一次函数图像的平移练习题
一次函数平移图形练习题

一次函数平移图形练习题一、填空题1. 将函数y = 2x向右平移3个单位,得到的新函数是______。
2. 将函数y = 3x 1向下平移2个单位,得到的新函数是______。
3. 将函数y = x + 4向左平移4个单位,得到的新函数是______。
4. 将函数y = x + 5向上平移3个单位,得到的新函数是______。
5. 将函数y = 2x + 3向右平移2个单位,再向下平移1个单位,得到的新函数是______。
二、选择题1. 将函数y = x + 2向左平移1个单位,下列哪个函数是平移后的结果?A. y = x + 1B. y = x + 3C. y = x 1D. y = x + 22. 将函数y = 3x + 4向上平移2个单位,下列哪个函数是平移后的结果?A. y = 3x + 6B. y = 3x + 2C. y = 3x + 4D. y = 3x 23. 将函数y = 4x 5向右平移3个单位,再向上平移4个单位,下列哪个函数是平移后的结果?A. y = 4x 1B. y = 4x 9C. y = 4x + 1D. y = 4x 5三、作图题1. 请在坐标系中画出函数y = 2x 3及其向右平移2个单位后的图形。
2. 请在坐标系中画出函数y = x + 1及其向下平移3个单位后的图形。
3. 请在坐标系中画出函数y = 3x + 4及其向左平移4个单位后的图形。
4. 请在坐标系中画出函数y = 2x 5及其向上平移2个单位后的图形。
5. 请在坐标系中画出函数y = x 2及其先向右平移3个单位,再向上平移1个单位后的图形。
四、简答题1. 描述一次函数y = 5x + 1向左平移5个单位后的函数表达式,并说明平移过程中函数图像的变化。
2. 若一次函数y = 4x 6向下平移4个单位,求平移后的函数表达式,并简述图像的变化。
3. 给出一次函数y = 3x + 4向上平移2个单位,再向右平移3个单位后的函数表达式,并分析图像的变化。
新42.一次函数的图像变换

35. 【中】将直线 y = 2 x − 3 向下平移 4 个单位可得直线______,再向左平移 2 个单位可得 直线_______ 【答案】 y = 2 x − 7 , y = 2 x − 3 36. 【中】将直线 y = 2 x + 1 向下平移 3 个单位,得到的直线应为_______,关于 y 轴对称的 直线为________ 【答案】 y = 2 x − 2 , y = −2 x − 2 37. 【中】 (沈阳)将 y = −3x + 4 先向左平移 3 个单位,再向下平移 5 个单位,得到的直线 为__________. 【答案】 y = −3x − 10 38. 【中】 (2009 青海)直线 y = x + 2 向右平移 3 个单位,再向下平移 2 个单位所得直线的 解析式为________ 【答案】 y = x − 3 39. 【中】若直线 y = kx + b 平行直线 y = 3x + 4 ,且过点 (1,− 2 ) ,则将 y = kx + b 向下平移
3 个单位的直线是______. 【答案】 y = 3x − 8
1) ,则平移后的直线的函数关系式为 40. 【中】将直线 y = −3x + 5 平移,使它经过点 ( −1,
________ 【答案】 y = −3x − 2
41. 【中】已知一次函数 y = −3x + 2 ,它的图象不经过第____象限,将直线 y = 2 x − 4 向上 平移 5 个单位后,所得直线的表达式为________ 【答案】三, y = 2 x + 1 42. 【中】 (2010 人大附初二上统练)若直线 y = − mx + 1 + n 沿着 x 轴向左平移 3 个单位得 到 y = − x + 1 ,则 m − n = __________. 【答案】 −2 43. 【中】 (2009 枣庄)在直角坐标系中有两条直线 l1 、 l2 ,直线 l1 所对应的的函数关系式 为 y = x − 2 ,如果将坐标纸折叠,使 l1 与 l2 重合,此时点 ( −1,0 ) 与点 ( 0 ,− 1) 也重合, 则直线 l2 所对应的函数关系式为______________ 【答案】 y = x + 2
一次函数的图象专题练习题(最新版) 含答案

一次函数的图象专题练习题1.画函数图象的方法.可以概括为_______,__ __,__ __三步,通常称为__ __.2.如果点M 在函数y =x -1的图象上,则M 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,0)D .(1,-1)3.(1)若点A(a ,-3)在函数y =-3x的图象上,则a =____; (2)下列各点M (1,2),N (3,32),P (1,-1),Q (-2,-4)中,在函数y =2x x +1的图象上的点是__________. 4. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是( )5. 小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( )6. 某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是()A.小明在公园休息了5分钟B.小明乘出租车用了17分C.小明跑步的速度为180米/分D.出租车的平均速度是900米/分7. 一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()8. 李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程为2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下又聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程s(米)与所用时间t(分)之间的关系如图所示.(1)求a,b,c的值;(2)求李老师从学校到家的总时间.9. 如果两个变量x,y之间的函数关系如图,则函数值y的取值范围是() A.-3≤y≤3 B.0≤y≤2C.1≤y≤3 D.0≤y≤310. 如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度11. 甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4B.3C.2D.112. 有一个水箱,它的容积是500升,水箱内原有水200升,现需将水箱注满,已知每分钟注入水10升.(1)写出水箱内水量Q(升)与时间t(分)的函数关系式;(2)求自变量t的取值范围;(3)画出函数的图象.13.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()14. 如图①,底面积为30 cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为____cm,匀速注水的水流速度为____cm3/s;(2)若“几何体”的下方圆柱的底面积为15 cm2,求“几何体”上方圆柱的高和底面积.答案:1. 描点 连线 描点法2. C3. (1) 1 (2) 点N4. D5. B6. B7. A8. (1)李老师停留地点离他家路程为:2000-900=1100(米),900÷45=20(分).a =20,b =1100,c =20+30=50 (2)20+30+1100110=60(分).答:李老师从学校到家共用60分钟 9. D10. C11. B 点拨:①②④正确12. (1)Q =200+10t (2)令200≤Q≤500,则0≤t≤30 (3)图略13. B14. (1) 14 5(2) “几何体”下方圆柱的高为a ,则a·(30-15)=18×5,解得a =6,所以“几何体”上方圆柱的高为11 cm-6 cm =5 cm ,设“几何体”上方圆柱的底面积为S cm 2,根据题意得5(30-S )=5×(24-18),解得S =24,即“几何体”上方圆柱的底面积为24 cm 2。
八年级数学下册考点知识与题型专题讲解与提升练习48 一次函数图象的平移问题

八年级数学下册考点知识与题型专题讲解与提升练习专题48 一次函数图象的平移问题一、单选题1.把直线1y x =--向上平移3个单位长度,得到图像解析式是()A .4y x =--B .2y x =-+C .4y x =-D .2y x =+2.在平面直角坐标系中,将直线y =kx ﹣6沿x 轴向左平移3个单位后恰好经过原点,则k 的值为( )A .﹣2B .2C .﹣3D .33.直线2(1)y x =-向下平移3个单位长度得到的直线是().A .2(4)y x =-B .33y x =-C .25y x =-D .22y x =-4.将函数y =-4x 的图象沿y 轴向下平移2个单位后,所得到的函数图象对应的函数表达式()A .42y x =-+B .6y x =-C .42y x =--D .2y x =-5.函数4y x =的图象可由函数44y x =-的图象沿y 轴()A .向上平移4个单位得到B .向下平移4个单位得到C .向左平移4个单位得到D .向右平移4个单位得到6.把正比例函数y=2x 图象向上平移3个单位,得到图象解析式是( )A .y=2x-3B .y=2x+3C .y=3x-2D .y=3x+27.把直线y=2x-1向下平移1个单位,平移后直线得关系式为()A .y=2x-2B .y=2x+1C .y=2xD .y=2x+28.对于一次函数132y x =-+,下列结论正确的有()个. (1)该函数图像与y 轴交点()0,3,与x 轴交点为()6,0.(2)将函数12y x =-的图像向上平移3个单位,可得函数132y x =-+的图像,(3)该函数图像不经过第四象限,(4)函数值y 随自变量x 的增大而减小.A .1个B .2个C .3个D .4个9.把经过点(-1,1)和(1,3)的直线向右移动2个单位后过点(3,a),则a 的值为()A .1B .2C .3D .410.将直线y=2x 向上平移两个单位,所得的直线是A .y=2x+2B .y=2x-2C .y=2(x-2)D .y=2(x+2)11.在平面直角坐标系中,将直线6y kx =-沿x 轴向右平移3个单位后恰好经过原点,则k 的值为()A .2-B .2C .3-D .312.把直线21y x =-+向右平移2个单位后,所得直线的解析式为()A .23y x =-+B .21y x =--C .23y x =--D .25y x =-+13.在平面直角坐标系中,将一次函数3324y x =-的图象沿x 轴向左平移m (m ≥0)个单位后经过原点O ,则m 的值为( )A .43B .34C .2D .1214.将直线112y x =-向上平移3个单位,所得直线是() A .122y x =+ B .142y x =-- C .122y x =- D .1y x 42=- 15.一次函数21y x =-+图象沿y 轴向下平移2个单位,则平移后与y 轴的交点的纵坐标为()A .3B .2C .1-D .016.将直线3y x =沿y 轴向下平移1个单位长度后得到的直线解析式为()A .31y xB .31y x =-C .1y x =+D .1y x =-17.关于一次函数y =3x -1的描述,下列说法正确的是()A .图象经过第一、二、三象限B .函数的图象与x 轴的交点是(0,-1)C .向下平移1个单位,可得到y =3xD .图象经过点(1,2)18.将直线y =3x +1沿y 轴向下平移3个单位长度,平移后的直线所对应的函数关系式( )A .y =3x +4B .y =3x ﹣2C .y =3x +4D .y =3x +219.将直线26y x =-向右平移5个单位,再向上平移1个单位后,所得的直线的表达式为()A .215y x =+B .215y x =-C .26y x =+D .26y x =-20.把直线3y x =向上平移1个单位长度,再向左平移4个单位长度,得到的直线的表达式为( )A .311y x =-B .313y x =+C .313y x =--D .311y x =--21.将直线l :23y x =+,先向下平移3个单位,再向右平移4个单位得直线1l ,则平移后得到直线1l 的解析式为()A .24y x =+B .24y x =-C .28y x =-D .28y x =+22.关于函数3y x =-,下列说法正确的是()A .在y 轴上的截距是3B .它不经过第四象限C .当x≥3时,y≤0D .图象向下平移4个单位长度得到7y x =-的图象23.一次函数y =2x +1的图像,可由函数y =2x 的图像( )A .向左平移1个单位长度而得到B .向右平移1个单位长度而得到C .向上平移1个单位长度而得到D .向下平移1个单位长度而得到24.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .B .C .D .525.关于一次函数2y x b =-+(b 为常数),下列说法正确的是()A .y 随x 的增大而增大B .当4b =时,直线与坐标轴围成的面积是4C .图象一定过第一、三象限D .与直线32y x =-相交于第四象限内一点26.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是()A .经过第一、二、三象限B .与x 轴交于()1,0-C .与y 轴交于()0,1D .y 随x 的增大而减小27.对于一次函数24y x =-+,下列结论错误的是( )A .函数的图象与x 轴的交点坐标是()0,4B .函数值随自变量的增大而减小C .函数的图象不经过第三象限D .函数的图象向下平移4个单位长度得到2y x =-的图象28.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( )A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+629.在平面直角坐标系中,将直线b :y =﹣2x+4平移后,得到直线a :y =﹣2x ﹣2,则下列平移方法正确的是()A .将b 向左平移3个单位长度得到直线aB .将b 向右平移6个单位长度得到直线aC .将b 向下平移2个单位长度得到直线aD .将b 向下平移4个单位长度得到直线a30.将一次函数y kx b =+的图象向上平移9个单位得到直线36y x =+,()A .3B .C .3±D .31.下列说法中正确的是()A B .两个一次函数解析式k 值相等,则它们的图像平行C .连接等腰梯形各边中点得到矩形D .一组数据中每个数都加3,则方差增加332.把直线3y x =--向上平移m 个单位后,与直线24y x =+的交点在第二象限,则m 的取值范围是()A .17m <<B .34m <<C .1mD .4m <33.在平面直角坐标系中,将直线1:41l y x =--平移后,得到直线2:47l y x =-+,则下列平移作法正确的是()A .将1l 向右平移8个单位B .将1l 向右平移2个单位C .将1l 向左平移2个单位D .将1l 向下平移8个单位34.在同一直角坐标系中,若直线y =kx +3与直线y =-2x +b 平行,则( )A .k =-2,b ≠3 B.k =-2,b =3 C .k ≠-2,b ≠3 D.k ≠-2,b =335.如图在平面直角坐标系中,直线对应的函数表达式为,直线与、轴分别交于A 、B ,且∥,OA=2,则线段OB 的长为( )A .3B .4C .D .第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题36.在平面直角坐标系中,把直线y =2x ﹣1向上平移3个单位长度后,所得到的直线对应的函数解析式是_____.37.已知一次函数y =2x +m 的图象是由一次函数y =2x ﹣3的图象沿y 轴向上平移8个单位得到的,则m =_____.38.在平面直角坐标系中,一次函数56y x =-+与53y x =--的图象的位置关系为______.39.将函数31y x 的图像平移,使它经过点()2,0-,则平移后的函数表达式是______.40.直线23y x =-是由25y x =+向下平移__________个单位得到的.41.如图所示,一次函数y=kx +b 的图象是正比例函数y=-2x 的图象平移得到,且经过点A (2,3),则kb =______________.42.将直线y=x+3沿y 轴向上平移3个单位得到的一次函数的解析式是_____.43.已知将直线y kx =向上平移2个单位后,恰好经过点(1,0)-,则不等式42x kx -<+的解集为_____.44.在平面直角坐标系中,平行四边形OABC 的边OC 落在x 轴的正半轴上,且点(4,0),(6,2)C B ,直线41y x =+以每秒2个单位的速度向下平移,经过______秒该直线可将平行四边形OABC 的面积平分.45.如图,一次函数24y x =+与x 轴交于点A ,与y 轴交于点B .点C 的坐标为()2,3,若点D 在直线24y x =+上,点E 在x 轴上,若以B 、C 、D 、E 为顶点的四边形为平行四边形,则点E 的坐标为______.46.已知直线y =13x +2与函数y =()()1111x x x x ⎧+≥-⎪⎨--<-⎪⎩的图象交于A ,B 两点(点A 在点B 的左边).(1)点A 的坐标是_____;(2)已知O 是坐标原点,现把两个函数图象水平向右平移m 个单位,点A ,B 平移后的对应点分别为A ′,B ′,连结OA ′,OB ′.当m =_____时,|OA '﹣OB '|取最大值.47.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.48.直线22y x =+沿y 轴向下移动6个单位长度后,与x 轴的交点坐标为_______三、解答题49.把一次函数21y x =-的图象沿y 轴向上平移2个单位长度,所得图象对应的函数表达式为________.50.(1)先列表,再画出函数21y x =+的图象.(2)若直线21y x =+向下平移了1个单位长度,直接写出平移后的直线表达式.51.已知y﹣3与x成正比例,且x=2时,y=7.(1)求y与x的函数关系式;(2)将所得函数图象平移,使它经过点(2,﹣1),求平移后直线的解析式.52.如图,一次函数y= -3x+6的图象与x轴、y轴分别交于A、B两点.(1)将直线AB向左平移1个单位长度,求平移后直线的函数关系式;(2)求出平移过程中,直线AB在第一象限扫过的图形的面积.53.在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围(2)将线段AB绕点A逆时针旋转90°,得到线段AC,请在网格中画出线段AC.(3)若直线AC的函数解析式为y=kx+b,则y随x的增大而(填“增大”或“减小”).54.直线1y kx =+沿着y 轴向上平移b 个单位后,经过点(2,0)A -和y 轴正半轴上的一点B ,若ABO (O 为坐标原点)的面积为4,求b 的值.55.已知y 是x 的一次函数,且当0x =,1y =;当1x =-时,2y =.(1)求这个一次函数的表达式:(2)将该函数图象向下平移3个单位,求平移后图象的函数表达式.56.如图,点A 的坐标为()1,0-,点B 在直线24y x =-上运动.(1)若点B 的坐标是()1,2-,把直线AB 向上平移m 个单位后,与直线24y x =-的交点在第一象限,求m 的取值范围.(2)当线段AB 最短时,求点B 的坐标.57.如图,直线AB :2y x k =-过点M (k ,2),并且分别与x 轴,y 轴相交于点A 和点B .(1)求k 的值;(2)求点 A 和点B 的坐标;(3)将直线AB 向上平移3个单位得直线l ,若C 为直线l 上一点,且3AOCS =,求点C的坐标.58.平面直角坐标系内一条直线AB ,A (a ,0),B (0,b ),a ,b 40b -=, (1)求直线AB 的表达式,(2)直接写出把这条直线向上平移3个单位长度后得到的表达式.59.已知一次函数的图象与直线1y x =-+平行,且过点()2,5-,求该一次函数的表达式. 60.如图,正比例函数y =kx 的图象经过点A ,点A 在第二象限.过点A 作AH ⊥x 轴,垂足为H .已知点A 的横坐标为﹣3,且△AOH 的面积为4.5. (1)求该正比例函数的解析式.(2)将正比例函数y =kx 向下平移,使其恰好经过点H ,求平移后的函数解析式.61.如图直线l 经过点A (-3,1),B (0,-2),将直线l 向右平移两个单位得到直线l 1.(1)在图中画出平移后的直线l 1;(2)求直线l 1的表达式.62.已知一次函数y kx b =+,当1x =时,1y =-;当1x =-,5y =-. (1)在所给坐标系中画出一次函数y kx b =+的图象: (2)求k ,b 的值;(3)将一次函数y kx b =+的图象向上平移2个单位长度,求所得到新的函数图象与x 轴、y 轴的交点坐标.63.在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图像由函数y x =的图像平移得到,且经过点()1,2.(1)请在所给平面直角坐标系中画出这个一次函数的图像并求该一次函数的解析式;(2)当1x >时,对于x 的每一个值函数y mx =(0m ≠)的值大于一次函数y kx b =+的值,求出m 的取值范围.64.如图,在平面直角坐标系中,直线11:3l y x =与直线2l 交点A 的横坐标为3,将直线1l 沿y 轴向下平移3个单位长度,得到直线3l ,直线3l 与y 轴交于点B ,与直线2l 交于点C ,点C 的纵坐标为1-,直线2l 与y 轴交于点D .(1)求直线2l 的解析式; (2)连接AB ,求ABC 的面积.65.学习“一次函数”时,我们从“数”和“形”两方面研究一次函数的性质,并积累了一些经验和方法,尝试用你积累的经验和方法解决下面问题. (1)在平面直角坐标系中,画出函数y =|x|的图象: ①列表:完成表格②画出y =|x|的图象;(2)结合所画函数图象,写出y =|x|两条不同类型的性质; (3)写出函数y =|x|与y =|x ﹣2|图象的平移关系.66.已知一次函数23414m y x m +=+-. (1)当32m >-时,这个函数的函数值y 随x 的增大而增大还是随x 的增大而减小呢? (2)当这个函数的图象与直线3y x =-平行时,求m 的值.67.已知一次函数y kx b =+(,k b 是常数,且0k ≠)的图象过()A 3,5与()2,5B --两点.(1)求一次函数的解析式;(2)若点()3,a a --在该一次函数图象上,求a 的值;(3)把y kx b =+的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图象,并直接写出新函数图象对应的解析式. 68.在平面直角坐标系中,直线532y x =--交x 轴于点A ,交y 轴于点B ,直线334y x =-+交x 轴于点C ,交y 轴于点D .()1如图1,连接BC ,求BCD 的面积;()2如图2,在直线334y x =-+上存在点E ,使得45ABE ∠=︒,求点E 的坐标; ()3如图3,在()2的条件下,连接OE ,过点E 作CD 的垂线交y 轴于点F ,点Р在直线EF上,在平面中存在一点Q ,使得以OE 为一边,O E P Q ,,,为顶点的四边形为菱形,请直接写出点Q 的坐标.。
一次函数图象的平移

2.探究 y x, y x 2, y x 2
三个函数图象的关系
y
8
y x5
6
yx
4
2
y x4
-8 -6 -4 -2 O 2 4 6 8 10 x -2
-4 -6
y
y x4
8
6
y x
4
2
-8 -6 -4 -2 O 2 4 6 8 10 x
2、将直线 y x 1 向下平移2个单位 ,可得直
线_y____x___1;将直线 y 1 x 3 位可得直线 y 1 x 2 2
向_下_平移_5_个单
2
谈谈本节课你有什么收 获?还有什么疑问?
作业:习题 2,3,4,5
y x5
-2
-4
-6
总结
1、当 k 0,图象从左到右上升,都经过第三、一
象限; 2、当 k 0,图象从左到右下降,都经过第二、四
象限;
3、当k相等时,一次函数 y kx bk 0图象与正 比例函数 y kxk 0 图象 互相平行;
4、当 b 0时,一次函数y kx bk 0图象由正比 例函数图象y kxk 0 向上平移b个单位长度;
5、当b 0 时,一次函数y kx bk 0图象由正比 例函数图象 y kxk 0 向下平移 b 个单位长度
巩固练习
1、在同一个直角坐标系中,把直线 y 2x向_上__
平移_3_个单位就得到 y 2x 3的图象;若向_下__
平移_5_个单位就得到 y 2x 5的图象。
y
4 3 2
1
x
-3
-2
-1 0
一次函数平移练习题zhengliguode

一次函数平移练习题1、阅读材料:我们学过一次函数的图象的平移,如:将一次函数y=2x的图象沿x轴向右平移1个单位长度可得到函数y=2(x-1)的图象,再沿y轴向上平移1个单位长度,得到函数y=2(x-1)+1的图象,解决问题:(1)将一次函数y=-x的图象沿x轴向右平移2个单位长度,再沿y轴向上平移3个单位长度,得到函数()的图象;解:(1)y=-(x-2)+3;2、将一次函数y=-2x+1的图象平移,使它经过点(-2,1),则平移后的直线解析式为________.3、已知一次函数y=kx-4,当x=2时,y=-3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.4、,将直线y=12x+1向右平移两个单位,求平移以后的函数解析式解.可以先找到满足原函数的点(0,1)和(2,2),再将这两点向右平移两个单位得到点(2,1)和(4,2),这样就可以用待定系数法求得平移以后的函数解析式为y=12x.思路二从两直线平行一次项系数相等的角度,学生有这样的做法:直线平移以后和原来的直线应该是相互平行的关系5、将一次函数= -2x+1的图像平移使它经过点(-2,1)则平移后图像关系式为________6、一次函数y=x图象向下平移2个单位长度后,对应函数关系式是[ ]3x D.y=x+2A.y=x﹣2 B.y=2x C..y=27、一次函数y=2x+3的图象沿Y轴向下平移4个单位,那么所得图象的函数解析式是()A.y=2x+2 B.y=2x-3 C.y=2x+1 D.y=2x-18、把一次函数y=3x+6向下平移个单位得到y=3x.9、将一次函数y=-2x+1的图象平移,使它经过点(-2,1),则平移后图象函数的解析式为.解答:解:新直线是由一次函数y=-2x+1的图象平移得到的,∴新直线的k=-2.可设新直线的解析式为:y=-2x+b.∵经过点(-2,1),则(-2)×(-2)+b=1.解得b=-3.∴平移后图象函数的解析式为y=-2x-3.10、把一次函数y=2x-1沿x轴向左平移1个单位,得到的直线解析式是.解答:解:从原直线上找一点(1,1),向左平移1个单位为(0,1),它在新直线上,可设新直线的解析式为:y=2x+b,代入得b=1.故解析式为:y=2x+1.14.、y=2x+4这条直线沿x轴向右平移1个单位长度后:y=2(x-1)+4=2x+2,即y=2x+2.15、一次函数y=kx+b(k≠0)的图象过点A(0,2),B(3,0),若将该图象沿x轴向左平移2个单位,则新图象对应的解析式为解答:解:∵一次函数y=kx+b(k≠0)的图象过点A(0,2),B(3,0),∴2=b, 0=3k+b,解得k=-2/3,,b=2,∴此函数的解析式为:y=-2/3x+2,由“左加右减”的原则可知,将该图象沿x轴向左平移2个单位,则新图象对应的解析式为y=-2/3(x+2)+2,即y=-2/3x+2/3.故答案为:y=-2/3x+2/316、学习一次函数时,老师直接告诉大家结论:“直线y=kx+b在平移时,k不变”.爱思考的小张同学在平面直角坐标系中任画了一条直线y=kx+b交x、y轴于B、A两点,假设直线向右平移了a个单位得到y=k1x+b1,请你和他一起探究说明一下k1=k.解答:解:当x=0时,y=b,当y=0时,kx+b=0,解得x=-b/k,∴点A、B的坐标是A(0,b),B(-b/k,0),直线平移后,则A、B对应点的坐标为(a,b),(a-b/k,0),则k1a+b1=b①k1(a−b/k)+b1=0②,①-②得,b=k1b/k,∴k1=k.。
专题一、一次函数的图像的平移

专题一、一次函数的图像的平移一. 明确目标,预习交流1. 学习目标:①进一步掌握和巩固一次函数图象的画法.②从作图中探索总结一次函数图象的平移性质.③根据学生实际情况和结合考试题型掌握一些基本题型的解法.2. 重难点:一次函数图象的性质的归纳和应用。
二.合作探究,生成总结【探究一】由上作图,回答下列问题问题1.一次函数y = kx + b 的图象也是一条_____,我们称它是______________,所以今后只需选取_____个点即可画出图象.通常选取(0,______)和(______,0)两点.问题2.这三条直线互相_______,直线y= 2x+3是由直线y= 2x 向____平移____个单位长度得来的,直线y= 2x-2是由直线y= 2x 向____平移____个单位长度得来的.问题3.直线y= 2x+3与y 轴交于点______,直线y= 2x-2与y 轴交于点______.【点拨归纳】1.直线 y = kx + b 与直线y = kx 的位置关系是 __________.2.直线y = kx + b 是由直线y = kx 向___平移___个单位长度得来的.【试一试】1.直线y=5x-7与直线y=kx+2平行,则k=_______.2.将直线y=3x 向下平移3个单位所得直线的解析式为___________________.3.将直线y=﹣x ﹣5向上平移5个单位,得到直线_________。
4. 将直线412--=x y 向上平移1个单位所得直线的解析式为_________________ 5. 直线y=﹣2x+4是由直线y=﹣2x 向 平移 个单位6.直线312+-=x y 是由直线32x y -=向 平移 个单位 7.一直行于直线y=-2x+3平行,与y 轴的交点坐标为(0,6),则此函数解析式_____________. 8. 直线y=2x+4向下平移5个单位长度后与x 轴的交点 y 轴交点 。
一次函数图像的平移练习题

一次函数图像的平移练习题一 选择题1.一次函数y=x 图象向下平移2个单位长度后,对应函数关系式是 ( )A .y=x ﹣2B .y=2xC .y=1.5xD .y=x+22.一次函数y=2x+3的图象沿y 轴向下平移4个单位,那么所得图象的函数解析式是( )A .y=2x+2B .y=2x-3C .y=2x+1D .y=2x-13.一次函数y=2x+3的图象沿y 轴向下平移2个单位,那么所得图象的函数解析式是( )A .y=2x-3B .y=2x+2C .y=2x+1D .y=2x4.正比例函数y=2x 的图象沿x 轴向右平移2个单位,沿y 轴向上平移3个单位,得图象的函数解析式为( )A .y=2x-4B .y=2x+4C .y=2x-1D .y=2x+15.把直线y=-x+3沿y 轴向下平移2个单位所得函数的解析式为( )A .y=-3x+3B .y=-x+5C .y=-x+1D .y=x+16.将直线y=-3x+1沿y 轴向上平移3个单位,得图象的函数解析式为( )A .y=-3x-2B .y=-3x+4C .y=-3x-1D .y=-3x7.直线y=-2x+1沿y 轴向上平移2个单位,再沿x 轴向左平移3个单位所得直线的解析式为( )A y=-2x-5B y=2x-5C y=-2x-3D y=2x-38.如图,把直线y=-2x 向上平移后得到直线AB ,直线AB 过点(m ,n ),且2m+n=3,则直线AB 的函数表达式是( )A .y=-2x+3B .y=-2x-3C .y=-2x+6D .y=-2x-69.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-110.把直线y =kx +b 向上平移2个单位,得到的直线y =-3x +m 与函数y =-5x -2的图像交于y 轴上,则k,b 分别是( )A -2,-3 B -3,-4 C -3,-5 D -2,-6二 填空题1.一次函数y=-2x+p 的图象一次平移后经过点A (-1,y 1)、B (-2,y 2),则y 1____y 2(填“>”、“<”、“=”)2.已知函数y =k /x 的图象经过点(4,1/2 ),若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B (2,m ),则平移后的一次函数图象与x 轴的交点坐标为________3.将一次函数y=2x+3的图象向右平移1个单位长度,再向上平移4个单位长度,平移后的函数表达式为________4.一次函数y=(x −2)/3的图象可以看作是直线y=x /3向_______平移_______个单位长度得到的,它的图象不经过第_______象限5.若一次函数y=-2x+1的图象经过平移后经过点(2,5),则需将此图象向_______平移_______单位.6.将一次函数y=kx+5(k ≠0)的图象向下平移5个单位后,所得直线的解析式为______________,平移后的直线经过点(5,-10),则平移后的解析式为______________7.一次函数y=kx+b 的图象经过点A (0,1),B (3,0),若将该图象沿着x 轴向左平移4个单位,则此图象沿y 轴向下平移了______单位8.把一次函数y=2x-1沿x 轴向左平移1个单位,得到的直线解析式是9.直线y=43 x+1向下平移2个单位,再向左平移1个单位得到直线 10.直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=________11.过点(2,-3)且平行于直线y=-3x+1的直线是___________12.已知直线y=kx+b 与直线y= -3x+7关于x 轴对称,则k 、b 的值分别为_________13.将y=2x+1的图像沿y 轴向上平移3个单位得到的直线解析式是 ;再沿x 轴向右平移2个单位得到的直线解析式是14.直线y=-0.5x+3,y=-0.5x-5和y=-0.5x 的位置关系是15.与直线y= -3x+7关于y 轴对称的直线解析式为: ;与直线y= -3x+7关于x 轴对称的直线的解析式为: ;与直线x+1=4y+3x 关于y 轴对称的直线解析式为: ;与直线x+1=4y+3x 关于x 轴对称的直线解析式为: 三 解答题1.己知y+m 与x-n 成正比例,①试说明:y 是x 的一次函数;②若x=2时,y=3;x=1时,y=-5,求函数关系式;③将②中所得的函数图象平移,使它过点(2,-1),求平移后的直线的解析式2.一次函数图象可由直线y=3x平移而得,且它与直线y=-3x和x轴围成的三角形面积为6,求该一次函数在y 轴上的截距以及它与坐标轴围成的三角形的面积3.一次函数y=kx+4的图象经过点(-3,-2),则①求这个函数表达式;并画出该函数的图象;②判断(-5,3)是否在此函数的图象上;③求把这条直线沿x轴向右平移1个单位长度后的函数表达式4.一次函数y=kx+b的图象是过A(0,-4),B(2,-3)两点的一条直线.①求直线AB的解析式;②将直线AB 向左平移6个单位,求平移后的直线的解析式;③将直线AB向上平移6个单位,求原点到平移后的直线的距离5.一次函数y=kx+b(k≠0)的图象过点A(0,2),B(3,0),若将该图象沿x轴向左平移2个单位,求新图象对应的解析式6.已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值7.一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求一次函数的解析式8.将直线l1:y=kx+b(k≠0)向上平移5个单位长度后得到直线l2,l2经过点(1,2)和坐标原点,求直线l1的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数图像的平移练习题
一 选择题
1.一次函数y=x 图象向下平移2个单位长度后,对应函数关系式是 ( )
A .y=x ﹣2
B .y=2x
C .y=1.5x
D .y=x+2
2.一次函数y=2x+3的图象沿y 轴向下平移4个单位,那么所得图象的函数解析式是( )
A .y=2x+2
B .y=2x-3
C .y=2x+1
D .y=2x-1
3.一次函数y=2x+3的图象沿y 轴向下平移2个单位,那么所得图象的函数解析式是( )
A .y=2x-3
B .y=2x+2
C .y=2x+1
D .y=2x
4.正比例函数y=2x 的图象沿x 轴向右平移2个单位,沿y 轴向上平移3个单位,得图象的函数解析式为( )
A .y=2x-4
B .y=2x+4
C .y=2x-1
D .y=2x+1
5.把直线y=-x+3沿y 轴向下平移2个单位所得函数的解析式为( )
A .y=-3x+3
B .y=-x+5
C .y=-x+1
D .y=x+1
6.将直线y=-3x+1沿y 轴向上平移3个单位,得图象的函数解析式为( )
A .y=-3x-2
B .y=-3x+4
C .y=-3x-1
D .y=-3x
7.直线y=-2x+1沿y 轴向上平移2个单位,再沿x 轴向左平移3个单位所得直线的解析式为( )
A y=-2x-5
B y=2x-5
C y=-2x-3
D y=2x-3
8.如图,把直线y=-2x 向上平移后得到直线AB ,直线AB 过点(m ,n ),且2m+n=3,则直线AB 的函数表达式是( )
A .y=-2x+3
B .y=-2x-3
C .y=-2x+6
D .y=-2x-6
9.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )
A .y=-x-2
B .y=-x-6
C .y=-x+10
D .y=-x-1
10.把直线y =kx +b 向上平移2个单位,得到的直线y =-3x +m 与函数y =-5x -2的图像交于y 轴上,则k,b 分别是( )A -2,-3 B -3,-4 C -3,-5 D -2,-6
二 填空题
1.一次函数y=-2x+p 的图象一次平移后经过点A (-1,y 1)、B (-2,y 2),则y 1____y 2(填“>”、“<”、“=”)
2.已知函数y =k /x 的图象经过点(4,1/2 ),若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B (2,m ),则平移后的一次函数图象与x 轴的交点坐标为________
3.将一次函数y=2x+3的图象向右平移1个单位长度,再向上平移4个单位长度,平移后的函数表达式为________
4.一次函数y=(x −2)/3的图象可以看作是直线y=x /3向_______平移_______个单位长度得到的,它的图象不经过第_______象限
5.若一次函数y=-2x+1的图象经过平移后经过点(2,5),则需将此图象向_______平移_______单位.
6.将一次函数y=kx+5(k ≠0)的图象向下平移5个单位后,所得直线的解析式为______________,平移后的直线经过点(5,-10),则平移后的解析式为______________
7.一次函数y=kx+b 的图象经过点A (0,1),B (3,0),若将该图象沿着x 轴向左平移4个单位,则此图象沿y 轴向下平移了______单位
8.把一次函数y=2x-1沿x 轴向左平移1个单位,得到的直线解析式是
9.直线y=4
3 x+1向下平移2个单位,再向左平移1个单位得到直线 10.直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=________
11.过点(2,-3)且平行于直线y=-3x+1的直线是___________
12.已知直线y=kx+b 与直线y= -3x+7关于x 轴对称,则k 、b 的值分别为_________
13.将y=2x+1的图像沿y 轴向上平移3个单位得到的直线解析式是 ;再沿x 轴向右平移2个单位得到的直线解析式是
14.直线y=-0.5x+3,y=-0.5x-5和y=-0.5x 的位置关系是
15.与直线y= -3x+7关于y 轴对称的直线解析式为: ;与直线y= -3x+7关于x 轴对称的直线的解析式为: ;与直线x+1=4y+3x 关于y 轴对称的直线解析式为: ;与直线x+1=4y+3x 关于x 轴对称的直线解析式为: 三 解答题
1.己知y+m 与x-n 成正比例,①试说明:y 是x 的一次函数;②若x=2时,y=3;x=1时,y=-5,求函数关系式;③将②中所得的函数图象平移,使它过点(2,-1),求平移后的直线的解析式
2.一次函数图象可由直线y=3x平移而得,且它与直线y=-3x和x轴围成的三角形面积为6,求该一次函数在y 轴上的截距以及它与坐标轴围成的三角形的面积
3.一次函数y=kx+4的图象经过点(-3,-2),则①求这个函数表达式;并画出该函数的图象;②判断(-5,3)是否在此函数的图象上;③求把这条直线沿x轴向右平移1个单位长度后的函数表达式
4.一次函数y=kx+b的图象是过A(0,-4),B(2,-3)两点的一条直线.①求直线AB的解析式;②将直线AB 向左平移6个单位,求平移后的直线的解析式;③将直线AB向上平移6个单位,求原点到平移后的直线的距离
5.一次函数y=kx+b(k≠0)的图象过点A(0,2),B(3,0),若将该图象沿x轴向左平移2个单位,求新图象对应的解析式
6.已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值
7.一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求一次函数的解析式
8.将直线l1:y=kx+b(k≠0)向上平移5个单位长度后得到直线l2,l2经过点(1,2)和坐标原点,求直线l1的解析式。