楞次定律闭合回路的感应电流的方向

合集下载

(完整版)感应电流方向的判断楞次定律(含答案)

(完整版)感应电流方向的判断楞次定律(含答案)

感应电流方向的判断 楞次定律一、基础知识(一)感应电流方向的判断1、楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用情况:所有的电磁感应现象.2、右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体棒切割磁感线产生感应电流.3、利用电磁感应的效果进行判断的方法:方法1:阻碍原磁通量的变化——“增反减同”.方法2:阻碍相对运动——“来拒去留”.方法3:使线圈面积有扩大或缩小的趋势——“增缩减扩”方法4:阻碍原电流的变化(自感现象)——“增反减同”.(二)利用楞次定律判断感应电流的方向1、 楞次定律中“阻碍”的含义2、 楞次定律的使用步骤n (三)“一定律三定则”的应用技巧1、应用现象及规律比较基本现象应用的定则或定律运动电荷、电流产生磁场安培定则磁场对运动电荷、电流有作用力左手定则部分导体做切割磁感线运动右手定则电磁感应闭合回路磁通量变化楞次定律2、应用技巧无论是“安培力”还是“洛伦兹力”,只要是“力”都用左手判断.“电生磁”或“磁生电”均用右手判断.二、练习1、下列各图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中正确的是 ( ) 答案 CD解析 根据楞次定律可确定感应电流的方向:以C 选项为例,当磁铁向下运动时:(1)闭合线圈原磁场的方向——向上;(2)穿过闭合线圈的磁通量的变化——增加;(3)感应电流产生的磁场方向——向下;(4)利用安培定则判断感应电流的方向——与图中箭头方向相同.线圈的上端为S 极,磁铁与线圈相互排斥.运用以上分析方法可知,C 、D 正确.2、如图所示,一根条形磁铁从左向右靠近闭合金属环的过程中,环中的感应电流(自左向右看)( )A .沿顺时针方向B .先沿顺时针方向后沿逆时针方向C .沿逆时针方向D .先沿逆时针方向后沿顺时针方向答案 C解析 条形磁铁从左向右靠近闭合金属环的过程中,向右的磁通量一直增加,根据楞次定律,环中的感应电流(自左向右看)为逆时针方向,C 对.3、如图所示,当磁场的磁感应强度B 增强时,内、外金属环上的感应电流的方向应为( )A .内环顺时针,外环逆时针B .内环逆时针,外环顺时针C .内、外环均为顺时针D .内、外环均为逆时针答案 A解析 磁场增强,则穿过回路的磁通量增大,故感应电流的磁场向外,由安培定则知感应电流对整个电路而言应沿逆时针方向;若分开讨论,则外环逆时针,内环顺时针,A 正确.4、如图所示,在直线电流附近有一根金属棒ab ,当金属棒以b 端为圆心,以ab 为半径,在过导线的平面内匀速旋转到达图中的位置时( )A .a 端聚积电子B .b 端聚积电子C .金属棒内电场强度等于零D .U a >U b 答案 BD解析 因金属棒所在区域的磁场的方向垂直于纸面向外,当金属棒转动时,由右手定则可知,a 端的电势高于b 端的电势,b 端聚积电子,B 、D 正确.5、 金属环水平固定放置,现将一竖直的条形磁铁,在圆环上方沿圆环轴线从静止开始释放,在条形磁铁穿过圆环的过程中,条形磁铁与圆环( )A .始终相互吸引B .始终相互排斥C .先相互吸引,后相互排斥D .先相互排斥,后相互吸引答案 D解析 磁铁靠近圆环的过程中,穿过圆环的磁通量增加,根据楞次定律可知,感应电流的磁场阻碍穿过圆环的原磁通量的增加,与原磁场方向相反,如图甲所示,二者之间是斥力;当磁铁穿过圆环下降离开圆环时,穿过圆环的磁通量减少,根据楞次定律可知,感应电流的磁场阻碍穿过圆环的磁通量的减少,二者方向相同,如图乙所示,磁铁与圆环之间是引力.因此选项D 正确.也可直接根据楞次定律中“阻碍”的含义推论:来则拒之,去则留之分析.磁铁在圆环上方下落过程是靠近圆环.根据来则拒之,二者之间是斥力;当磁铁穿过圆环后继续下落过程是远离圆环.根据去则留之,二者之间是引力.因此选项D 正确.6、如图所示,ab 是一个可以绕垂直于纸面的轴O 转动的闭合矩形导体线圈,当滑动变阻器R 的滑片P 自左向右滑动过程中,线圈ab 将( )A .静止不动B .逆时针转动C .顺时针转动D .发生转动,但因电源的极性不明,无法确定转动的方向答案 C解析 当P 向右滑动时,电路中电阻减小,电流增大,穿过线圈ab 的磁通量增大,根据楞次定律判断,线圈ab 将顺时针转动.7、如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H 处同时释放(各线框下落过程中不翻转),则以下说法正确的是( )A .三者同时落地B .甲、乙同时落地,丙后落地C .甲、丙同时落地,乙后落地D .乙、丙同时落地,甲后落地答案 D 解析 甲是闭合铜线框,在下落过程中产生感应电流,所受的安培力阻碍它的下落,故所需的时间长;乙不是闭合回路,丙是塑料线框,故都不会产生感应电流,它们做自由落体运动,所需时间相同,故D 正确.8、如图,铜质金属环从条形磁铁的正上方由静止开始下落,在下落过程中,下列判断中正确的是( )A .金属环在下落过程中机械能守恒B .金属环在下落过程中动能的增加量小于其重力势能的减少量C .金属环的机械能先减小后增大D .磁铁对桌面的压力始终大于其自身的重力答案 B解析 金属环在下落过程中,磁通量发生变化,闭合金属环中产生感应电流,金属环受到磁场力的作用,机械能不守恒,A 错误.由能量守恒知,金属环重力势能的减少量等于其动能的增加量和在金属环中产生的电能之和,B 正确.金属环下落的过程中,机械能转变为电能,机械能减少,C 错误.当金属环下落到磁铁中央位置时,金属环中的磁通量不变,其中无感应电流,和磁铁间无作用力,磁铁所受重力等于桌面对它的支持力,由牛顿第三定律,磁铁对桌面的压力等于桌面对磁铁的支持力,等于磁铁的重力,D 错误.9、如图所示,绝缘水平面上有两个离得很近的导体环a 、b .将条形磁铁沿它们的正中向下移动(不到达该平面),a 、b 将如何移动( )A .a 、b 将相互远离B .a 、b 将相互靠近C .a 、b 将不动D .无法判断答案 A解析 根据Φ=BS ,条形磁铁向下移动过程中B 增大,所以穿过每个环中的磁通量都有增大的趋势.由于S 不可改变,为阻碍磁通量增大,导体环会尽量远离条形磁铁,所以a 、b 将相互远离.10、如图所示,质量为m 的铜质小闭合线圈静置于粗糙水平桌面上.当一个竖直放置的条形磁铁贴近线圈,沿线圈中线由左至右从线圈正上方等高、快速经过时,线圈始终保持不动.则关于线圈在此过程中受到的支持力F N 和摩擦力F f 的情况,以下判断正确的是( )A .F N 先大于mg ,后小于mgB .F N 一直大于mgC .F f 先向左,后向右D .F f 一直向左答案 AD 解析 条形磁铁贴近线圈,沿线圈中线由左至右从线圈正上方等高、快速经过时,线圈中磁通量先增大后减小,由楞次定律中“来拒去留”关系可知A 、D 正确,B 、C 错误.11、如图所示,线圈M 和线圈N 绕在同一铁芯上.M 与电源、开关、滑动变阻器相连,P 为滑动变阻器的滑动触头,开关S 处于闭合状态,N 与电阻R 相连.下列说法正确的是( )A .当P 向右移动时,通过R 的电流为b 到a B .当P 向右移动时,通过R 的电流为a 到b C .断开S 的瞬间,通过R 的电流为b 到a D .断开S 的瞬间,通过R 的电流为a 到b答案 AD解析 本题考查楞次定律.根据右手螺旋定则可知M 线圈内磁场方向向左,当滑动变阻器的滑动触头P 向右移动时,电阻减小,M 线圈中电流增大,磁场增大,穿过N 线圈内的磁通量增大,根据楞次定律可知N 线圈中产生的感应电流通过R 的方向为b 到a ,A正确,B 错误;断开S 的瞬间,M 线圈中的电流突然减小,穿过N 线圈中的磁通量减小,根据楞次定律可知N 线圈中产生的感应电流方向为a 到b ,C 错误,D 正确.12、如图所示,圆环形导体线圈a 平放在水平桌面上,在a 的正上方固定一竖直螺线管b ,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P 向上滑动,下面说法中正确的是( )A .穿过线圈a 的磁通量变大B .线圈a 有收缩的趋势C .线圈a 中将产生俯视顺时针方向的感应电流D .线圈a 对水平桌面的压力F N 将增大答案 C解析 P 向上滑动,回路电阻增大,电流减小,磁场减弱,穿过线圈a 的磁通量变小,根据楞次定律,a 环面积应增大,A 、B 错;由于a 环中磁通量减小,根据楞次定律知a 环中感应电流应为俯视顺时针方向,C 对;由于a 环中磁通量减小,根据楞次定律,a 环有阻碍磁通量减小的趋势,可知a 环对水平桌面的压力F N 减小,D 错.13、两根相互平行的金属导轨水平放置于图10所示的匀强磁场中,在导轨上接触良好的导体棒AB 和CD 可以自由滑动.当AB 在外力F 作用下向右运动时,下说法中正确的是( )A .导体棒CD 内有电流通过,方向是D →CB .导体棒CD 内有电流通过,方向是C →D C .磁场对导体棒CD 的作用力向左D .磁场对导体棒AB 的作用力向左答案 BD解析 利用楞次定律.两个导体棒与两根金属导轨构成闭合回路,分析出磁通量增加,结合安培定则判断回路中感应电流的方向是B →A →C →D →B .以此为基础,再根据左手定则进一步判定CD 、AB 的受力方向,经过比较可得正确答案.14、如图所示,金属导轨上的导体棒ab 在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c 中将有感应电流产生且被螺线管吸引( )A .向右做匀速运动B .向左做减速运动C .向右做减速运动D .向右做加速运动答案BC解析 当导体棒向右匀速运动时产生恒定的电流,线圈中的磁通量恒定不变,无感应电流出现,A错;当导体棒向左减速运动时,由右手定则可判定回路中出现从b→a的感应电流且减小,由安培定则知螺线管中感应电流的磁场向左在减弱,由楞次定律知c中出现顺时针感应电流(从右向左看)且被螺线管吸引,B对;同理可判定C对,D错.15、如图所示装置中,cd杆原来静止.当ab杆做如下哪些运动时,cd杆将向右移动( )A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动答案 BD解析 ab匀速运动时,ab中感应电流恒定,L1中磁通量不变,穿过L2的磁通量不变,L2中无感应电流产生,cd杆保持静止,A不正确;ab向右加速运动时,L2中的磁通量向下增大,由楞次定律知L2中感应电流产生的磁场方向向上,故通过cd的电流方向向下,cd向右移动,B正确;同理可得C不正确,D正确.16、如图甲所示,等离子气流由左边连续以v0射入P1和P2两板间的匀强磁场中,ab直导线与P1、P2相连接,线圈A与直导线cd连接.线圈A内有随图乙所示的变化磁场,且磁场B的正方向规定为向左,如图甲所示.则下列说法正确的是 ( )A.0~1 s内ab、cd导线互相排斥B.1 s~2 s内ab、cd导线互相排斥C.2 s~3 s内ab、cd导线互相排斥D.3 s~4 s内ab、cd导线互相排斥答案 CD解析 由图甲左侧电路可以判断ab中电流方向由a到b;由右侧电路及图乙可以判断,0~2 s内cd中电流为由c到d,跟ab中的电流同向,因此ab、cd相互吸引,选项A、B 错误;2 s~4 s内cd中电流为由d到c,跟ab中电流反向,因此ab、cd相互排斥,选项C、D正确.17、如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动,则PQ所做的运动可能是( )A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动解析 MN向右运动,说明MN受到向右的安培力,因为ab在MN处的磁场垂直纸面向里MN中的感应电流由M→NL1中感应电流的磁场方向向上Error!;若L2中磁场方向向上减弱PQ中电流为Q→P且减小向右减速运动;若L2中磁场方向向下增强PQ中电流为P→Q且增大,向左加速运动.答案 BC18、如图所示,通电导线cd右侧有一个金属框与导线cd在同一平面内,金属棒ab放在框架上,若ab受到向左的磁场力,则cd中电流的变化情况是( )A.cd中通有由d→c方向逐渐减小的电流B.cd中通有由d→c方向逐渐增大的电流C.cd中通有由c→d方向逐渐减小的电流D.cd中通有由c→d方向逐渐增大的电流答案 BD19、如图所示,线圈由A位置开始下落,在磁场中受到的安培力如果总小于它的重力,则它在A、B、C、D四个位置(B、D位置恰好线圈有一半在磁场中)时,加速度关系为( ) A.a A>a B>a C>a DB.a A=a C>a B>a DC.a A=a C>a D>a BD.a A=a C>a B=a D答案 B解析 线圈在A、C位置时只受重力作用,加速度a A=a C=g.线圈在B、D位置时均受两个力的作用,其中安培力向上,重力向下.由于重力大于安培力,所以加速度向下,大小a=g-<g.又线圈在D点时速度大于B点速度,即F D>F B,所以Fma D<a B,因此加速度的关系为a A=a C>a B>a D,选项B正确.20、(2011·上海单科·13)如图,均匀带正电的绝缘圆环a 与金属圆环b 同心共面放置,当a 绕O 点在其所在平面内旋转时,b 中产生顺时针方的感应电流,且具有收缩趋势,由此可知,圆环a ( )A .顺时针加速旋转B .顺时针减速旋转C .逆时针加速旋转D .逆时针减速旋转解析 由楞次定律知,欲使b 中产生顺时针电流,则a 环内磁场应向里减弱或向外增强,a 环的旋转情况应该是顺时针减速或逆时针加速,由于b 环又有收缩趋势,说明a 环外部磁场向外,内部向里,故选B.答案 B 21、如图 (a)所示,两个闭合圆形线圈A 、B 的圆心重合,放在同一水平面内,线圈A 中通以如图(b)所示的交变电流,t =0时电流方向为顺时针(如图中箭头所示),在t 1~t 2时间段内,对于线圈B ,下列说法中正确的是( )A .线圈B 内有顺时针方向的电流,线圈有扩张的趋势B .线圈B 内有顺时针方向的电流,线圈有收缩的趋势C .线圈B 内有逆时针方向的电流,线圈有扩张的趋势D .线圈B 内有逆时针方向的电流,线圈有收缩的趋势答案 A解析 在t 1~t 2时间段内,A 线圈的电流为逆时针方向,产生的磁场垂直纸面向外且是增加的,由此可判定B 线圈中的电流为顺时针方向.线圈的扩张与收缩可用阻碍Φ变化的观点去判定.在t 1~t 2时间段内B 线圈内的Φ增强,根据楞次定律,只有B 线圈增大面积,才能阻碍Φ的增加,故选A.22、 (2011·海南单科·20)如图,磁场垂直于纸面,磁感应强度在竖直方向均匀分布,水平方向非均匀分布.一铜制圆环用丝线悬挂于O 点,将圆环拉至位置a 后无初速度释放,在圆环从a 摆向b 的过程中( )A .感应电流方向先逆时针后顺时针再逆时针B.感应电流方向一直是逆时针C.安培力方向始终与速度方向相反D.安培力方向始终沿水平方向答案 AD解析 圆环从位置a运动到磁场分界线前,磁通量向里增大,感应电流方向为逆时针;跨越分界线过程中,磁通量由向里最大变为向外最大,感应电流方向为顺时针;再摆到b的过程中,磁通量向外减小,感应电流方向为逆时针,A正确,B错误;由于圆环所在处的磁场,上下对称,所受安培力在竖直方向平衡,因此总的安培力方向沿水平方向,故C错误,D正确.。

怎么用楞次定律判断电流方向

怎么用楞次定律判断电流方向

怎么用楞次定律判断电流方向
左力右电
楞次定律:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

楞次定律是判断感应电流方向的一般法则。

扩展资料
右手定则:伸开右手,使拇指与四指在同一平面内且跟四指垂直,让磁感线垂直穿入手心,使拇指指向导体运动方向,四指方向为感应电流方向。

右手定则只适于判断闭合电路中部分导体做切割磁感线运动。

右手定则判断感应电流的方向与楞次定律是一致的,但比楞次定律简单。

左手定则(安培定则):已知电流方向和磁感线方向,判断通电导体在磁场中受力方向。

伸开左手,让磁感线穿入手心(手心对准N极,手背对准S极),四指指向电流方向,那么大拇指的方向就是导体受力方向。

至于怎么用,“左动右发”,就是,左手“电动机”,右手“发电机”。

左手定则说的是磁场对电流作用力,或是磁场对运动电荷的作用力。

这是关键。

右手定则所应用的现象,就是导线在磁场里面,切割磁感线运动的`时候,产生的感应电流的运动方向。

例如磁场方向,切割磁感线运动,电动势电动方向这些都是与感应电流有关的。

用右手定则。

楞次定律----感应电流方向的判定

楞次定律----感应电流方向的判定

(5)如图,金属棒ab在匀强磁场
中沿金属框架向右匀速运动,用右 手定则和楞次定律两种方法判定ab 导体中感应电流的方向。
d
a
v
c
b
小结 判断感应电流的方向:
楞次定律是普遍适用的 ❖导体切割磁感线时用右手定则方便 磁铁和线圈作相对运动时用“来拒去
留”方便
③ 思考题
1、一闭合的铜环放 在水平桌面上,磁 铁向下运动时,环 的面积如何变化?
2、固定的长直导线中 电流突然增大时,附 近的导线框abcd整体 受什么方向的力作用?
M
a
d
I
b
c
N
• 楞次定律的两个推论: (1)闭合电路面积的增、减总是要阻碍原 磁通量的变化。
(2)闭合电路的移动(或转动)方向总是 要阻碍原磁通量的变化。
(一般情况下,同一闭合电路会同时存在 上述两种变化)
2.楞次定律第二种表述应用
S
N
S
N
N
A
B
磁铁从线圈中插入时,❖磁铁从螺线管右端拔
Байду номын сангаас标出感应电流的方向。 出时,A、B两点哪点 电势高?
S
N
N
S
N
S
N
+

A
B
此时线圈相当于电源,电源内部电流 (感应电流)从负极到正极.
应用楞次定律解决问题
(3)下图中弹簧线圈面积增大时, 判断感应电流的方向是顺时针还是 逆时针。
B
B
I
(4)下图中k接通时乙回路有感应 电流产生吗?方向如何?
M
× × ×
×
B1× ×
N× ×
cB
× × × ×
dB

楞次定律

楞次定律
G C A S 解题步骤: 解题步骤: 1、明确原磁场方向 、 2、明确穿过闭合回路的磁通量如何变化 、 3、由楞次定律确定感应电流的磁场方向 、 4、利用安培定则确定感应电流的方向 、 D B
答案: 答案:
原磁场方 向
穿过回路磁 通量的变化
闭合
向外 增加 向里 D--C
感应电流 磁场方向 感应电流 方向
A I B D C 原磁场方 向 穿过回路 磁通量的 变化 感应电流 磁场方向 感应电流 方向 远离 向里 减少
向里 A-C-D-B
互相平行, 例2、如图,导线AB和CD互相平行,试确定在 如图,导线 和 互相平行 闭合和断开开关S时导线 中感应电流的方向。 时导线CD中感应电流的方向 闭合和断开开关 时导线 中感应电流的方向。
例3
B原 N N S S
逆 时 针
S
N
逆 时 针
例4、如图,在水平光滑的两根金属导轨上放置两根 如图, 导体棒AB CD, AB、 导体棒AB、CD,当条形磁铁插入与拔出时导体棒如 何运动?(不考虑导体棒间的磁场力) ?(不考虑导体棒间的磁场力 何运动?(不考虑导体棒间的磁场力)
答案: 答案: 插入时: 插入时:相向运动
Δφ I感
3、楞次定律中“阻碍”的含意: 、楞次定律中“阻碍”的含意: 不是阻止;可理解为“增反、减同” 不是阻止;可理解为“增反、减同”
阻碍
B感
来 上
左进左偏; 左进左偏;右进右偏
楞次定律: 楞次定律:
表述一: 表述一:感应电流具有这 样的方向, 样的方向,即感应电流的 磁场总要阻碍引起感应电 流的磁通量的变化。 流的磁通量的变化。
表述二: 表述二:感应电流总要阻碍导体和 磁体间的相对运动。 磁体间的相对运动。

楞次定律

楞次定律

2.推理与结论 当磁铁移近或插入线圈时,穿过线圈的磁
通量增加,这对感应电流的磁场方向跟磁铁的 磁Байду номын сангаас方向相反,阻碍磁通量的增加;
当磁铁离开线圈或从中拔出时,穿线圈的 磁通量减少,这时感应电流的磁场方向跟磁铁 的磁场方向相同,阻碍磁通量减少.
结论:感应电流的磁场总是要阻碍引起感应 电流的磁通量的变化.
三、楞次定律
——感应电流的方向
• 在存在感应电动势的闭合电路中,感应 电流具有一定的流向,那么感应电流的 方向是由什么因素来决定的呢?我们将 通过演示,归纳总结出结论.
一、感应电流的方向
点 击 下 图 观 看 演 示 实 验
1.分析与归纳
当磁铁移近或插入线 圈时,线圈中感应电流 的磁场方向跟磁铁的磁 场方向相反(如图甲、 丙);
二、楞次定律
1.楞次定律:感应电流具有这样的方向,即感应 电流的磁场总是要阻碍引起感应电流的磁通量的 变化. (1)引起感应电流的磁通量是指原磁通量. (2)“阻碍”并不是“相反”,而是当磁通量增 加时,感应电流的磁场与原磁场方向相反;磁通 量减少时,感应电流的磁场与原磁场方向相同. 感应电流的磁场对原磁通量的变化所起的阻碍 作用不能改变磁通量变化的趋势,仅起到一种延 缓作用.
三、用楞次定律判定感应电 流方向的一般步骤
1.确定穿过电路原磁场的方向. 2.确定穿过的磁通量是增大还是减小. 3.根据楞次定律确定感应电流的磁场方向,
“增反减同”. 4.应用安培定则,确定感应电流的方向.
当磁铁离开线圈或从 线圈中拔出时,线圈中 感应电流的磁场方向跟 磁铁的磁场方向相同 (如图乙、丁).
; 微信红包群 / 微信红包群 ;
去迎接每一天。用自己的双眼,去欣赏属于自己的快乐风景。也可以认为,人的心灵应该永远充

用楞次定律判断感应电流方向的步骤

用楞次定律判断感应电流方向的步骤

用楞次定律判断感应电流方向的步骤楞次定律,这个名字听起来好像很高大上,其实它就是告诉我们:感应电流的方向总是阻碍引起感应的磁通量的变化。

那么,怎么判断感应电流的方向呢?别着急,小编这就来告诉你!
我们要明确什么是磁通量。

磁通量是用来衡量磁场在空间分布的一个物理量,它的单位是韦伯(Wb)。

有了磁通量,我们就可以知道磁场的大小和方向了。

那么,感应电流又是什么呢?感应电流是指由于磁通量的变化而产生的电流。

接下来,我们就要用到楞次定律了。

楞次定律告诉我们:感应电流的方向总是阻碍引起感应的磁通量的变化。

换句话说,如果我们想让感应电流沿着一个方向流动,就必须让引起磁通量变化的那个磁场沿着相反的方向变化。

这样一来,感应电流就会顺着另一个方向流动,形成一个闭合回路。

那么,怎么确定引起磁通量变化的那个磁场呢?这就需要我们用到一些基本的电学知识和实验技巧了。

具体来说,我们可以利用安培环路定理和法拉第电磁感应定律来进行分析和计算。

通过这些方法,我们可以确定出引起磁通量变化的磁场的位置、大小和方向,从而推导出感应电流的方向。

判断感应电流的方向并不是一件难事。

只要掌握了楞次定律的基本原理和应用方法,再结合一些基本的电学知识和实验技巧,我们就可以轻松地完成这项任务。

当然啦,这也需要我们具备一定的数学和物理基础才能更好地理解和应用这些知识。

所以呢,大家一定要好好学习,天天向上哦!。

感应电流的方向-楞次定律

感应电流的方向-楞次定律
感应电流的方向-楞次定律
目录
• 楞次定律的概述 • 楞次定律的物理原理 • 楞次定律的应用实例 • 楞次定律的拓展与深化 • 实验与探究:楞次定律的验证
01 楞次定律的概述
楞次定律的定义
01
楞次定律
感应电流的方向总是要使它的磁场阻碍引起感应电流的磁通量的变化。
02
总结词
楞次定律是电磁感应现象中感应电流方向遵循的规律,其核心是“感应
楞次定律的意义
总结词
楞次定律是电磁学中的基本定律之一,对于理解电磁感应现象、预测感应电流的方向以及应用电磁感应原理具有 重要意义。
详细描述
楞次定律是电磁学领域中一个非常重要的定律,它揭示了磁场变化与感应电流方向之间的内在关系。通过应用楞 次定律,我们可以预测感应电流的方向,进一步理解和掌握电磁感应现象。此外,楞次定律在电力、电子、通信 等领域有着广泛的应用,为现代科技的发展提供了重要的理论支持。
楞次定律的数学表达式
楞次定律可以用数学表达式表示为:dΦ/dt = -L * di/dt,其中Φ表示磁通量,L表 示电感,i表示电流。
该公式表明,当磁通量发生变化时,感应电流的方向总是要阻碍磁通量的变化, 即感应电流产生的磁场总是要阻碍原磁场的变化。
03 楞次定律的应用实例
交流电机的应用
交流电机是利用楞次定律工作的设备之一。当电机中的线圈 在磁场中旋转时,线圈中会产生感应电流。根据楞次定律, 感应电流的方向会阻碍线圈的旋转,从而产生转矩,使电机 旋转。
04 楞次定律的拓展与深化
楞次定律与法拉第电磁感应定律的关系
楞次定律和法拉第电磁感应定律是电磁学中两个重要的基本定律,它们 之间存在密切的联系。楞次定律描述了感应电流的方向,而法拉第电磁 感应定律描述了感应电动势的大小。

楞次定律-判断感应电流的方向.

楞次定律-判断感应电流的方向.

三、楞次定律-判断感应电流的方向[要点导学]1.这一节学习楞次定律,用来判断感应电流的方向。

这部分知识与法拉第电磁感应定律一起组成了本章的两大重要内容。

学习中应该特别重视。

2.感应电流具有这样的方向,即感应电流的磁场总要,这就是楞次定律。

3.理解楞次定律的关键是阻碍两个字。

要全面地理解阻碍的意义——当磁通量增大时感应电流的磁场就阻碍磁通量的增加;当磁通量减少时感应电流的磁场就阻碍磁通量的减少;当磁体靠近线圈产生感应电流时感应电流的磁场就阻碍磁体的靠近;当磁体远离线圈产生感应电流时感应电流的磁场就阻碍磁体的远离。

特别注意:阻碍不是阻止,阻碍的意思可以用“克强助弱”、“减同增反”、“去则吸引”、“来则排斥”形象描述。

4.从磁通量变化的角度来看,感应电流的磁场总要,从导体与磁场的相对运动的角度来看,感应电流的磁场总要。

5.如果感应电流做了功,就一定有其它形式的能转化为感应电流的电能。

当我们手持磁铁插入闭合线圈时,感应电流的磁场阻碍磁铁插入,我们必须克服阻力做功,这一过程中生物能转化为电能。

楞次定律实际上是能量守恒在电磁感应现象中的必然结果。

所以用能量的转化和守恒的观点分析电磁感应现象是一种很重要的方法。

[范例精析]例1 用图4-3-1所示的装置来验证“感应电流的磁场总是阻碍引起感应电流的磁通量的变化”。

该装置的电原理图见图4-3-2,已经判明电流表的指针是电流从左接线柱流入则向左偏,电流从右接线柱流入则向右偏。

设计一个表格,把开关闭合、开关断开、滑动变阻器电阻变化产生感应电流的几种情况列入表格中,并且在表格中比较原磁场的变化与感应电流的磁场的方向进行比较。

解析表格要列入的情况有四种:开关闭合、开关断开、变阻器电阻变大和滑动变阻器电阻变小。

所以表格应该有五行。

为了比较A线圈中磁场的方向、A线圈中磁场的变化、感应电流的方向、B线圈中磁场的方向,最终验证B线圈中磁场方向是否阻碍A线圈中磁场的变化,表格应该有六列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B dS 0 (3)
H dl
I dΦD (4)
L
dt
B
非静电性场强

Ek

Fm e

v
B

ε Ek dl
Ek 只在电源ab棒中存在,故
ε
a
(v
B)

dl
b
*三、涡旋电场
麦克斯韦尔假设变化的磁场在其周围空间激发一
种电场,这个电场叫感生电场
Ei
.
闭合回路中的感生电动势
ε


Ei dl
变化的磁场激发感生电场,而关于位移电流的假 设又说明变化的电场激发感生磁场. 事实上,存在交 变电场的空间必然存在交变磁场;存在交变磁场的空 间必然存在交变电场,它们相互联系,相互激发,组 成一个统一的电磁场.
D dS
q (1)
E
dl


(2)
S
L
dt


由螺旋关系由
B感
方向确定
I感
.
三、法拉第电磁感应定律
感应电动势的大小正比于通过导体回路的磁通量 的变化率.
ε dΦ (SI) dt
N匝线圈时
ε dΨ N dΦ (各匝中 Φ相同)
dt
dt
感应电流 I ε N dΦ
R
Rdt
例:证明在均匀磁场 B中,面
积速为度S、绕匝垂数直为于NB的的线轴圈线以匀角速


dΦ dt
Φ B dS
Ei

S
L Ei dl

S
dB
dS
dt
负号表示
Ei

dB
成左螺旋关系.
dt
例:半径为R的圆柱形空间内存在垂直于纸面向里的均
匀磁场,磁感应强度B
以dB
dt
的变化率均匀增加时,求
圆柱形空间内各点处感生电场的场强.
解: 由于圆柱形空间的对称性
dt
令 m NBS
m sin(t )
(2) I εm sin ωt NBSω sin(t )
R
R
感应电流放出的焦耳热为
Q T I 2Rdt 0
线圈所受磁场的作用力矩的大小为
M

m

B

N 2B2S 2ω sin2 (t )
R
外力矩所做的功 令 θ ωt α dθ ωdt
及磁场均匀增加,圆形磁场区
域内 E感线为一系列同心圆.且
同一圆周上
Ei
大小相等,方向沿

切线,指向与 dB 成左螺旋关系.
dt
作由半径L 为Ei L d的l环 形s dd路Bt径dS

L R

Ei o

r


dB
B dt
B1
r1
的线圈中通有电流
N1 l
I1

n1I1
I1
,

穿过半径为 r2 的线圈的磁通链匝数为
Ψ N2Φ21 N2B1(πr12 ) n2lB1(πr12 )
代入 B1计算得 Ψ N2Φ21 μn1n2l(πr12 )I1

M12

N 2Φ21 I1

μn1n2l(πr12 )
以 L 为边做任意曲面 S1,电流I
穿过S1面
S1

LH dl I
S2
-+ -+ -+ -+
I
电流I未穿过S2面,即从S2看, L
L
未包含I

LH dl 0
由此看出对于同一个环路L,由于对环路所张的
曲面不同,所得到的结果也不同,出现了理论上的
矛盾.
从自然规律的对称性,联想变化磁场能产生涡旋
转动时,(1) 线圈中的感应电
动势按正弦规律变化; (2) 若
O'
N
en
B

线圈自成闭合回路, 电阻为R ,
则在一周内外力矩所作的功
等于感应电流所放出的焦耳
热 .
解:(1) 在任一时刻t
O
Ψ NΦ NBS cos(t )(为t=0时
i
e与n
R
B的 夹角)
ε dΨ NBSωsin(t )

电源内
规定电动势的指向从电源负极经内电路指向正极.
二、楞次定律
闭合回路的感应电流的方向,总是企图使感应电 流本身所产生的通过回路面积的磁通量, 去补偿或者 反抗引起感应电流的磁通量的变化.
用楞次定律判断感应电流方向的方法:
① 引起感应电流的磁场B 的方向及回路中Φ是增加还是
减少;


② 减由小楞次B感定与律B同确向定.B感方向;Φ增加 B感与 B反向; Φ
1 LI 2为电源反抗自感电动势作的功. 2
自感线圈磁能
Wm

1 2
LI 2
L n2V , B nI
Wm

1 2
LI
2

1 2
n2V ( B )2 n

1 2
B2 V


wmV
磁场能量密度
wm

B2
2

1 2
H 2

1 2
BH
磁场能量
Wm

V wmdV

B2 dV
V 2
同理
M 21

N1Φ12 I2

μn1n2l(πr12 ) M12
三、磁场能量
L
由闭合电路的欧姆定律
ε L dI RI dt
Idt LIdI RI2dt
l
R
t ε Idt 1 LI 2 t RI2dt
0
2
0
t ε Idt
为电源作功.
0
t RI 2dt 为回路电阻所放出的焦耳热. 0
电场,那么变化的电场也可能产生磁场,麦克斯韦将 电位移矢量D的变化视为位移电流,可激发磁场,从而 提出了位移电流假设,并定义位移电流强度
Id

dΦD dt
ΦD为电位移矢量的通量.
全电流
Is Ic Id
全电流定律
H dl
L
Is

Ic

dΦD dt
三、电磁场和麦克斯韦方程组
a

Bv

Fm
b
当导体在磁场中运动时内部的电荷所受的洛伦兹 力Fm为非静电力. 它驱使自由电子向b端聚集,ab棒为 电源,a端为正极,b端为负极.
自由电子所受的洛伦兹力:
Fm

(e)v
8-4 位移电流 麦克斯韦方程组
一、两类电场—静电场和涡旋电场
静电场 感应电场

L Es dl 0
L
Ei

dl


dΦ dt
统一的电场 E Es Ei

LE

dl


dΦ dt
二、传导电流和位移电流

用含电容器电路考察, 安培环路定理 H dl I L
12


dΨ12 dt
M dI2 dt
M


ε21 dI1


ε12 dI2
dt
dt
互感系数是表示互感强弱的物理量.
例:两长螺线管C1和C2共轴相套,半径分别为r1和
r2( r1<r2 ), 长度均为l, 匝数分别为N1和N2 , 管内磁介
质的磁导率为, 求它们的互感系数 M .
解:
设半径为
8-2 动生电动势 *涡旋电场
一、动生电动势
引起磁通量变化的原因
(1)稳恒磁场中的导体运动 (2)导体不动,磁场变化
动生电动势 感生电动势
度 v在沿金磁属场导中轨,导向体右棒运以动,速 棒速度内v的向自右由运电动子,被因带而着每个以
自由电子都受到洛伦兹力
的作用.





L


d(LI dt
)

L
dI dt

I
dL dt
Байду номын сангаас
当线圈自感系数不变时,dL 0 dt
自感电动势
L

L
dI dt
L

L
dI dt
负号是楞次定律的数学表示,表明电流增加时, 自感电动势与原电流反向;电流减少时,自感电动势 与原电流同向.
例:一长直螺线管,线圈匝数为N,长度为l,横截面积为

Ei
dl dB L dt
dS
s
Ei
2πr

dB dt
πr 2
Ei

r 2
dB dt
8-3 自感 *互感 磁场的能量
一、自感电动势
由于回路自身电流产生的磁通量发生变化,而在回 路中激发的感应电动势叫自感电动势.
1.自感系数
由法拉第电磁感应定律可知:
i
d(NΦ) dt
dΨ dt
而线圈的磁链与线圈中的电流I成正比 Ψ I.
写成等式:Ψ LI
定义 自感系数 L Ψ I
物理意义: 单位电流引起的自感磁通链数.
单位:H(亨利), mH(毫亨). 1H=103mH 除铁心线圈外,自感系数与线圈的大小、形状、
相关文档
最新文档