初中数学 弧、弦、圆心角

合集下载

人教版九上数学第24章 圆 24.1.3 弧 弦 圆心角教案+学案

人教版九上数学第24章 圆 24.1.3 弧 弦 圆心角教案+学案

人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.3 弧、弦、圆心角教案【教材内容】1.圆心角的概念;2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等;3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.【教学目标】1.了解圆心角的概念;2.掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.【教学重点】通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.【教学难点】弧、弦、圆心角之间的相等关系是论证同圆或等圆中弧相等、角相等、线段相等的主要依据.【教学过程设计】一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究知识点一:圆心角 【类型一】圆心角的识别例1 如图所示的圆中,下列各角是圆心角的是( )A .∠ABCB .∠AOBC .∠OABD .∠OCB 解析:根据圆心角的概念,∠ABC 、∠OAB 、∠OCB 的顶点分别是B 、A 、C ,都不是圆心O ,因此都不是圆心角.只有B 中的∠AOB 的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.知识点二:圆心角的性质 【类型一】利用圆心角的性质求角例2 如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE .∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角例3 如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C .因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明例4 如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N .求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD .∵OA =OB .又M ,N 分别是OA ,OB 的中点,∴OM =ON .又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO .∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F .∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON .又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD .由证法1,知CM =DN .又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND .∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.知识点四:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 例5 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么? (2)如果OE=OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?解析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt•△COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到AB =CD 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=12AB ,CF=12CD ∴AE=CF 又∵OA=OC ∴Rt △OAE ≌Rt △OCF ∴OE=OF(2)如果OE=OF ,那么AB=CD ,AB =CD ,∠AOB=∠COD 理由是:∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CDD∴AE=12AB,CF=12CD∴AB=2AE,CD=2CF∴AB=CD∴AB=CD,∠AOB=∠COD方法归纳:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.三、教学小结师生一起总结本节学习知识要点:1.圆心角的概念;2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.【板书设计】24.1 圆的有关性质24.1.3 弧、弦、圆心角1.圆心角的识别2.圆心角的性质3.弧、弦、圆心角之间的关系4.运用弧、弦、圆心角的关系进行证明与计算【课堂检测】1.(1)在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.在同圆或等圆中,如果两条弧相等,那么它们所对的相等,•所对的弦也.(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的也相等.2. 如图,在⊙O中,AB=AC∠ACB=60 °,求证:∠AOB=∠BOC=∠AOC3. 如图,AB,CD是⊙O的两条弦。

人教版初三数学上册 弧、弦、圆心角、圆周角 讲义

人教版初三数学上册 弧、弦、圆心角、圆周角 讲义

弧、弦、圆心角、圆周角之间的关系解题技巧:1、顶点在圆心的角叫圆心角,顶点在圆周上的角叫圆周角2、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等(知道一组相等,就可以推出其它三组相等)3、圆周角定理:同弧所对圆周角是圆心角的一半4、直径所对圆周角等于90°,90°的圆周角所对的弦是直径例1、下列说法正确的是_________________①相等的圆周角所对的弧相等②相等的弦所对的弧相等③等弦对等弧④等弧对等弦例2、如图,点A、B、C在⊙O上,OC、OB是半径,∠COB=100°,则∠A的度数等于()A、20°B、40°C、50°D、100°例3、如图所示,BD是⊙O的直径,∠CBD=30°,则∠A的度数为()A、30°B、45°C、60°D、75°例4、如图,AB是⊙O的直径,BD=BC,∠A=25°,则∠BOD的度数为()A、12.5°B、30°C、40°D、50°例5、如图所示,AB是⊙的直径,AC=CD=BD,E是⊙O上一点,连接CE、DE,则∠CED的度数为()A、25°B、30°C、40°D、60°例6、如图,⊙O的直径是AB,∠C=35°,则∠DAB的度数是()A、60°B、55°C、50°D、45°例7、如图,经过原点的⊙P与x轴,y轴分别交于A(3,0)、B(0,4)两点,点C是OB上一点,且BC=2,则AC=____1、如图,AB和CD都是⊙O的直径,∠AOC=52°,则∠C的度数是()A、22°B、26°C、38°D、48°2、如图,AB为⊙O直径,∠ABC=25°,则∠D的度数为()A、70°B、75°C、60°D、65°3、如图,AB是⊙O的直径,若∠BDC=30°,则∠AOC的度数为()A、80°B、100°C、120°D、无法确定4、如图,⊙O中弦AB等于半径OA,点C在优弧AB上运动,则∠ACB的度数是()A、30°B、45°C、60°D、无法确定5、如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()A、60°B、45°C、30°D、22.5°6、如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAB的度数是()A、35°B、55°C、65°D、70°7、如图,AB是⊙O的直径,CD是⊙O的弦。

人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿

人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿

人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的第三节“弧、弦、圆心角”是整个章节的重要组成部分。

本节内容主要介绍了弧、弦、圆心角的定义及其相互关系,旨在让学生理解和掌握圆的基本概念和性质,为后续学习圆的周长、面积等知识打下基础。

教材从生活实例出发,引出弧、弦、圆心角的概念,并通过观察、操作、猜想、证明等环节,让学生体会圆的性质。

教材注重培养学生的空间想象能力、逻辑思维能力和动手操作能力,使其能够运用所学知识解决实际问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和观察能力有一定的提高。

但是,对于弧、弦、圆心角的定义和相互关系,学生可能还存在一定的模糊认识。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生从生活实际出发,理解并掌握弧、弦、圆心角的性质。

三. 说教学目标1.知识与技能:理解和掌握弧、弦、圆心角的定义及其相互关系,能够运用所学知识解决实际问题。

2.过程与方法:通过观察、操作、猜想、证明等环节,培养学生的空间想象能力、逻辑思维能力和动手操作能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养其积极思考、合作探究的学习态度。

四. 说教学重难点1.教学重点:弧、弦、圆心角的定义及其相互关系。

2.教学难点:圆心角、弧、弦之间的数量关系。

五. 说教学方法与手段1.教学方法:采用问题驱动、观察猜想、证明验证的教学方法,引导学生主动探究,提高其思维能力。

2.教学手段:利用多媒体课件、实物模型等辅助教学,增强学生的直观感受。

六. 说教学过程1.导入:从生活实例出发,引出弧、弦、圆心角的概念,激发学生的学习兴趣。

2.新课讲解:讲解弧、弦、圆心角的定义,通过观察、操作、猜想、证明等环节,让学生理解并掌握其相互关系。

3.例题讲解:分析并解决典型例题,让学生运用所学知识解决实际问题。

4.课堂练习:布置针对性的练习题,巩固所学知识。

2022年人教版九年级数学上册第二十四章 圆教案 弧、弦、圆心角

2022年人教版九年级数学上册第二十四章 圆教案  弧、弦、圆心角

24.1 圆的有关性质24.1.3 弧、弦、圆心角一、教学目标【知识与技能】1.理解圆心角概念和圆的旋转不变性.2.掌握在同圆或等圆中,圆心角、弧、弦之间的关系,以及它们在解题过程中的应用.【过程与方法】通过学生动手或计算机演示使学生感受圆的旋转不变性,发展学生的观察分析能力.【情感态度与价值观】培养学生勇于探索的良好习惯,激发学生探究,发现数学问题的兴趣.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】圆心角、弧、弦之间的关系,并能运用此关系进行有关计算和证明.【教学难点】理解圆的旋转不变性和定理推论的应用.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课熊宝宝要过生日了!要把蛋糕平均分成四块,你会分吗?分成八块呢?(出示课件2)(二)探索新知探究一圆心角的概念教师问:圆是中心对称图形吗?它的对称中心在哪里?(出示课件4)学生思考并观察教师操作进而得出结论.操作1:将圆绕圆心旋转180°后,得到的图形与原图形重合吗?由此你得到什么结论呢?(出示课件5)结论:圆是中心对称图形.操作2:把圆绕圆心旋转任意一个角度呢?仍与原来的圆重合吗?(出示课件6)结论:圆是旋转对称图形,具有旋转不变性.出示课件6:教师问:观察在⊙O中,这些角有什么共同特点?(出示课件7)学生答:顶点在圆心上.由此得到:(出示课件8)1.圆心角:顶点在圆心的角,如∠AOB.2.圆心角∠AOB所对的弧AB⌒.3.圆心角∠AOB所对的弦为AB.练一练:判别下列各图中的角是不是圆心角,并说明理由.(出示课件9)生观察后独立解答:①顶点在圆内,但不是圆心,不是圆心角;②顶点在圆外,不是圆心角;③顶点在圆周上,不是圆心角;④是圆心角.探究二圆心角、弧、弦之间的关系如图,在⊙O中,将圆心角∠AOB绕圆心O旋转到∠A'OB'的位置,你能发现哪些等量关系?为什么?(出示课件10)学生观察后口答:∠AOB =∠A ′OB ′;得到:AB =A 'B '. 在⊙O 中,如果∠AOB= ∠COD,那么,AB 与CD,弦AB 与弦CD 有怎样的数量关系?(出示课件11)学生观察思考后,教师归纳:由圆的旋转不变性,可得:在⊙O 中,如果∠AOB=∠COD,那么,,弦AB=弦CD.如图,在等圆中,如果∠AOB =∠CO ′ D,你发现的等量关系是否依然成立?为什么?(出示课件12)学生观察思考后,教师归纳:通过平移和旋转将两个等圆变成同一个圆,可得,如果∠AOB=∠COD,那么,AB=CD,师生共同归纳:在同圆或等圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦也相等.(出示课件13)''.AB A B ︵︵即出示课件14:教师问:定理“在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.”中,可否把条件“在同圆或等圆中”去掉?为什么?学生思考后口答:不可以,如图.师生共同归纳,进一步强化认知:(出示课件15)教师强调:弧、弦与圆心角关系定理的推论(出示课件16,17)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优弧和劣弧分别相等.关系结构图出示课件18:例1 如图,AB是⊙O 的直径,BC=CD=DE.∠COD=35°,求∠AOE 的度数.学生独立思考后,师生共同解决.解:,∴∠=∠=∠,BOC COD DOE=35=∴∠=-⨯75.180335AOE巩固练习:判断正误.(出示课件19)(1)等弦所对的弧相等.()(2)等弧所对的弦相等.()(3)圆心角相等,所对的弦相等.()生思考后口答:⑴×⑵×⑶×出示课件20:例2 如图,在⊙O中,,∠ACB=60°.求证:∠AOB=∠BOC=∠AOC.学生思考交流后,师生共同解答.证明:∴AB=AC,△ABC是等腰三角形.又∵∠ACB=60°,∴△ABC是等边三角形,AB=BC=CA.∴∠AOB=∠BOC=∠AOC.出示课件21,22:巩固练习:填一填.如图,AB、CD是⊙O的两条弦.(1)如果AB=CD,那么________,________.(2)如果,那么________,__________.(3)如果∠AOB=∠COD,那么__________,_________.(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?学生观察图形交流后,⑴⑵⑶问口答,⑷问板演:⑴;∠AOB=∠COD;⑵AB=CD;∠AOB=∠COD;⑶;AB=CD;⑷解:OE=OF.∴又= ,=AB CD AE CF.= ≌∴∆∆OA OC AOE COF,Rt Rt.∴=.OE OF(三)课堂练习(出示课件23-27)1.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则∠BOC的度数是()A.120°B.135°C.150°D.165°2.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等D.以上说法都不对3.弦长等于半径的弦所对的圆心角等于.4.在同圆中,圆心角∠AOB=2∠COD,则AB与CD的关系是()5.如图,已知AB 、CD 为⊙O 的两条弦,,求证:AB =CD.6.如图,在⊙O 中,2∠AOB=∠COD,那么成立吗?CD=2AB 也成立吗?请说明理由;如不是,那它们之间的关系又是什么?参考答案:1.C 解析:如图所示:连接BO,过点O 作OE ⊥AB 于点E,由题意可得:EO=12BO,AB ∥DC, 可得∠EBO=30°,故∠BOD=30°,则∠BOC=150°.2.D3.60°4.A5..AO BO CO DO 连接,,,证明:,∴∠=∠AOD BOC.∴∠∠∠∠+=+AOD BOD BOC BOD.即,∠=∠AOB COD∴=AB CD.6.解:成立,CD=2AB不成立.取的中点E,连接OE.那么∠AOB=∠COE=∠DOE,所以AB⌒=CE⌒=DE⌒.得CD⌒=2AB⌒.CE+DE=2AB,在△CDE中,CE+DE>CD,即CD<2AB.教师提醒:在同圆或等圆中,由弧相等可推出对应的弦相等;但当弧有倍数关系时,弦不具备此关系.(四)课堂小结通过这堂课的学习,你掌握了哪些基本概念和基本方法?(五)课前预习预习下节课(24.1.4)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.本节课学生通过观察、比较、操作、推理、归纳等活动,得出了圆的中心对称性、圆心角定理及推论,可以发展学生勇于探索的良好习惯,培养动手解决问题的能力.2.本节课中,教师应让学生掌握解题方法,即要证弦相等或弧相等或圆心角相等,可先证其中一组量对应相等.掌握这个解题方法有助于提升学生的抽象思维能力.。

人教版九年级上册数学教案:24.1.3弧,弦,圆心角

人教版九年级上册数学教案:24.1.3弧,弦,圆心角
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解弧、弦、圆心角的基本概念。弧是圆上的一段弯曲部分,弦是圆上两点间的线段,圆心角是由圆上两条半径所夹的角。它们在几何图形的研究中具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过一个圆的例子,展示弧、弦、圆心角在实际中的应用,以及它们如何帮助我们解决问题。
五、教学反思
在今天的教学过程中,我发现学生在学习弧、弦、圆心角的概念及其关系时,普遍对理论知识掌握得较好,但在实际应用方面还存在一定的困难。这可能是因为我在教学过程中,对实际案例的引入和讲解还不够充分,导致学生难以将理论知识与生活实际相结合。
在讲授新课的过程中,我发现有些学生对弧、弦、圆心角的定义理解不够深入。为了帮助学生更好地理解这些概念,我决定在今后的教学中,多使用一些直观的教具和动态演示,让学生能够更直观地感受这些几何元素之间的关系。
此外,在实践活动和小组讨论环节,学生们的参与度较高,表现积极。但我也注意到,部分学生在讨论过程中较为被动,可能是因为他们对问题的理解不够深入。针对这一问题,我计划在以后的教学中,多设计一些开放性问题,引导学生主动思考,提高他们的参与度和解决问题的能力。
在小组讨论环节,我发现学生们对于弧、弦、圆心角在实际生活中的应用有很好的想法,但在分享成果时,表达能力有待提高。为了提高学生的表达能力,我打算在今后的教学中,多给予他们发言的机会,并适时给予指导和鼓励。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“弧、弦、圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

九年级数学上册教学课件《弧、弦、圆心角》

九年级数学上册教学课件《弧、弦、圆心角》
24.1.3 弧、弦、圆心角
九年级上册
问题1:圆是中心对称图形吗?它的对称中心在哪里?问题2:把圆绕着圆心旋转一个任意角度,旋转之后的图形还能与原图形重合吗?
这节课我们利用圆的任意旋转不变性来探究圆的另一个重要定理.
(1)知道圆是中心对称图形,并且具有任意旋转不变性.(2)知道什么样的角是圆心角,探究并得出弧、弦、圆心角的关系定理.(3)初步学会运用弧、弦、圆心角定理解决一些简单的问题.
1.从课后习题中选取;2.完成练习册本课时的习题.
A
60°



3.如图,在⊙O中,点C是AB的中点,∠A=50°,则∠BOC= .
40°

4.如图,在⊙O中,AB=AC,∠C=75°,求∠A的度数.解:∵AB=AC,∴AB=AC.∴∠B=∠C=75°,∴∠A=180°-∠B -∠C=30°.




5.如图,在⊙O中,AD=BC,求证:AB=CD.证明:∵AD=BC.∴AD=BC.∴AD+AC=BC+AC,即CD=AB.∴AB=CD.
【教材P85练习 第2题】
解:∵ ,
∴∠BOC=∠COD=∠DOE.又=∠COD=35°,∴∠BOE=∠BOC+∠COD+ ∠DOE=105°,则∴∠AOE=180°-∠BOE=75°
1.四个元素: 圆心角、弦、弧、弦心距
2.四个相等关系:
① 圆心角② 弧 弦④ 弦心距



7.如图,在⊙O中,弦AB与CD相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.
拓展延伸
(1)证明:连接AD.∵AB=CD, ∴AB=CD. ∴AB-AD=CD-AD.即BD=AC. ∴BD=AC.在△ADB和△DAC中,∴△ADB≌△DAC(SSS).

人教版九年级数学上册24.1.3弧、弦、圆心角课件

人教版九年级数学上册24.1.3弧、弦、圆心角课件

的顺 的位序位置排置列关顺 关过,系序系点若,排,O列并并A作D,说说=O若明明BEC理理A,D由由=根A..BB据C于题,点意根E补据,全题交图意形补DC,全于探图点究形,AFB探, ,究 AB ,
C(D2的)位当置A关B 、系,CD并位说于明圆理心由O. 的异侧时,
连C交接D 的AOB位A于,置点关OB系G,,,并OC说,明理OD由..
D
F
C
∵ AD=BC ,
12
O
A
E
B
∴ 1 2 .
G
∴ 1 2,
解: AB交交∥∵AACBBDA于于D. =点点BGGC ,,,
证明:∵∵∵ ∴连OAA接E1DD==OBBAACC2B,,,,,OB , OC , OD ,
过点 O∴∴∴ ∵作O11E3OEA224BA,,,B,于点 E ,交交DDCC于于点点FF,, 交 AB 于点 G .
12
3 O4 E
G
B

∴∴ ∴3DDDFFF4OOO,≌≌ CCCFFFOOO
, , 90

已知 AB 是 O 的弦, C , D 是 O 上位于弦 AB
例3 已知 AB 是 O 的弦, C , D 是 O 上位于弦 AB
顺同 顺序侧序排的排两列同 列个,侧,点若的若,两AADD且个==点ABBCC,,,,且B根根,A据据,C题题,B意意,D作作四C图图,点,,在D探探圆四究究上点按在AABB逆圆,,时上CC针按DD逆时针
的顺 的CD位序位的置排置位列关顺 关C置D,系序系D关的若,排,3 系位列并并A,置D,说说4 =并关C若明明B说系C理理A明,,D由由=理根并..B由据说C∴∵题 .明,A意理根1B+补由据为全题 .2+图意O形∴ ∵ ∴补C的O,全直D探图113径+++究形1, 8,224A0++B探.,究CC3OOADDB,41,18800,,

初中数学人教版九年级上册《2.弧、弦、圆心角》课件

初中数学人教版九年级上册《2.弧、弦、圆心角》课件

A
O C
新知导入
弧、弦、圆心角之间的关系
练一练:在同圆中,下列四个命题:
①圆心角是顶点在圆心的角;
②两个圆心角相等,它们所对的弦也相等;
③两条弦相等,它们所对的弧也相等;
④等弧所对的圆心角相等.其中真命题有( B )
A.①②③④
B.①②④
C.②③④
D.②④
随堂练习
1.如图,AB是⊙O的直径,点D是⊙O上一点,且∠AOD=100°, 若点C为BD的中点,则∠COB的度数为( A ) A.40° B.60° C.80° D.120°
圆是中心对称图形,圆心就是它
A
B 的对称中心.
1 圆心角
旋转90°
旋转270°
旋转300°
归纳:把圆绕圆心旋转任何一个角度,所得的图形都 与原图形重合.
新知导入
圆心角
O r
A B
定义:顶点在圆心的角,叫圆心角, 如∠AOB .
圆பைடு நூலகம்角 ∠AOB 所对的弧为___A__B___. 圆心角 ∠AOB所对的弦为____A_B___.
在同圆或等圆中,如果两条弧相等, 那么它们所对应的圆心角相等,所 对的弦相等. 在同圆或等圆中,如果两条弦相等, 那么它们所对应的圆心角相等,所 对的优弧和劣弧分别相等.
24.1.3
谢谢大家
人教版 九年级数学上
24.1.3
弧、弦、圆心角
人教版 九年级数学上
知识要点
1.圆心角 2.弧、弦、圆心角之间的关系
新知导入
看一看:视察下图中图形的变化,试着发现它们的规律。
新知导入
看一看:视察下图中图形的变化,试着发现它们的规律。
新知导入
圆心角
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、弧、弦、圆心角的关系: 在同圆或等圆 中,两个圆心角、 两条弧 、 相等 中有一组量相等,它们所对应的其余各组 量也 相等 .
我相信,只要大家勤 于思考,勇于探索,一定 会获得很多的发现,增长 更多的见识,谢谢大家, 再见!
答:»AB = ¼ AB
AB= A¹B¹
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材 知识点三 弧、弦、圆心角的关系
理由:
∵∠AOB=∠A′OB′ ∴射线OB和 OB'重合 又∵OA= OA' ,OB= OB' . ∴点A与 A' 重合,点B与 B' 重合 即:»AB 和 ¼ AB 重合,AB与A¹B¹重合 ∴ »AB = ¼ AB、AB=A¹B¹.
Q AB CD,OA OB OC OD AOB COD
又 AOB 与 COD 是等腰三角形,
OE、OF分别是底边AB、CD上的高。
OE=OF
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点四 弧、弦、圆心角的关系的应用
例3、如图,在⊙O中,»AB = »AC 、∠ACB=60°。
求证:∠AOB=∠BOC=∠AOC.
2、回顾什么是垂径定理及推论?
垂径定理:垂直与弦的直径平分这条弦,并 且平 分这条弦所对的两段弧。
推论:平分弦(不是直径)的直径垂直与这条弦, 并且平分这条弦所对的两段弧 。
广东省怀集县凤岗镇初级中学
黄柳燕
二、新课引入
3、如图.AB是⊙O的直径,弦CD⊥AB,垂 足为M,若CD=8cm,CM=__4_c_m____.
»AB = ¼AB .
②如果»AB = ¼ AB、那么 ∠AOB=∠COD , AB=CD .
③如果∠AOB=∠COD,那么__A_B__=_C_D_, _»A_B__=___¼A_B__.
广东省怀集县凤岗镇初级中学Fra bibliotek黄柳燕
三、研学教材
知识点三 弧、弦、圆心角的关系
④如果AB=CD,OE⊥AB于点E,OF⊥CD于点 F,OE与OF相等吗?为什么? 答:相等
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点一 圆具有旋转不变性
圆具有旋转不变的特性,即一个圆绕着 它的 圆心 旋转任意一个角度,都能与 原来的图形 重合 .
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点一 圆具有旋转不变性
练一练 下列图形中,哪一个图形无论绕中心
旋转多少度,都能与自身重合?( ④ )
∠COD=35 °,求∠AOE的度数.
B»C C»D D»E
BOC COD DOE
Q COD 35o
BOC DOE 35。
又 AB是⊙O的直径
AO广E东省1怀8集0o县凤岗B镇O初C级中学COD黄柳燕DOE 75o
四、归纳小结
1、_这__样__顶__点_在__圆__心__的__角______叫圆心角.
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材 知识点三 弧、弦、圆心角的关系
归纳: 1、在同圆或等圆中,相等的圆心角所对 的弧 相等 ,所对的弦也相等.
2、在同圆或等圆中,如果两条弧相等, 那么它们所对 圆心角 的相等,所对的弦 也 相等 .
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点三 弧、弦、圆心角的关系
图2
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材 知识点二 圆心角的定义
练一练 2、判别下列各图中的角是不是圆心角.
√√ x
广东省怀集县凤岗镇初级中学
x
黄柳燕
三、研学教材
知识点三 弧、弦、圆心角的关系
1、在⊙O中,把∠AOB连同 »AB 绕圆心 O旋转,使OA与OA'重合. 2、当圆心角∠AOB=∠A'OB'时,它们所对 的 »A和B ¼A、B 所对的弦AB和A¹B¹相等吗? 为什么?
弧、弦、圆心角
一、学习目标
1、理解圆的旋转不变性,掌握圆心角的 概念以及弧、弦、圆心角之间的等量关 系;
2、能运用弧、弦、圆心角之间的相等 关系解决有关的证明、计算问题.
广东省怀集县凤岗镇初级中学
黄柳燕
二、新课引入
1、圆既是__轴___对称图形,又是_中__心_____ 对称图形,任何一条 经过圆心 所在的直 线都是它的对称轴,对称中心是__圆__心___.
证明:∵ »AB = »AC ,
∴AB=AC ∴△ABC是等腰三角形. ∵∠ACB=60°,
∴△ABC是 等边三角形 ∴ AB=BC=AC. ∴ ∠AOB=∠BOC=∠AOC..
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点四 弧、弦、圆心角的关系的应用
练一练
如图,AB是⊙O的直径,B»C C»D D»E,




广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点二 圆心角的定义 如图1所示,∠AOB的顶点在圆心,像这 样顶点在圆心的角叫做 圆心角 .
B A
O
广东省怀集县凤岗镇初级中学
图1
黄柳燕
三、研学教材
知识点二 圆心角的定义
练一练 1、如图2,BC是⊙O的直径,则图
中所有的圆心角分别为 AOB、AOC (填小于180°的角)
3、在同圆或等圆中,如果两条弦相等, 那么它们所对的圆心角 相等 ,所对的
弧 也相等 温馨提示:同圆或等圆中,两个圆心角、 两条弧、两条弦中有一组量相等,它们所 对应的其余各组量也 相等.
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点三 弧、弦、圆心角的关系
练一练: 1、如下图,AB、CD是⊙O的两条弦. ①如果AB=CD,那么∠AOB=∠COD ,
相关文档
最新文档