如,通过对服务器的负载数据进行分析,可以预测出未来的负载情况,从而优化服务器资源的配置和调度策略。

2. 故障预警与维护DCS不仅可以帮助检测数据中心的运行状况,还可以通过大数据分析技术进行故障预警。

通过对设备运行数据的实时分析,可以发现潜在的故障征兆,并及时进行维修和保养。

这样可以有效降低故障风险,提高数据中心的可靠性和稳定性。

3. 资源利用优化大数据分析技术可以帮助发现数据中心中的资源利用状况,并提出优化建议。

通过对服务器利用率、存储空间利用率等数据进行分析,可以找到资源利用不均衡的情况,并提出相应的优化方案,从而提高数据中心的资源利用效率。

大数据的图像与视频分析

大数据的图像与视频分析

大数据的图像与视频分析随着大数据技术的快速发展和应用,图像与视频分析已成为这一领域中的重要方向。

利用大数据技术进行图像与视频分析能够深入挖掘数据的潜在价值,为各行业提供更多的可能性和机遇。

一、大数据在图像分析中的应用1. 图像识别与分类大数据技术可以通过训练模型,实现对大量图像的自动识别和分类。

例如,在医学领域,大数据分析可以帮助医生准确判别肿瘤类型;在交通领域,大数据分析可以识别交通违规行为,提高交通管理效率;在安防领域,大数据分析可以识别异常行为,提升安全管理水平。

2. 图像搜索与推荐利用大数据技术,可以实现对图像进行精准搜索和推荐。

以电商平台为例,用户通过上传一张照片,系统可以根据图像特征和用户历史行为,推荐相似商品。

这种个性化的推荐系统可以提高用户购物体验,并增加销售额。

3. 图像生成与编辑大数据技术可以通过学习海量图像,生成新的图像内容。

比如,通过深度学习算法,可以将一张简笔画转换成逼真的彩色图像。

此外,利用大数据分析,还可以实现对图像的智能编辑,例如,自动修复图像中的瑕疵,优化图像的色彩和对比度。

二、大数据在视频分析中的应用1. 视频内容分析通过大数据技术对视频内容进行深入分析,可以实现对各种场景和物体的识别。

例如,视频监控系统可以实时检测人脸、车牌等信息,提供安防保护;在电影和电视剧制作中,可以利用大数据技术对视频素材进行智能分类和整理,提高后期制作效率。

2. 视频推荐与分析通过对用户行为数据和视频内容进行分析,大数据技术可以实现个性化的视频推荐。

比如,根据用户的观看历史和兴趣,系统可以智能推荐相关的视频内容,提高用户粘性和用户体验。

3. 视频流分析与处理大数据技术可以实现对实时视频流的分析与处理。

例如,在智能交通管理中,大数据分析可以实时监测交通状况,预测拥堵情况,并提供相应的交通导航服务;在视频会议中,大数据分析可以提供实时的面部表情分析和语音识别,提供更好的会议体验。

三、大数据在图像与视频分析中的挑战和展望1. 数据质量和隐私保护大数据分析需要依赖海量的数据集,而数据的质量和隐私保护成为亟待解决的问题。

大数据在安防领域中的应用与案例

大数据在安防领域中的应用与案例

大数据在安防领域中的应用与案例引言:随着科技的不断发展,大数据的概念越来越被人们所熟知。

大数据的广泛运用已经渗透到各个行业和领域,其中安防行业也不例外。

大数据在安防领域的应用,为提高安全性和效率性提供了新的解决方案。

本文将介绍大数据在安防领域中的应用以及相关的实际案例。

一、大数据在安防领域中的应用1. 智能监控系统大数据技术能够对监控视频进行智能分析和处理,通过人脸识别、行为识别等功能,实现对异常事件的自动报警,为安防人员提供实时的监控和预警系统。

此外,大数据分析可以对监控视频进行数据挖掘,提取出有价值的数据信息,为安防决策提供科学依据。

2. 犯罪预测与预防借助大数据分析技术,可以对历史犯罪数据进行挖掘与分析,建立模型并预测未来可能发生的犯罪事件。

同时,通过大数据的实时监测和分析,可以及时发现嫌疑人的异常行为,提高安全防范和预防犯罪的效果。

3. 智能边境安全管理利用大数据技术,边境安全管理系统可以对边境线上各类信息进行实时监测与分析,包括人员身份、爬墙跨越、车辆通行等。

通过分析大数据,可以快速识别异常情况,防范非法入境、走私等违法行为。

4. 智能防火与灾害预警大数据技术可以对建筑物、森林、交通等环境中的温度、湿度、气体等指标进行实时监测和分析,及时掌握异常情况。

在火灾和自然灾害发生前,通过大数据分析,可以预测可能发生的火灾或灾害,提前采取措施减少损失。

二、大数据在安防领域中的案例1. 中国刑事案件预测分析系统中国根据大数据分析技术开发了犯罪预测分析系统。

该系统基于国家公安机关提供的庞大犯罪数据集,利用大数据模型对犯罪类型、作案地点、作案时间等进行分析和预测。

该系统为公安机关提供了可靠的决策支持,提高了犯罪 investigations 的效率。

2. 英国伦敦交通监控系统伦敦交通监控系统是全球最大的城市监控系统之一,借助大数据技术可对交通情况、行人流量等进行实时监测与分析。

通过大数据的支持,伦敦交通管理局可以更好地应对拥堵问题、改善交通流动性,并提高市民出行的安全性。

大数据对公安工作的影响

大数据对公安工作的影响

大数据对公安工作的影响引言概述:随着信息技术的快速发展,大数据已经成为当今社会的热门话题。

大数据的浮现为公安工作带来了前所未有的机遇和挑战。

本文将探讨大数据对公安工作的影响,并分析其在预防犯罪、破案侦查、社会治安维护、警务决策和信息安全等方面的具体作用。

一、大数据在预防犯罪方面的影响1.1 数据挖掘技术的应用:大数据技术可以通过对海量数据的分析和挖掘,识别出潜在的犯罪模式和趋势,匡助公安机关提前预警和采取相应的措施。

1.2 智能视频监控系统的应用:大数据技术可以对视频监控数据进行实时分析和处理,提高监控系统的智能化水平,实现对异常行为的自动识别和报警,有效预防犯罪事件的发生。

1.3 社交媒体数据的利用:通过分析社交媒体上的大数据,公安机关可以了解群众的意见、情绪和动态,及时发现和解决社会矛盾,提高社会治安水平。

二、大数据在破案侦查方面的影响2.1 案件数据的整合和共享:大数据技术可以匡助公安机关整合和共享各类案件数据,提高破案效率和准确性,实现多部门协同侦查,打击犯罪活动。

2.2 基于模式识别的犯罪分析:通过对大数据的分析和挖掘,公安机关可以建立犯罪模式和嫌疑人关系的模型,辅助破案侦查工作,提高破案成功率。

2.3 数据驱动的取证技术:大数据技术可以匡助公安机关从庞大的证据数据中提取关键信息和线索,加快取证过程,提高案件办理效率。

三、大数据在社会治安维护方面的影响3.1 警情动态分析与预测:通过对大数据的分析和挖掘,公安机关可以实现对警情的动态分析和预测,合理调配警力资源,提高社会治安维护的效果。

3.2 人员流动轨迹分析:大数据技术可以对人员流动轨迹进行分析,匡助公安机关发现和预防犯罪活动,加强对重点区域和人群的监管。

3.3 社会舆情监测与干预:通过对社交媒体等大数据的监测和分析,公安机关可以及时了解社会舆论动向,采取相应的干预措施,维护社会稳定。

四、大数据在警务决策方面的影响4.1 数据驱动的决策支持:大数据技术可以为公安机关提供全面准确的数据支持,匡助决策者做出科学的决策,提高警务工作的效能。

视频大数据分析

视频大数据分析

视频大数据分析视频大数据分析是指利用先进的数据处理技术,对海量视频数据进行采集、存储、分析和挖掘,以提取有价值的信息和知识。

随着互联网和移动设备的普及,视频数据量呈爆炸式增长,这为视频大数据分析提供了广阔的应用前景。

本文将从视频数据的采集、存储、分析和应用四个方面进行详细阐述。

首先,视频数据的采集是大数据分析的第一步。

视频数据的来源非常广泛,包括监控摄像头、社交媒体、在线视频平台等。

为了有效地采集这些数据,需要采用高效的数据采集工具和方法。

例如,可以通过网络爬虫技术自动抓取社交媒体上的视频内容,或者利用API接口直接从在线视频平台获取数据。

此外,为了确保数据的质量和完整性,还需要对采集到的视频数据进行预处理,如去噪、格式转换等。

其次,视频数据的存储是大数据分析的基础。

由于视频数据的体积通常较大,传统的存储系统往往难以满足需求。

因此,需要采用分布式存储系统来解决这一问题。

分布式存储系统可以将数据分散存储在多个节点上,从而提高存储容量和访问速度。

同时,为了便于后续的数据分析,还需要对存储的视频数据进行有效的组织和管理,如建立索引、分类标签等。

接下来,视频数据分析是大数据分析的核心。

视频数据分析包括视频内容分析和视频用户行为分析两个方面。

视频内容分析主要通过计算机视觉技术对视频画面进行识别和理解,如目标检测、场景识别、动作识别等。

视频用户行为分析则通过分析用户的观看行为,如观看时长、观看频率、互动行为等,来了解用户的兴趣和偏好。

为了提高分析的准确性和效率,可以采用机器学习和深度学习等先进的数据分析技术。

最后,视频大数据分析的应用非常广泛。

在安防领域,可以通过视频数据分析实现智能监控,如异常行为检测、人流统计等。

在娱乐领域,可以通过分析用户观看行为,为用户推荐个性化的视频内容。

在广告领域,可以通过分析视频内容和用户行为,实现精准的广告投放。

此外,视频大数据分析还可以应用于交通管理、零售分析、教育等多个领域。

大数据时代的价值挖掘

大数据时代的价值挖掘

大数据时代的价值挖掘随着互联网和信息技术的快速发展,大数据已经成为现代社会不可忽视的重要资源。

大数据时代带来了海量的数据,然而这些数据的真正意义和价值往往被埋没在其中。

因此,在大数据时代,如何准确、高效地挖掘数据的价值成为了一个重要的课题。

一、大数据的价值意义大数据,作为一种新兴的信息资源,具有广泛的价值意义。

首先,大数据可以帮助企业或组织更好地了解市场和消费者。

通过对大数据的分析,企业能够获取更多关于消费者行为、偏好和需求的信息,从而进行更准确的市场定位和产品设计。

其次,大数据还可以提供决策支持。

大数据技术可以迅速处理和分析大量的信息,为决策者提供及时而准确的数据支持,帮助其做出更明智的决策。

此外,大数据还可以用于社会问题解决、医疗健康管理、城市规划等领域,为社会发展带来巨大的潜力和机遇。

二、大数据的挖掘方法为了准确、高效地挖掘大数据的价值,我们需要采取一些有效的方法和技术。

以下是几种常用的大数据挖掘方法:1. 数据预处理:大数据往往包含大量的噪音和冗余信息,因此在进行数据挖掘之前,需要对数据进行预处理,包括去除噪音、处理缺失值、数据清洗等步骤。

2. 数据分析:数据分析是大数据挖掘的核心环节。

通过统计学方法、机器学习算法等技术手段,对大数据进行分析,发现其中的规律和关联性,从中提取有用的信息。

3. 数据可视化:大数据的可视化是将数据以图表、图形等形式呈现,使复杂的数据变得直观和易于理解。

通过数据可视化,我们可以更好地发现数据中的模式和趋势,帮助决策者做出正确的决策。

4. 预测和模型建立:通过对大数据的分析和挖掘,可以建立相应的预测模型,用于预测未来的发展趋势。

例如,通过对用户的在线购物行为进行分析,可以建立推荐系统,为用户提供个性化的购物建议。

三、大数据挖掘的应用案例大数据挖掘已经在各个领域取得了广泛的应用。

以下是几个典型的应用案例:1. 金融领域:大数据分析在金融风控、个性化投资等方面有着重要的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用大数据技术挖掘视频监控数据的价值
随着数据量的增加,哪怕对TB级别的视频数据进行对视频内容的数据分析和检索,传统技术模式下可能需要花费数小时的计算,已远远不能胜任时效性的要求。

用户希望能够对海量数据进行有效管理和使用,快速辨别有效数据,提高数据利用价值。

得益于IT信息技术的快速进步,人类可以随时随地记录下产生的各类数据,同时数据存储的成本也正以前所未有的速度下降,大数据时代正悄然来临。

在视频监控领域,高清化,大联网数据汇聚推动视频大数据形成,业务实战化推动大数据分析需求。

一、视频监控业务的大数据特征
在视频监控领域,大数据的特点,可用Volume、Variety、Velocity、Value这4个V来概括(如图1)。

大数据的特点包括以下几点:
第一,数据体量巨大(Volume)。

高清化带来单个监控点数据量即以指数级增长,例如单个1080PIPC30天就会产生2T数据;IP化大联网后,各平台实现互联,平安城市网内摄像头数量达数万数十万级别,其数据量之巨大可想而知。

第二,数据类型繁多(Variety)。

视频监控领域的视频编码格式包括:H.264、MPEG-4、MJPEG等多样化的编码方式。

而同时随着各类物联网技术的融入到视频监控业务,汇聚了包括各种传感器、IT、CT系统产生的多样的数据。

业务系统需要把结构化与非结构化数据相互关联,统一存储。

第三,处理速度快(Velocity)。

视频数据随时间快速增长,并以持续顺序到达。

在视频监控领域,视频分析的效率决定价值,更低的延迟、更准确的分析是平安城市这类客户的普遍需求。

随着数据量的增加,哪怕对TB级别的数据进行视频内容的数据分析和检索,采用串行计算模式都可能需要花费数小时的计算,已远远不能胜任时效性的需求。

第四,价值密度低(Value),效率要求高。

在视频监控业务中,价值密度的高低与数据总量的大小成反比。

一小时的视频监控内容,可能有用的数据仅仅只有一两秒。

如何通过强大的机器算法更迅速地完成数据的价值“提纯”是目前大数据汹涌背景下亟待解决的难题。

二、视频监控业务的大数据应用需求
随着数据量的增加,哪怕对TB级别的视频数据进行对视频内容的数据分析和检索,传统技术模式下可能需要花费数小时的计算,已远远不能胜任时效性的要求。

用户希望能够对海量数据进行有效管理和使用,快速辨别有效数据,提高数据利用价值。

分析大数据产生小数据。

摄像头7×24小时工作,如实记录镜头覆盖范围内发生的一切,仅仅记录信息是不够的,因为对于客户来讲可能大部分信息是无效,有效信息可能只分布在一个较短的时间段内,按照数学统计理论,信息是呈现出幂律分布的,或称之为信息密度,往往密度越高的信息对客户价值越大。

实时涌入的海量数据容易产生大量的休眠数据,浪费大量存储资源。

对海量数据进行智能分析,提取出价值数据片段。

建立摘要信息,减少用户需要面对处理的数据量,形成元数据信息库。

提纯小数据产生价值数据,例如在公安系统中希望能集中分析过去和现在的犯罪数据和视频图片,整合所有信息,能提供对犯罪趋势更全面的看法。

这就需要针对海量历史数据实现快速检索,并对貌似非关联的数据进行关联,并在可视化平台
进行呈现,总结出数据规律,为决策者提供参考和预测未来业务走向。

三、视频监控大数据分析所需的关键能力
因为视频监控中大体量数据带来了很多现实中的难题,我们需要在视频监控解决方案中引入大数据技术。

基于视频监控业务的特点,我们认为四类关键技术发挥至关重要的作用。

智能分析能力。

基于计算机图像识别算法,对视频图像内容进行理解和分析,生成图像内容和行为的描述信息,并以结构化或半结构化语言描述,为视频大数据分析与应用提供基础;
大数据处理能力。

基于大数据并行或分布式处理技术,如Hadoop,Hbase等,形成面向大数据的分布式存储与数据管理框架;提供实时和批处理ETL,实现数据清洗/转换/装载,以形成价值信息汇聚;
数据挖掘与分析能力。

对智能分析元数据的检索、数据挖掘与分析能力,即对视频数据的高效利用能力;与非视频数据整合分析,挖掘事件关联及产生模式,提升视频数据价值的能力;
可视化展现能力。

对视频内容的高效检索、比对和呈现能力;与GIS平台、情报分析平台、应急处理平台等地方平台视图整合展现,提升视频数据实用性的能力。

通过大数据技术,进一步挖掘海量视频监控数据背后的价值信息,快速反馈内涵知识辅助决策判断将是未来视频监控应用的发展方向。

四、视频智能大数据分析架构
视频监控业务的核心就是数据,数据就是业务本身,笔者公司的视频监控大数据架构平台可以给大型的视频监控项目带来诸多的裨益。

该智能大数据架构灵活,伸缩弹性更大。

实现计算、存储资源云化部署,设备自组网、自管理,业务永不中断,按需弹性扩容。

支持分布式检索引擎,通过分布式数据库MongoDB,支持海量数据存储,10亿条记录,秒级即可完成数据检索和呈现。

开放架构,智能分析插件化、可扩展,ISV定制开发简单快捷。

开放架构,第三方智能分析插件可无缝集成;提供智能算法、智能分析应用服务REST标准接口,支持ISV定制开发。

丰富的智能分析能力,支持可视化操作管理和图形化研判分析。

实现可疑行为自动报警、全网点实时布控、人/车精准识别、视频内容高效检索、案件智能分析、以及设备故障自诊断。

从大数据架构图(图2)可以看到:
DAU(分布式分析单元):支持流式计算,可分布式部署,对含视频在内的媒体内容进行智能分析;通过媒体数据预处理,支持插件业务框架,可引入各类第三方算法插件,基于ONVIF/PSIA数据封装器,对协议进行适配;
DPU(数据处理单元):提供包括第三方数据接入适配,进行数据的汇聚,并对非结构化数据归档,通过数据转换引擎,实现数据的清洗和转换,另外根据规则引擎下发实时告警规则上报实时告警信息;
DMU(数据挖掘单元):规则模型管理,采用可视化界面定义业务规则(Schema);为加快数据处理实时性,引入高效率的内存数据库技术。

经过前面数据处理层处理后的数据,以关系型数据形式进行存放;
AE(应用环境):业务应用及呈现,提供业务生成框架,用户可进行灵活的业务配置。

统一数据访问接口,应用开发环境,便于第三方合作伙伴进行整治业务应用开发。

五、大数据视频监控构架带来的价值
大数据视频架构是革命性的技术,特别在实时智能分析和数据挖掘方面,让视频监控从人工抽检,进步到高效事前预警、事后分析,实现智能化的信息分析、预测,为视频监控领域业务带来深刻的变革(如图3):
平安城市领域,实时汇总并综合分析各种公共安全数据和资料,为执法人员快速准确应对提供科学依据:如实时调阅现场视频录像、犯罪嫌疑人记录、同一地区的相似案件资料;进行地理、时间和空间的比较分析,揭示其犯罪模式和行为模式;追踪嫌疑人与其车辆的位置等。

指挥人员也可以参照各种数据对不同来源的资料进行综合分析,制作指挥图。

智能交通行业,可以轻松监控摄像覆盖范围内的所有车辆的行驶状态、运行轨迹,快速分析出其是否违章,通过对海量交通数据的比对、分析和研判,实现指定车辆行驶路径、道路拥堵研判等功能。

云服务领域:实现基于大数据的视频监控云服务,让摄像机仅通过互连网就能连接云端的视频监控托管服务,通过快速、智能地分析部署在云端的大数据,为小型企业、零售商店、餐馆酒店等提供实时的监控视频和潜在的风险管理,甚至能提供收费的基于视频内容的分析报告,如日常的客户数,平均队列长度等,创造新的商业模式。

大数据技术和视频监控的结合,把孤立的视频内容通过大数据技术的加工,形成可视化结果呈现,这种转变可为视频监控业务创造更加智能高效的使用方式,让用户从繁重的观看视频监控劳动中解脱出来,能轻松自如地通过视频监控进行高效准确的决策。

六、总结
视频监控进入网络化时代以后,越来越多融入IT新兴技术,大数据技术在视频监控领域的广阔发展路径已经显现,笔者公司正致力于把大数据技术和视频监控业务实现完美的融合,以打造出大数据时代的视频监控解决方案。

相关文档
最新文档